Supplementary Material for Expert-Supervised Reinforcement Learning for
Offline Policy Learning and Evaluation

Appendix A  Off-Policy Policy Evaluation and Uncertainty Estimation

In this Section, we follow the lines of Section 4 in the main text with more discussion. We show
an Algorithm that collects the ideas presently discussed and an additional Lemma regarding the
convergence of the null probability estimator.

We leverage f(-|Dr) to estimate the value function for any policy, and use hypothesis testing for
whether there is a meaningful difference in two policy functions (i.e. u® vs. 7). Recall, we compute
the estimated value of a given policy /i, by sampling K models from the posterior and navigating M,
using /i to obtain V" ~ fy(:[Dr). We estimate E [VM"|Dr] with V; = £ S| Vﬂ(kl) This
process is shown in Algorithm 2]

Algorithm 2: Value function estimation
fork=1,...,Kdo
Set V® « 0;
Sample My, ~ f(:|Dr), k=1,...,K;
Sample s ~ Péw"‘;
fort=1,...,7do
a <+ [i(s,t);
Ve VI 4 RM (s, 0);
Sample s’ ~ PMk(s'|s);
Set s < s';
end

Set Vﬁ(ﬁ) < VT(k);

end

Note that we average over the initial states as well, as we are interested to know the marginal value

of the policy. A conditional value of the policy function VHM1 (s) can also be computed simply by

K
starting all samples at a fixed state. Analogous to Section 3, we use samples {Vu(kl) }k to define a

(1 — @) Cl using the o and 1 — « quantiles. Note that for policies which are very dlfferent from the
behavior policy, the posterior distribution will have wider CIs due to the wide distribution shift. This
signals that there is not enough information in D for the rarely visited state-action pairs (s, a). This
happens with OPPE importance sampling estimators as well [2]. As opposed to only considering
point estimators of the value function, these CI help to assess whether the estimated value is likely to
be accurate or if the estimate is unreliable given the information in D. Importance sampling based
estimators reflect this large distribution shift in high variance estimators.

Policy-level hypothesis testing. We use Algorithm [2| to assess whether there is a statistically
significant difference in value from two different policies. Define the value function null hypothesis

for two fixed policies fi;, fi2 as the event in which policy fi; has a higher expected value than /iy
conditional on Dp: Hy : Egwp, ar+ [Via, ()| D7] > Esapy a1+ [Viay (8)|Dr]. The probability of the

null under the true model M * is
> ZPO < i1 )>Vﬂz(5) SvDT)'

P, (H|Dr) =P (v,% (5) > VM
seS
B, (HolDr) = Z I (VMk Mi(s) > 0) . )

We use the following estimator from samples generated from Algorithm 2}

Lemma A.1. Let py, po : S X {1,...,7} be two pre-specified policy functions, and let If’l,,(H0|DT)
be defined as in (2)),

Py (Ho|Dr) — Py, (Ho|Dr) = Op (Kfé) ,
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Lemma [A.T] ensures consistency of the probability of the null-hypothesis for the value function
testing.

Appendix B Supporting Lemma
Lemma B.1. (Lemma I in [I6]]) If f is the distribution of M* then, for any o(Dr)—measurable
function g, and model My, ~ f(-|Dr):

Elg(M*)|Dr] = E[g(My)|Dr].

Appendix C Proof of results in main body

C.1 Theorem 3.4

In this Subsection we develop the necessary definitions and lemmas, and eventually go on to prove
Theorem 3.4. To simplify notation let P*(Hy) = P*(Hy|s, t, Dr) and P(Hy) = P(Hyls,t, Dr).
Given the behavior policy as defined in Algorithm 1 and the optimal policy under the true MDP M™,
we can write the ESRL policy obtained from any M}, sample from Algorithm 1, and it’s equivalent
version under M* as:

p (s t) =1 (P(HO) < a) pe(s,t) + 1 (]f”(Ho) > a) (5,4,
5 (s,) = 1 (P*(Ho) < ) 1" (s,6) + T (P*(Ho) > ) n(s,),

we show our result is true for any pf! and thus it’s true for the ESRL policy u®. Next we define the
policy pgf which uses the true null probabilities and i, as:

13 (5,8) = T (P*(Ho) < ) (s, t) + I (P*(Ho) = a) (s, ).

finally let
=" Ro(s) (V1) = Vi (s)
sES
=3 Ry (V%f s) — ng:,l(s)) .
seS

Consider function g : M — V,}, |, g is o(Dr) measurable for a fixed o € [0, 1] as 7 (s, ), P*(Ho)
are fixed V(s,t) € S x {1,..., 7}, thus, by Lemma|[B.1|for any M}, ~ f(-|Dr)

E Vi ()IDr| =E [V 1 (9)Dr],
now using iterated expectations we get E {Vﬂj\gf’l (s)] =E [V (9]

We use this to re-express the expected regret for episode ¢ under model k£ computed with Algorithm 1
as

E > Rols) (VA a(s) - fo’*())]

seS
5 Ao (e [109] -2 [ )
seS
=3 Ry(s) (]E {V%ﬁyl(s)} E [VM, (s )D
sES
=E[A]]+E[AY],

where the last step follows from adding and subtracting [E [Vlf\g: 1 (s)] .
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We first consider E [Af], we use a strategy similar to [I6], but do not make an iid assumption for
within-episode observations. Define the following Bellman operator 7;]‘41 for any MDP M, policy <,
and value function V' to be

TV (s) = RM(s,1%(s,0)) + Y P (s'18)V(s), 3)

s'eS
this lets us write foﬁt(s) = E%V#%Hl(s).

The next Lemma will let us express term [E {A;‘

M*, M, k] in terms of the Bellman operator.

Lemma C.1. If f is the distribution of M *, then

B |a;

We now define a confidence set for the reward and transition estimated probabilities.

* Mjp,
M ,Mk] —E Z(Tm( D= T ) Vil s (s50)

Jj=1

M*ka:

Lemma C.2. Let 7 denote the set of index i,j for episodes in Dy
{(Z,])ZG {1,...,T},j€{1,...,7}
Further let Nt (s, a) be the number of times (s, a) was sampled in Dr: Nr(s,a) =37, ;7 1(Si;

s, Aij = a), let P,(-|s) and R(s,a) be non-parametric estimators for the distribution of transitions
and rewards observed after sampling T episodes:

{(8i15@i1, i1y - -+ Sizy Qiry Tir) Yoy, that is: T

[~

Diijer 1(sij41 = 8)(si; = s,ai5 =a) . Dijer L(sij = 8,045 = a)ry;

Falele) = Nr (s il = Nr (o0

Define the confidence set:

My = {M : \ Pu(-]s) — PM(|s)

< Br(s.a),|R(s,0) = RM(s,0)| | < Br(s,0) V(s,0)}

1

\/8ST log(25AT) thenP M*¢MT)

max{1,Nr(s,a)} ’

where Br(s, a)

T
Proof of Theorem 3.4. We start by summing A} over all episodes:

T

+7> (P(M, ¢ M) +P(M* ¢ Mr))

i=1

AT(My,, M* € Mr)

K2

T
E|> A
i=1

<E|)

+ 27

T
E ZA;|M,C,M*] I(My, M* € My)
i=1

T

T
1
T
M, M M,
<E ZZ’(TJ T )VH:*JH( 5
Jj=1

1 1

I(Myg, M* € My)| +27

where the first step follows by conditioning on event I (M}, € My, M* € M) and it’s complement,

and from the fact that A} < 7 as all rewards R(s,a) € [O 1]. The second step follows from iterated
expectations and Lemma as P[I(M* ¢ Mr)] < 7. Also since My is a o(Dr)-measurable

function by Lemma[B.1| we have E [/ (Mk ¢ Mrp)|Dr) =E[I(M* ¢ Mr) \D , using iterated
expectations we have P[/ (M}, ¢ Mr)] < #. The last step follows from Lemma Next using (3))
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the last equation can be re-written as

T T
> DI (Ho) = ) {RM (s,m(s,5) = B (s,(s,5)) | I(My, M* € My)

i=1 j=1
T T
+E DD T(P*(Hy) > a){ P (8|s) = PG 5y (8']s) Vﬂj\gf,j+1(5j+1)} I(My, M* € My)
| i=1j=1 s'eS
[ T T B B
FE | T® (Ho) < @) { R (s, ues,7)) = B (s, 0k (5,9)) } 1(Mie, M* € M)
| i=1 j=1
+E ZZI (P*(Hp) < o {Z ‘ it (8'18) = Pl 5 (s']s) V#]\gf’jﬂ(sﬁl)}[(Mk,M* € M)
_1 1j=1 €S
+ 27

<E TZme{ﬁT Sijm(8i5,7)), 11| +E TZZmln{BT Sijs (85, 7)), 1} + 27,

=1 j=1 =1 j=1

where the last step follows by Lemma[C.2] next:

T T r
<E TZZ /85T log(2SAT) 4R TZZ \/85T log(25AT) tor

mln{NT SLJ?/“[’]C(SIJ .] mln{l NT Sl_]77r(81j7.]))}

=1 j=1

MiVT2SAT + Mot/ S?2AT log(SAT) + 27 < M37S+/ AT log(SAT) + 27,

where the last step follows by Appendix B in [[L6] with constants M7, My, M.

We next analyze

=" Ry(s) (JE M{f ,1(8)} -k [fofl(s)D '

seS

We can write the second term as

T

E VA 6)] =B |31 (B(Ho) < @) BM (sj,(s5,5)) + 1 (B(Ho) = ) RM (s, 7(s5,9)) | |

Jj=1

we extend the null probability notation to be explicit on the time index: P;(Hp) =

P*(Hy|s;,j, D7), P (Ho) = ]fD(H0|sj,j,DT). By Lemma 3.2, 36 > 0 such that ]f"j(Ho) —
P (Ho) <dVs € 8 ,j € {1,...,7} with high probability, therefore

Pi(Hy) > a+6 — P (I@j(HO) > a) =1-0, (K*%) .

[SE

Pj(Ho) <o —6 = P(B,(Ho) <a) =1-0, (K~ “)

As 71, I, in Algorithm 1 are mutually exclusive, ]f”j(Ho) are independent to py(s,j) Vs € S,j €
{1,...,7}, therefore starting with V’% T(s) we have
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E [V (s)]

=T (P (Ho) < = 6) {B[1 (B(Ho) < )| R (57, pe(7,7) + E 1 (Br(Ho) > a) | B (s, m(s7,7) }

1P (Ho) 2 o = 6) {E[1 (Br(Ho) < a) | R (57, jus(57,7)) + B [1 (Br(Ho) = @) | B (sr,m(sr,7) }

I (P%(Hy) € [o — 8,0+ 6)) { [ (PT Hy) < a)] BM (37, pio(57,7)) + E {1 (I@’T(HO) > a)} RM*(ST,W(ST,T))H
=1 (P;(Hy) < = 8) B (50, (5, 7)) + Oy (K %)
1 (P5(Ho) > & = 8) RM (57, (57, 7)) + O (K4
I (PA(Hy) € [0 — 6,00+ 8)) O, (K*%>

=B [V ()] +0, (K1),

where the first step follows from Z;, Z, being independent, the second step follows from (@) and last
step from definition of Vlﬁg: ,T(s). Iterating backards from 7 — 1...,1 and applying the same steps
as above we get

E [v,}g;(s)] —E [vlj\g;jl(s)] +0, (TK*%) .
therefore we have E [ZiTzl Af‘} =0, (TTK_%) , choosing K = O (T') we get E [ZiTzl Af‘} =
O, (V) which is dominated by E |21, Af].

Putting both terms together we have

E i Ai] lz A

+E

> o

=1

:o@&ﬁﬁﬁﬂﬁﬂ)

C.2 Proofs for other results in main body

Proof of Lemma 3.1. To establish Qﬂyt(s, a) is unbiased, note that for any fixed (¢,s,a), My ~
f(-|Dr) are iid, now for a given policy function fi :

E [Qﬁ,t(saa) s,a,t,DT} =Bl ZQ(k) (s,a)|s a,t,DT]
K
Z { (s,a) satDT} :E[Q%:(s,a) s7a,t,DT]
k;:

where the last step follows from LemmaEwnh g: M~ QF M (s,a) which is 0(D7)— measurable.

To establish the rate, we have that R (s,a) € [0,1] V(s,a) € Sx A, t =1,..., 7 thus ng)(s, a) <
7. By definition Q;(s,a) — E [ %t* (s, a)‘s, a, t,DT} =0, (K*%) if and only if for any € > 0,
M. > 0 such that

P (Qﬂﬁt(s, a)—E [ M (s,a)

s,a,t,DT] > K_%M6

s,a,t,DT) <e VK.
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Note that for any M > 0,

P (tht(s,a) -E {Q%g(s,a) t s,a,DT} > KéM‘t, s,a,DT>

k _1
=P (K g Q( (s [Q/]LM)‘ (s,a) s,a,t,DT] >K2M s,a,t,DT>
2M2K LK 2M?
e A el el =

K

which follows from Hoeffding’s inequality as conditional on s, a, t, fi and D, {Q(k)( )}k ) are

tid with mean E {Q%g (s,a)

s, a,t, DT] . The result follows from choosing M, > 0 large enough

2
such that exp {— 2%6 } < €.
O

Proof of Lemima 3.2. To simplify notation, let Z(*) = | (QL’%),t(s, (s, t)) — QL’%),t(s, m(s,t)) < O),

then by definition Z(*) — E [Z(¥)] = O, (K*%) if and only if for any € > 0, 3M, > 0 such that

P <Z<k> “E [ZW} > K3 M,

t,s,DT> <e VK.

Note that for any M > 0,
P (I@’(H0|t, s,Dr) — & [ZU%, s,DT} > K—3 M|t s,DT)

ta S, DT)

where the inequality follows from Hoeffding’s inequality as {Z(k)}f:1 are ¢td with mean

K
1 ,
—p|— Z(k)—E[Z(k)t D] MK™%
(1 s lrmnnn)

2M2?K~1K? 2M?
SOP T K TP T

E [Z(k)‘t, s,DT], since 77, Z, in Algorithm 1 are disjoint. We can choose M, > 0 large

2M2
T

enough such that exp {— < €. Next note that as = is fixed, by Lemma with

g: M= I(QN (s, u(s,t)) — QN ,(s,m(s,t)) < 0) forany My ~ f(-|Dr)

B |1 (QE soms(o1) — QU o705, < 0) 1.5,

) [1 (Q,%;t(s, 1 (s,t) — QML (s, 7m(s,t)) < o) t, s,DT}

:P(H0|ta S, DT)

which follows from using disjoint sets Z;, Z5 in Algorithm 1. Substituting this in the probability
statement gives us

P (Hylt, s, Dr) — P (Ho|t, s, D7) = O, (Kf%) ’

which is our required result. O

Proof of Theorem 4.1. We start by showing V~ is unbiased:

E [ Vi(s)IDr, i] = ZIE [V(k)

17



where the first step follows from definition, and the My, ~ f(-|D7) being iid, now by Lemma [B.1]
with g : M — VMM1 we have

E|[ValDr| =E [V (s)1Dr].
To establish the rate, we have that Vﬂ(ﬁ) < 7 as all rewards are between [0, 1] by definition Vﬂ —
E [V} (s)|Dr] = 0, (K_%) if and only if for any € > 0, 3M, > 0 such that
P (f/ﬁ ) [V,%*(SMDT} > K*%ME) <e VK.

Note that for any M > 0,

X

A * 1 k * 1
P (Vi —E V21 (5)IDr| > K~ 4n) =P (K S VIR -E [V (5)Dr] > K 2M>
k=1

2M?K1K? 2M?
SOP\ TR TP T e

K
where the inequality follows from Hoeffding’s inequality as {Vﬁ(kl)}k . are ttd with mean

E [V (s)|Dr]. The result follows from choosing M. > 0 large enough such that exp { 20 } <
€. O

Appendix D Proofs for Supplementary results

Proof of Lemma[A7]] First note that conditional on Dy with g : M — I (V,(s) — V.M (s) > 0),
by Lemma [B.T]

E {I (VMe(s) = Ve (s) > 0

] I VM* — Vi (s) > 0) ‘DT} =P, (Ho|Dr)

By definition ]fD#(H0|DT) —P, (Ho|Dr) =0, ( ) if and only if for any € > 0, 3M, > 0 such
that

P (I@’,L(H0|DT) —P, (Ho|Dr) > K2

)Se VK.

Now, for any M > 0,

P (I?’#(H0|DT) —P, (Ho|Dy) > K2

T)
1\ (k) (k)
k k _1
=P (K ;-1: (VM v > 0) P, (Ho|Dr) > MK~

IM2K-1K2 2M?
SOP\TT R TP T

DT>

where the inequality follows from Hoeffding’s inequality as the indicators

K
{] (V( ) V(k)1 > 0)} are iid with mean P, (Ho|D7). We can choose M., > 0

1,1 _

2]%

large enough such that exp { } < e. O

Proof of Lemma|C.1] We first write the estimated regret as a sum of difference in value functions
and a Bellman error.
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I) We’ll denote the sequence of states for an episode as s, So,..., S, define
My
(Ta*( ) T *( j)) Vug* g1 (sj+1)

M, M
Ta*( ) (V ax G4l Vug*,jﬂ) (sj+1)
using (3) we can write

M, * M, M, * *
(Ve = VL) (s1) = (T Vil = T VA ) (s2)

= (T Vit s = TV, 4 T VI, = T VL) (s2)

=W + Ty,
with the same steps we can generalize this to
M. .
(Ve = V) (5) = Wy + T 5)

Next let

(IP*H°<O‘Z () (8'|8) + 1 (B (Ho) = @) Y Pr(s (s )

s'eS s'eS
M / M M*
X (V,Lgf j+1 V Qo J+1) (s') — (V/Lgf,jﬂ - Vug*,jﬂ) (sj+1)

using the Bellman operator we get

M, M*

T; = (Vu:57g‘+1 - Vuz*,jH) (sj41) + €,
then we can write T; = (Vlf\;:flf,2 — Vuj‘g: ,2) (s2) + e1, with the above definitions and repeated use of
M M*
(Vugf,l - Vug*,l) (1) =W1+ T
M M*
= Wl + (Vﬂzf:2 - VI‘I’(I:*’2> (52) + 61

= W1 + WQ + (V#I\gfﬁ - Vu]\g;:;) (53) +e1 + eo

= Z Wj + e;.
j=1
IT) Next we consider E [e; | M}, M*]:

E |:ej

Mk,M*]

-

* My, M*
=E l[ IP HO < @ Z m g]) (V#gf’]arl - V#g*,j—i-l) (5/)

s’eS
+E | I(P*(Hy) > a Z W(” s'|s) (VAf,é , Va* J+1 (s’) ‘Mk,M*]
s'eS
—E {(Vuﬂgf,jﬂ - Vfé:,m) (sj+1) MkvM*}
(z (B*(Ho) < ) Y PG, ;)('ls) + 1 (B*(Ho) = a) Y P (sls >) (Ve = VA ) )
s’eS s'eS
(1 (P*(Ho) < ) ZS M oy (8']5) + T (P*(Hy) > o) E;PHJ) |s)> (ngfﬁl V%:m) (s')
s'e s'e
=0

)
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which follows by the expectation conditional on Mj,, M* and definition of policy ug™*.

Putting I) and II) together we get

E [(V%@l - V,fgf,l) (1)

M*,Mk} =E ij+ej M*, My,
j=1

T

Z(Tﬂff o =T )v”ffm( 5

i=1

=E

O

Proof of Lemma First consider Azuma-Hoeffding’s Inequality: Let Z;, Z», ... be a martingale
sequence difference with |Z;| < ¢ Vj. ThenVe > O0andn € NP Y1 | Z; > €] < exp {—%}

By definition the difference between the estimated transition and reward functions and their true
respective functions are:

dijer (I(sij41=15") = PM(]s)) I(sij = s,a:; = a)
Nr(s,a) ’
i jer(rij — BRM(s,a))I(sij = s,aij = a)
Nr(s,a) ’
now let BT(S, a) = /85T log(2T'S A), and consider the transition probability function, for a fixed
state action pair (s, a), leté = (£(s1),...,&(ss)) € {—1,1}°, we have

Pu(s'ls) — P (s']s) =

R(s,a) — RM(s,a) =

Sijer (I(sijr1 =) = PM(s']s)) I(sij = 8,015 = a)
NT(S7a)

P(z

s'eS

S Bﬂs,a))

~ Nr(s,a)

max Z f Z Sz,j+1 = 3/) _ Péw(g/‘s)) I(Sij =S,a;5; = a) > ﬁT(s’a)

1,1}s
gei-L1) s'eS i,j€L

<P DN L) (I(Sz}j-%l =s) - Py(5'|8)>1(8i;‘ = s,a;; = a) > fr(s,a)

s'€S i, jET

where the first step follows from multiplying by Ny (s, g and eliminating the absolute value with &,
we use a union bound for the second step as there are 2~ possible £ for a fixed (s, a) pair. Next we
use Azuma-Hoeffding’s inequality to bound the 2° probability terms, note that within the probability
function we are summing over 7' terms:

2°5p Z Z £(s") <I(si,j+1 =s)— Péw(s/|s)>1(sij =s,a;; =a) > BT(&Q)

s'€Si,j€T
85T log(2T'SA)
<95 s e v
=2 eXp{ 2 % 2°T
1 < 1
2TSA)S = TSA®

29 exp {10g((2TSA)*S)} =29
next we sum over all (s, a) pairs and get

]P’(‘If’a( Is) — PM (s H > Br(s, a))

< > P> Yijer L(sijer=38") = PM(s']5)) I(si; = s,ai; = a) > Br(s,a)
SES, aEA s'eS NT(S’ CL) NT(S’ Cl)

1

<5 ATSA T’
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which follows from using a union bound again. Analogous we can show that
P (‘R(&a) —RM(s,a)‘ > BT(S,a)) < 7, thus

P(M* ¢ My) P (Mr ¢ Mr) < 7.
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