
A Ablation Study1

In this ablation study, we further investigate the power of the policies searched by our approach2

and the closely related method AutoAug [1]. We rank the augmentation operations based on their3

probabilities in decreasing order. Therefore, the operations ranked on the top could be deemed as the4

most important augmentations. Then we gradually remove the most important operations from the5

searched policy one by one and investigate the change of the Top-1 test error rates, as reported in6

Tab. 1. As can be seen, when the most important operations are removed gradually, the performance7

of the AutoAug remains similar. On the contrary, during this process, the performance of ours drops8

significantly. This shows that the augmentations in our policy are much more powerful than those in9

the AutoAug.10

Table 1: Ablation Study. Top-1 test error rates (%) is reported (lower is better). We report Mean ±
STD (standard deviation) of the test error rates.

Approach Apply Without Without Without
All Top 1 Top 1 ∼ 2 Top 1 ∼ 3

AutoAug [1] (our impl.) 3.40 ± 0.070 3.45 ± 0.066 3.36 ± 0.065 3.46 ± 0.082
Ours 2.91 ± 0.062 3.10 ± 0.056 3.13 ± 0.099 3.19 ± 0.110
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B Proof11

The proof of the proposition in Sec. 3.3 is as follows:12

Proof. The KL-divergence between pθθ and pθ̄θ is as follows:13
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= Στ (pθθ(τ)ΣKi=1 log pθ(τi)) − Στ (pθθ(τ)ΣKi=1 log pθ̄(τi)) . (1)

Since Στ (pθθ(τ)ΣKi=1 log pθ(τi)) is constant with respect to θ̄, the θ̄∗ that minimizesDKL(pθθ ‖ pθ̄θ)14

should satisfy:15

θ̄∗ = arg max
θ̄
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1

K
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By Jensen’s inequality with the strictly concave function log(·), we have:16

Στ (pθθ(τ)
1

K
ΣKi=1 log pθ̄(τi)) ≤ Στ (pθθ(τ) log(ΣKi=1

1

K
pθ̄(τi))) . (3)

The equality holds if and only if pθ̄(τ1) = pθ̄(τ2) = · · · = pθ̄(τK) for all the possible τ . In other17

words, the KL divergence is minimized when θ̄ is uniform sampling. �18
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C Investigation of the Number of Epochs of Fine-tuning19
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Figure 1: We investigate the key hyper-parameter Nlate by visualizing the difference it brings to
the search dynamics. All the experiments are conducted with ResNet-18 [4] on CIFAR-10 [6]. The
Pearson correlation coefficient (r) between ACC(ω̄∗θ) and ACC(ω∗) are annotated in the figure.

We investigate different numbers of epochs in the late training stage(Nlate). By adjusting Nlate20

we can still maintain the reliability of policy evaluation to a large extent. The results are shown in21

Fig. 1. We find that the policy optimization becomes hard to converge when a small Nlate is used,22

as the performances among different ω̄∗θ are too close. And when a large Nlate is used, ACC(ω̄∗θ) is23

notably higher. However, the final performance does not benefit from this, as the correlation between24

ACC(ω̄∗θ) and ACC(ω∗) does not change much between Nlate = 10 and Nlate = 30. Thus we25

choose Nlate = 10 as the final configuration for the efficiency.26
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D Augmentation Elements27

The augmentation elements are listed as follows. We use almost the same elements as AutoAug’s [1].28

But we do not introduce Cutout [3] and Sample Pairing [5] into the search space.29

Table 2: List of Candidate Augmentation Elements.

Elements Ranges of
Magnitude

Horizontal Shear {0.1, 0.2, 0.3}
Vertical Shear {0.1, 0.2, 0.3}

Horizontal Translate {0.15, 0.3, 0.45}
Vertical Translate {0.15, 0.3, 0.45}

Rotate {10, 20, 30}
Color Adjust {0.3, 0.6, 0.9}

Posterize {4.4, 5.6, 6.8}
Solarize {26, 102, 179}
Contrast {1.3, 1.6, 1.9}

Sharpness {1.3, 1.6, 1.9}
Brightness {1.3, 1.6, 1.9}

Autocontrast None
Equalize None

Invert None
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E Datasets Splitting Details30

Table 3: Datasets Splitting Details. On both of the two CIFAR [6] datasets, we use a validation set of
10,000 images, which is randomly split from the original training set, which contains 50,000 images,
to calculate the validation accuracy during the searching. For ImageNet [2], we use a reduced subset
of ImageNet train set when searching the policies, although our method is affordable to be directly
performed on ImageNet. This subset contains 128, 000 images and 500 classes (randomly chosen).
We also set aside a validation set (no intersection with the reduced train subset and containing the
same 500 classes) of 50,000 images split from the training dataset for getting the validation accuracy.

Dataset Train Validation Test
Set Size Set Size Set Size

CIFAR-10 [6] 40,000 10,000 10,000
CIFAR-100 [6] 40,000 10,000 10,000

Reduced ImageNet [2] 128,000 50,000 50,000
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F More Implementation Details31

CIFAR Once the policies have been learned, they are applied to training the models again from32

scratch, as well as another network models for the investigation of the transferability of the policies33

between different network models. For ResNet-18 and Wide-ResNet-28-10, we use a mini-batch size34

of 256 and the SGD with a Nesterov momentum of 0.9. The weight decay is set to 0.0001, and the35

cosine learning rate scheme is utilized with the maximum learning rate of 0.4. The number of epochs36

is set to 300. For PyramidNet+ShakeDrop and Shake-Shake (26 2× 32d), we use the same settings37

as those in [7].38

For a fair comparison among different augmentation methods, we apply a basic pre-processing39

following the convention of the state-of-the-art CIFAR-10 models: standardizing the data, random40

horizontal flips with 50% probability, zero-padding and random crops, and finally Cutout [3] with41

16×16 pixels. During our comparison, the searched policy is applied on top of this basic pre-42

processing step. That is, for each input training image, the basic pre-processing is first performed,43

then the policies learned by an augmentation method, and finally the Cutout.44

ImageNet Once the policies have been obtained, they are applied to training ResNet-50 from45

scratch, as well as another network model ResNet-200 for the study of policy transferability. The46

hyper-parameters used to train ResNet-50 and ResNet-200 are the same as those in [1] except a cosine47

learning rate scheduler. Moreover, our learned policies are applied on top of a standard Inception-style48

pre-processing, which includes standardizing, random horizontal flips with 50% probability, and49

random distortions of colors [8]. This pre-processing step is uniformly applied to all the methods in50

comparison.51
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G Details of Searched Policies.52
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Figure 2: The changes of probability distributions of the searched policies on CIFAR-10 (the
left) and ImageNet (the right) over time.

We visualize the changes of probability distributions of the searched policies on CIFAR-10 and53

ImageNet over time. We calculate the marginal distribution parameters of the first element in our54

augmentation operations. As shown in the picture, our searched policies have strong preferences,55

as only a few augmentation operations are preserved eventually, and probabilities of many other56

operations are close to zero, which is quite different from other methods like [1, 7, 9].57
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