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Appendix A Off-Policy Policy Evaluation and Uncertainty Estimation

In this Section, we follow the lines of Section 4 in the main text with more discussion. We show
an Algorithm that collects the ideas presently discussed and an additional Lemma regarding the
convergence of the null probability estimator.

We leverage f(·|DDDT ) to estimate the value function for any policy, and use hypothesis testing for
whether there is a meaningful difference in two policy functions (i.e. µα vs. π). Recall, we compute
the estimated value of a given policy µ̃, by sampling K models from the posterior and navigating Mk

using µ̃ to obtain VMk

µ̃,1 ∼ fV (·|DDDT ). We estimate E
[
VM

∗

µ̃ |DDDT

]
with V̂µ̃ = 1

K

∑K
k=1 V

(k)
µ̃,1 . This

process is shown in Algorithm 2.

Algorithm 2: Value function estimation
for k = 1, . . . ,K do

Set V (k)
0 ← 0;

Sample Mk ∼ f(·|DDDT ), k = 1, . . . ,K;
Sample s ∼ PMk

0 ;
for t = 1, . . . , τ do

a← µ̃(s, t);
V

(k)
t ← V

(k)
t−1 + R̄Mk(s, a);

Sample s′ ∼ PMk
a (s′|s);

Set s← s′;
end
Set V (k)

µ̃,1 ← V
(k)
τ ;

end

Note that we average over the initial states as well, as we are interested to know the marginal value
of the policy. A conditional value of the policy function VM

∗

µ̂,1 (s) can also be computed simply by

starting all samples at a fixed state. Analogous to Section 3, we use samples
{
V

(k)
µ̃,1

}K
k=1

to define a

(1− α) CI using the α and 1− α quantiles. Note that for policies which are very different from the
behavior policy, the posterior distribution will have wider CIs due to the wide distribution shift. This
signals that there is not enough information inDDDT for the rarely visited state-action pairs (s, a). This
happens with OPPE importance sampling estimators as well [2]. As opposed to only considering
point estimators of the value function, these CI help to assess whether the estimated value is likely to
be accurate or if the estimate is unreliable given the information inDDDT . Importance sampling based
estimators reflect this large distribution shift in high variance estimators.

Policy-level hypothesis testing. We use Algorithm 2 to assess whether there is a statistically
significant difference in value from two different policies. Define the value function null hypothesis
for two fixed policies µ̃1, µ̃2 as the event in which policy µ̃1 has a higher expected value than µ̃2

conditional onDDDT : H0 : Es∼P0,M∗ [Vµ̃1
(s)|DDDT ] > Es∼P0,M∗ [Vµ̃2

(s)|DDDT ]. The probability of the
null under the true model M∗ is

P∗µ (H0|DDDT ) =P
(
VM

∗

µ̃1
(s) > VM

∗

µ̃2
(s)

∣∣∣∣DDDT

)
=
∑
s∈S

P0(s)P
(
Vµ̃1

(s) > Vµ̃2
(s)

∣∣∣∣s,DDDT

)
.

We use the following estimator from samples generated from Algorithm 2:

P̂µ (H0|DDDT ) =
1

K

K∑
k=1

I
(
VMk

µ̃1
(s)− VMk

µ̃2
(s) > 0

)
. (2)

Lemma A.1. Let µ1, µ2 : S × {1, . . . , τ} be two pre-specified policy functions, and let P̂µ(H0|DDDT )
be defined as in (2),

P̂µ (H0|DDDT )− Pµ (H0|DDDT ) = Op

(
K−

1
2

)
,
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Lemma A.1 ensures consistency of the probability of the null-hypothesis for the value function
testing.

Appendix B Supporting Lemma

Lemma B.1. (Lemma 1 in [16]) If f is the distribution of M∗ then, for any σ(DDDT )−measurable
function g, and model Mk ∼ f(·|DDDT ):

E [g(M∗)|DDDT ] = E [g(Mk)|DDDT ] .

Appendix C Proof of results in main body

C.1 Theorem 3.4

In this Subsection we develop the necessary definitions and lemmas, and eventually go on to prove
Theorem 3.4. To simplify notation let P∗(H0) ≡ P∗(H0|s, t,DDDT ) and P̂(H0) ≡ P̂(H0|s, t,DDDT ).
Given the behavior policy as defined in Algorithm 1 and the optimal policy under the true MDP M∗,
we can write the ESRL policy obtained from any Mk sample from Algorithm 1, and it’s equivalent
version under M∗ as:

µαk (s, t) = I
(
P̂(H0) < α

)
µk(s, t) + I

(
P̂(H0) ≥ α

)
π(s, t),

µα∗(s, t) = I (P∗(H0) < α)µ∗(s, t) + I (P∗(H0) ≥ α)π(s, t),

we show our result is true for any µαk and thus it’s true for the ESRL policy µα. Next we define the
policy µαk which uses the true null probabilities and µk as:

µα∗k (s, t) = I (P∗(H0) < α)µk(s, t) + I (P∗(H0) ≥ α)π(s, t).

finally let

∆µ
i =

∑
s∈S

P0(s)
(
VM

∗

µα∗k ,1(s)− VM
∗

µαk ,1
(s)
)

∆∗i =
∑
s∈S

P0(s)
(
VMk

µα∗k ,1(s)− VM
∗

µα∗k ,1(s)
)
.

Consider function g : M 7→ VMµα∗,1, g is σ(DDDT ) measurable for a fixed α ∈ [0, 1] as π(s, t), P∗(H0)
are fixed ∀(s, t) ∈ S × {1, . . . , τ}, thus, by Lemma B.1 for any Mk ∼ f(·|DDDT )

E
[
VMk

µα∗k ,1(s)|DDDT

]
= E

[
VM

∗

µα∗,1(s)|DDDT

]
,

now using iterated expectations we get E
[
VMk

µα∗k ,1(s)
]

= E
[
VM

∗

µα∗,1(s)
]
.

We use this to re-express the expected regret for episode i under model k computed with Algorithm 1
as

E [∆i] = E

[∑
s∈S

P0(s)
(
VM

∗

µα∗,1(s)− VM
∗

µαk ,1
(s)
)]

=
∑
s∈S

P0(s)
(
E
[
VM

∗

µα∗,1(s)
]
− E

[
VM

∗

µαk ,1
(s)
])

=
∑
s∈S

P0(s)
(
E
[
VMk

µα∗k ,1(s)
]
− E

[
VM

∗

µαk ,1
(s)
])

= E [∆∗i ] + E [∆µ
i ] ,

where the last step follows from adding and subtracting E
[
VM

∗

µα∗k ,1(s)
]
.
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We first consider E [∆∗i ], we use a strategy similar to [16], but do not make an iid assumption for
within-episode observations. Define the following Bellman operator T Mµα for any MDP M , policy µα,
and value function V to be

T Mµα V (s) = R̄M (s, µα(s, t)) +
∑
s′∈S

PMµα(s,t)(s
′|s)V (s′), (3)

this lets us write VMµα,t(s) = T Mµα VMµα,t+1(s).

The next Lemma will let us express term E
[
∆∗i

∣∣∣∣M∗,Mk

]
in terms of the Bellman operator.

Lemma C.1. If f is the distribution of M∗, then

E
[
∆∗i

∣∣∣∣M∗,Mk

]
= E

 τ∑
j=1

(
T Mk

µα∗k (·,j) − T
M∗

µα∗k (·,j)

)
VMk

µα∗k ,j+1(sj+1)

∣∣∣∣M∗,Mk

 .
We now define a confidence set for the reward and transition estimated probabilities.

Lemma C.2. Let I denote the set of index i, j for episodes in DDDT =

{(si1, ai1, ri1, . . . , siτ , aiτ , riτ )}Ti=1, that is: I =

{
(i, j)

∣∣∣∣i ∈ {1, . . . , T}, j ∈ {1, . . . , τ}}.

Further let NT (s, a) be the number of times (s, a) was sampled inDDDT : NT (s, a) =
∑
i,j∈I I(Sij =

s,Aij = a), let P̂a(·|s) and R̂(s, a) be non-parametric estimators for the distribution of transitions
and rewards observed after sampling T episodes:

P̂a(s′|s) =

∑
i,j∈I I(si,j+1 = s′)I(sij = s, aij = a)

NT (s, a)
, R̂(s, a) =

∑
ij∈I I(sij = s, aij = a)rij

NT (s, a)
.

Define the confidence set:

MT ≡
{
M :

∥∥∥P̂a(·|s)− PMa (·|s)
∥∥∥
1
≤ βT (s, a),

∣∣∣R̂(s, a)−RM (s, a)
∣∣∣
1
≤ βT (s, a) ∀(s, a)

}
,

where βT (s, a) ≡
√

8ST log(2SAT )

max{1,NT (s,a)} , then P (M∗ /∈MT ) < 1
T .

Proof of Theorem 3.4. We start by summing ∆∗i over all episodes:

E

[
T∑
i=1

∆∗i

]
≤ E

[
T∑
i=1

∆∗i I(Mk,M
∗ ∈MT )

]
+ τ

T∑
i=1

(P(Mk /∈MT ) + P(M∗ /∈MT ))

≤ E

[
E

[
T∑
i=1

∆∗i |Mk,M
∗

]
I(Mk,M

∗ ∈Mk)

]
+ 2τ

≤ E

 T∑
i=1

τ∑
j=1

∣∣∣(T Mk

µα∗k (·,j) − T
M∗

µα∗k (·,j)

)
VMk

µα∗k ,j+1(sj)
∣∣∣ I(Mk,M

∗ ∈Mk)

+ 2τ

where the first step follows by conditioning on event I(Mk ∈MT ,M
∗ ∈MT ) and it’s complement,

and from the fact that ∆∗i ≤ τ as all rewards R(s, a) ∈ [0, 1]. The second step follows from iterated
expectations and Lemma C.2 as P[I(M∗ /∈ MT )] ≤ 1

T . Also sinceMT is a σ(DT )-measurable
function by Lemma B.1 we have E [I (Mk /∈MT ) |DT ] = E [I (M∗ /∈MT ) |DT ], using iterated
expectations we have P[I(Mk /∈MT )] ≤ 1

T . The last step follows from Lemma C.1. Next using (3)
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the last equation can be re-written as

E

 T∑
i=1

τ∑
j=1

I (P∗(H0) ≥ α)
{
R̄Mk(s, π(s, j))− R̄M

∗
(s, π(s, j))

}
I(Mk,M

∗ ∈Mk)


+ E

 T∑
i=1

τ∑
j=1

I (P∗(H0) ≥ α)

{∑
s′∈S

∣∣∣PMk

π(s,j)(s
′|s)− PM

∗

π(s,j)(s
′|s)
∣∣∣VMk

µα∗k ,j+1(sj+1)

}
I(Mk,M

∗ ∈Mk)


+ E

 T∑
i=1

τ∑
j=1

I (P∗(H0) < α)
{
R̄Mk(s, µk(s, j))− R̄M

∗
(s, µk(s, j))

}
I(Mk,M

∗ ∈Mk)


+ E

 T∑
i=1

τ∑
j=1

I (P∗(H0) < α)

{∑
s′∈S

∣∣∣PMk

µk(s,j)
(s′|s)− PM

∗

µk(s,j)
(s′|s)

∣∣∣VMk

µα∗k ,j+1(sj+1)

}
I(Mk,M

∗ ∈Mk)


+ 2τ

≤ E

τ T∑
i=1

τ∑
j=1

min {βT (sij , π(sij , j)), 1}

+ E

τ T∑
i=1

τ∑
j=1

min {βT (sij , µk(sij , j)), 1}

+ 2τ,

where the last step follows by Lemma C.2, next:

≤ E

τ T∑
i=1

τ∑
j=1

√
8ST log(2SAT )

min{NT (sij , µk(sij , j))}

+ E

τ T∑
i=1

τ∑
j=1

√
8ST log(2SAT )

min{1, NT (sij , π(sij , j))}

+ 2τ

≤M1

√
τ2SAT +M2τ

√
S2AT log(SAT ) + 2τ < M3τS

√
AT log(SAT ) + 2τ,

where the last step follows by Appendix B in [16] with constants M1,M2,M3.

We next analyze

E [∆µ
i ] =

∑
s∈S

P0(s)
(
E
[
VM

∗

µα∗k ,1(s)
]
− E

[
VM

∗

µαk ,1
(s)
])
.

We can write the second term as

E
[
VM

∗

µαk ,1
(s)
]

= E

 τ∑
j=1

I
(
P̂(H0) < α

)
RM

∗
(sj , µk(sj , j)) + I

(
P̂(H0) ≥ α

)
RM

∗
(sj , π(sj , j))

 ,
we extend the null probability notation to be explicit on the time index: P∗j (H0) =

P∗(H0|sj , j,DDDT ), P̂j(H0) = P̂(H0|sj , j,DDDT ). By Lemma 3.2, ∃δ > 0 such that P̂j(H0) −
P∗j (H0) ≤ δ ∀s ∈ S, j ∈ {1, . . . , τ} with high probability, therefore

P∗j (H0) < α− δ =⇒ P
(
P̂j(H0) < α

)
= 1−Op

(
K−

1
2

)
,

P∗j (H0) ≥ α+ δ =⇒ P
(
P̂j(H0) ≥ α

)
= 1−Op

(
K−

1
2

)
.

(4)

As I1, I2 in Algorithm 1 are mutually exclusive, P̂j(H0) are independent to µk(s, j) ∀s ∈ S, j ∈
{1, . . . , τ}, therefore starting with VM

∗

µαk ,τ
(s) we have
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E
[
VM

∗

µαk ,τ
(s)
]

=I (P∗τ (H0) < α− δ)
{
E
[
I
(
P̂τ (H0) < α

)]
R̄M

∗
(sτ , µk(sτ , τ)) + E

[
I
(
P̂τ (H0) ≥ α

)]
R̄M

∗
(sτ , π(sτ , τ))

}
+I (P∗τ (H0) ≥ α− δ)

{
E
[
I
(
P̂τ (H0) < α

)]
R̄M

∗
(sτ , µk(sτ , τ)) + E

[
I
(
P̂τ (H0) ≥ α

)]
R̄M

∗
(sτ , π(sτ , τ)

}
+I (P∗τ (H0) ∈ [α− δ, α+ δ))

{
E
[
I
(
P̂τ (H0) < α

)]
R̄M

∗
(sτ , µk(sτ , τ)) + E

[
I
(
P̂τ (H0) ≥ α

)]
R̄M

∗
(sτ , π(sτ , τ))

}]
=I (P∗τ (H0) < α− δ) R̄M

∗
(sτ , µk(sτ , τ)) +Op

(
K−

1
2

)
+I (P∗τ (H0) ≥ α− δ) R̄M

∗
(sτ , µk(sτ , τ)) +Op

(
K−

1
2

)
+I (P∗τ (H0) ∈ [α− δ, α+ δ))Op

(
K−

1
2

)
=E

[
VM

∗

µα∗k ,τ (s)
]

+Op

(
K−

1
2

)
,

where the first step follows from I1, I2 being independent, the second step follows from (4) and last
step from definition of VM

∗

µα∗k ,τ (s). Iterating backards from τ − 1 . . . , 1 and applying the same steps
as above we get

E
[
VM

∗

µαk ,1
(s)
]

= E
[
VM

∗

µα∗k ,1(s)
]

+Op

(
τK−

1
2

)
.

therefore we have E
[∑T

i=1 ∆µ
i

]
= Op

(
TτK−

1
2

)
, choosing K = O (T ) we get E

[∑T
i=1 ∆µ

i

]
=

Op

(√
Tτ
)

which is dominated by E
[∑T

i=1 ∆∗i

]
.

Putting both terms together we have

E

[
T∑
i=1

∆i

]
= E

[
T∑
i=1

∆∗i

]
+ E

[
T∑
i=1

∆µ
i

]
= O

(
τS
√
AT log(SAT )

)
.

C.2 Proofs for other results in main body

Proof of Lemma 3.1. To establish Q̂µ̃,t(s, a) is unbiased, note that for any fixed (t, s, a), Mk ∼
f(·|DDDT ) are iid, now for a given policy function µ̃ :

E
[
Q̂µ̃,t(s, a)

∣∣∣∣s, a, t,DDDT

]
= E

[
1

K

K∑
k=1

Q
(k)
µ̃,t(s, a)

∣∣∣∣s, a, t,DDDT

]

=
1

K

K∑
k=1

E
[
Q

(k)
µ̃,t(s, a)

∣∣∣∣s, a, t,DDDT

]
= E

[
QM

∗

µ̃,t (s, a)

∣∣∣∣s, a, t,DDDT

]

where the last step follows from Lemma B.1 with g : M 7→ QMµ̃,t(s, a) which is σ(DDDT )− measurable.

To establish the rate, we have thatRM (s, a) ∈ [0, 1] ∀(s, a) ∈ S×A, t = 1, . . . , τ thusQ(k)
t (s, a) ≤

τ . By definition Q̂t(s, a) − E
[
QM

∗

µ,t (s, a)

∣∣∣∣s, a, t,DDDT

]
= Op

(
K−

1
2

)
if and only if for any ε > 0,

∃Mε > 0 such that

P
(
Q̂µ̃,t(s, a)− E

[
QM

∗

µ̃,t (s, a)

∣∣∣∣s, a, t,DDDT

]
> K−

1
2Mε

∣∣∣∣s, a, t,DDDT

)
≤ ε ∀K.
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Note that for any M > 0,

P
(
Q̂µ̃,t(s, a)− E

[
QM

∗

µ̃,t (s, a)

∣∣∣∣t, s, a,DDDT

]
> K−

1
2M

∣∣∣∣t, s, a,DDDT

)
=P

(
1

K

K∑
k=1

Q
(k)
µ̃,t(s, a)− E

[
QM

∗

µ̃,t (s, a)

∣∣∣∣s, a, t,DDDT

]
> K−

1
2M

∣∣∣∣s, a, t,DDDT

)

≤ exp

{
−2M2K−1K2

Kτ2

}
= exp

{
−2M2

τ2

}
,

which follows from Hoeffding’s inequality as conditional on s, a, t, µ̃ andDDDT ,
{
Q

(k)
µ̃,t(s, a)

}K
k=1

are

iid with mean E
[
QM

∗

µ̃,t (s, a)

∣∣∣∣s, a, t,DDDT

]
. The result follows from choosing Mε > 0 large enough

such that exp
{
− 2M2

ε

τ2

}
< ε.

Proof of Lemma 3.2. To simplify notation, letZ(k) ≡ I
(
Q

(k)
µαk ,t

(s, µk(s, t))−Q(k)
µαk ,t

(s, π(s, t)) ≤ 0
)

,

then by definition Z(k) − E
[
Z(k)

]
= Op

(
K−

1
2

)
if and only if for any ε > 0, ∃Mε > 0 such that

P
(
Z(k) − E

[
Z(k)

]
> K−

1
2Mε

∣∣∣∣t, s,DDDT

)
≤ ε ∀K.

Note that for any M > 0,

P
(
P̂(H0|t, s,DDDT )− E

[
Z(k)|t, s,DDDT

]
> K−

1
2M |t, s,DDDT

)
=P

(
1

K

K∑
k=1

Z(k) − E
[
Z(k)|t, s,DDDT

]
> MK−

1
2

∣∣∣∣t, s,DDDT

)

≤ exp

{
−2M2K−1K2

Kτ2

}
= exp

{
−2M2

τ2

}
,

where the inequality follows from Hoeffding’s inequality as
{
Z(k)

}K
k=1

are iid with mean

E
[
Z(k)

∣∣∣∣t, s,DDDT

]
, since I1, I2 in Algorithm 1 are disjoint. We can choose Mε > 0 large

enough such that exp
{
− 2M2

τ2

}
< ε. Next note that as π is fixed, by Lemma B.1, with

g : M 7→ I
(
QMµα,t(s, µ(s, t))−QMµα,t(s, π(s, t)) ≤ 0

)
for any Mk ∼ f(·|DDDT )

E
[
I
(
Q

(k)
µαk ,t

(s, µk(s, t))−Q(k)
µαk ,t

(s, π(s, t)) ≤ 0
) ∣∣∣∣t, s,DDDT

]
=E

[
I
(
QM

∗

µα∗,t(s, µ
∗(s, t))−QM

∗

µα∗,t(s, π(s, t)) ≤ 0
) ∣∣∣∣t, s,DDDT

]
=P(H0|t, s,DDDT )

which follows from using disjoint sets I1, I2 in Algorithm 1. Substituting this in the probability
statement gives us

P̂ (H0|t, s,DDDT )− P (H0|t, s,DDDT ) = Op

(
K−

1
2

)
,

which is our required result.

Proof of Theorem 4.1. We start by showing V̂µ̃ is unbiased:

E
[
V̂µ̃(s)|DDDT , µ̃

]
=

1

K

K∑
k=1

E
[
V

(k)
µ̃,1 (s)

∣∣∣∣DDDT

]
.
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where the first step follows from definition, and the Mk ∼ f(·|DDDT ) being iid, now by Lemma B.1
with g : M 7→ VMµ,1 we have

E
[
V̂µ̃|DDDT

]
= E

[
VM

∗

µ̃,1 (s)|DDDT

]
.

To establish the rate, we have that V (k)
µ̃,1 ≤ τ as all rewards are between [0, 1] by definition V̂µ̃ −

E
[
VM

∗

µ̃,1 (s)|DDDT

]
= Op

(
K−

1
2

)
if and only if for any ε > 0, ∃Mε > 0 such that

P
(
V̂µ̃ − E

[
VM

∗

µ̃,1 (s)|DDDT

]
> K−

1
2Mε

)
≤ ε ∀K.

Note that for any M > 0,

P
(
V̂µ̃ − E

[
VM

∗

µ̃,1 (s)|DDDT

]
> K−

1
2M

)
=P

(
1

K

K∑
k=1

V
(k)
µ̃,1 − E

[
VM

∗

µ̃,1 (s)|DDDT

]
> K−

1
2M

)

≤ exp

{
−2M2K−1K2

Kτ2

}
= exp

{
−2M2

τ2

}
,

where the inequality follows from Hoeffding’s inequality as
{
V

(k)
µ̃,1

}K
k=1

are iid with mean

E
[
VM

∗

µ̃,1 (s)|DDDT

]
. The result follows from choosing Mε > 0 large enough such that exp

{
− 2M2

τ2

}
<

ε.

Appendix D Proofs for Supplementary results

Proof of Lemma A.1. First note that conditional on DDDT with g : M 7→ I
(
VMµ1

(s)− VMµ2
(s) > 0

)
,

by Lemma B.1

E
[
I
(
VMk
µ1

(s)− VMk
µ2

(s) > 0
) ∣∣∣∣DDDT

]
= E

[
I
(
VM

∗

µ1
(s)− VM

∗

µ2
(s) > 0

) ∣∣∣∣DDDT

]
= Pµ (H0|DDDT )

By definition P̂µ(H0|DDDT )−Pµ (H0|DDDT ) = Op

(
K−

1
2

)
if and only if for any ε > 0, ∃Mε > 0 such

that

P
(
P̂µ(H0|DDDT )− Pµ (H0|DDDT ) > K−

1
2Mε

∣∣∣∣DDDT

)
≤ ε ∀K.

Now, for any M > 0,

P
(
P̂µ(H0|DDDT )− Pµ (H0|DDDT ) > K−

1
2Mε

∣∣∣∣DDDT

)
=P

(
1

K

K∑
k=1

I
(
V

(k)
µ1,1
− V (k)

µ2,1
> 0
)
− Pµ (H0|DDDT ) > MK−

1
2

∣∣∣∣DDDT

)

≤ exp

{
−2M2K−1K2

Kτ2

}
= exp

{
−2M2

τ2

}
,

where the inequality follows from Hoeffding’s inequality as the indicators{
I
(
V

(k)
µ1,1
− V (k)

µ2,1
> 0
)}K

k=1
are iid with mean Pµ (H0|DDDT ). We can choose Mε > 0

large enough such that exp
{
− 2M2

τ2

}
< ε.

Proof of Lemma C.1. We first write the estimated regret as a sum of difference in value functions
and a Bellman error.
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I) We’ll denote the sequence of states for an episode as s1, s2, . . . , sτ , define

Wj =
(
T Mk

µα∗k (·,j) − T
M∗

µα∗k (·,j)

)
VMk

µα∗k ,j+1 (sj+1)

Tj = T M
∗

µα∗k (·,j)

(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(sj+1)

using (3) we can write(
VMk

µα∗k ,1 − V
M∗

µα∗k ,1

)
(s1) =

(
T Mk

µα∗k (·,1)V
Mk

µα∗k ,2 − T
M∗

µα∗k (·,1)V
M∗

µα∗k ,2

)
(s2)

=
(
T Mk

µα∗k (·,1)V
Mk

µα∗k ,2 − T
M∗

µα∗k (·,1)V
Mk

µα∗k ,2 + T M
∗

µα∗k (·,1)V
Mk

µα∗k ,2 − T
M∗

µα∗k (·,1)V
M∗

µα∗k ,2

)
(s2)

=W1 + T1,

with the same steps we can generalize this to(
VMk

µα∗k ,j − V
M∗

µα∗k ,j

)
(sj) =Wj + Tj . (5)

Next let

ej =

(
I (P∗(H0) < α)

∑
s′∈S

PM
∗

µk(s,j)
(s′|s) + I (P∗(H0) ≥ α)

∑
s′∈S

PM
∗

π(s,j)(s
′|s)

)
×
(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(s′)−

(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(sj+1) ,

using the Bellman operator we get

Tj =
(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(sj+1) + ej ,

then we can write T1 =
(
VMk

µα∗k ,2 − VM
∗

µα∗k ,2

)
(s2) + e1, with the above definitions and repeated use of

(5): (
VMk

µα∗k ,1 − V
M∗

µα∗k ,1

)
(s1) =W1 + T1

=W1 +
(
VMk

µα∗k ,2 − V
M∗

µα∗k ,2

)
(s2) + e1

=W1 +W2 +
(
VMk

µα∗k ,3 − V
M∗

µα∗k ,3

)
(s3) + e1 + e2

...

=

τ∑
j=1

Wj + ej .

II) Next we consider E [ej |Mk,M
∗]:

E
[
ej

∣∣∣∣Mk,M
∗
]

= E

[
I (P∗(H0) < α)

∑
s′∈S

PM
∗

µk(s,j)
(s′|s)

(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(s′)

∣∣∣∣Mk,M
∗

]

+ E

[
I (P∗(H0) ≥ α)

∑
s′∈S

PM
∗

π(s,j)(s
′|s)
(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(s′)

∣∣∣∣Mk,M
∗

]

− E
[(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(sj+1)

∣∣∣∣Mk,M
∗
]

=

(
I (P∗(H0) < α)

∑
s′∈S

PM
∗

µk(s,j)
(s′|s) + I (P∗(H0) ≥ α)

∑
s′∈S

PM
∗

π(s,j)(s
′|s)

)(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(s′)

−

(
I (P∗(H0) < α)

∑
s′∈S

PM
∗

µk(s,j)
(s′|s) + I (P∗(H0) ≥ α)

∑
s′∈S

PM
∗

π(s,j)(s
′|s)

)(
VMk

µα∗k ,j+1 − V
M∗

µα∗k ,j+1

)
(s′)

= 0,
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which follows by the expectation conditional on Mk, M∗ and definition of policy µα∗k .

Putting I) and II) together we get

E
[(
VMk

µα∗k ,1 − V
M∗

µα∗k ,1

)
(s1)

∣∣∣∣M∗,Mk

]
= E

 τ∑
j=1

Wj + ej

∣∣∣∣M∗,Mk


= E

[
τ∑
i=1

(
T Mk

µα∗k (·,j) − T
M∗

µα∗k (·,j)

)
VMk

µα∗k ,j+1 (sj)

∣∣∣∣M∗,Mk

]

Proof of Lemma C.2. First consider Azuma-Hoeffding’s Inequality: Let Z1, Z2, . . . be a martingale
sequence difference with |Zj | ≤ c ∀j. Then ∀ε > 0 and n ∈ N P [

∑n
i=1 Zi > ε] ≤ exp

{
− ε2

2nc2

}
.

By definition the difference between the estimated transition and reward functions and their true
respective functions are:

P̂a(s′|s)− PMa (s′|s) =

∑
i,j∈I

(
I(si,j+1 = s′)− PMa (s′|s)

)
I(sij = s, aij = a)

NT (s, a)
,

R̂(s, a)−RM (s, a) =

∑
i,j∈I(rij −RM (s, a))I(sij = s, aij = a)

NT (s, a)
,

now let β̃T (s, a) ≡
√

8ST log(2TSA), and consider the transition probability function, for a fixed
state action pair (s, a), let ξξξ = (ξ(s1), . . . , ξ(sS)) ∈ {−1, 1}S , we have

P

(∑
s′∈S

∣∣∣∣∣
∑
i,j∈I

(
I(si,j+1 = s′)− PMa (s′|s)

)
I(sij = s, aij = a)

NT (s, a)

∣∣∣∣∣ ≥ β̃T (s, a)

NT (s, a)

)

≤P

 max
ξξξ∈{−1,1}s

∑
s′∈S

ξ(s′)
∑
i,j∈I

(
I(si,j+1 = s′)− PMa (s′|s)

)
I(sij = s, aij = a) ≥ β̃T (s, a)


≤2SP

∑
s′∈S

∑
i,j∈I

ξ(s′)

(
I(si,j+1 = s′)− PMa (s′|s)

)
I(sij = s, aij = a) ≥ β̃T (s, a)


where the first step follows from multiplying by NT (s, a), and eliminating the absolute value with ξξξ,
we use a union bound for the second step as there are 2S possible ξξξ for a fixed (s, a) pair. Next we
use Azuma-Hoeffding’s inequality to bound the 2S probability terms, note that within the probability
function we are summing over T terms:

2SP

∑
s′∈S

∑
i,j∈I

ξ(s′)

(
I(si,j+1 = s′)− PMa (s′|s)

)
I(sij = s, aij = a) ≥ β̃T (s, a)


≤ 2S exp

{
−8ST log(2TSA)

2× 22T

}
≤ 2S exp

{
log((2TSA)−S)

}
= 2S

1

(2TSA)S
<

1

TSA
,

next we sum over all (s, a) pairs and get

P
(∥∥∥P̂a(s′|s)− PMa (s′|s)

∥∥∥
1
≥ βT (s, a)

)
≤

∑
s∈S,a∈A

P

(∑
s′∈S

∣∣∣∣
∑
i,j∈I

(
I(si,j+1 = s′)− PMa (s′|s)

)
I(sij = s, aij = a)

NT (s, a)

∣∣∣∣ ≥ β̃T (s, a)

NT (s, a)

)

≤ SA 1

TSA
=

1

T
,
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which follows from using a union bound again. Analogous we can show that
P
(∣∣∣R̂(s, a)−RM (s, a)

∣∣∣ ≥ βT (s, a)
)
≤ 1

T , thus

P (M∗ /∈MT ) ,P (MT /∈MT ) <
1

T
.
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