
SUPPLEMENT B:
Modern Hopfield Networks and Attention for

Immune Repertoire Classification

Sepp Hochreiter†

Markus Holzleitner Lukas Gruber Hubert Ramsauer
Günter Klambauer Johannes Brandstetter

ELLIS Unit Linz and LIT AI Lab
Institute for Machine Learning

Johannes Kepler University Linz, Austria
† also at Institute of Advanced Research in Artificial Intelligence (IARAI)

Abstract

Contents
B1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
B2 Modern Hopfield Networks: Continuous States (New Concept) . . . . . . . . . . . . . . 3

B2.1 New Energy Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
B2.2 New Update Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B2.3 Global Convergence of the Update Rule . . . . . . . . . . . . . . . . . . . . . . . 6
B2.4 Local Convergence of the Update Rule: Fixed Point Iteration . . . . . . . . . . . . 8

B2.4.1 General Bound on the Jacobian of the Iterate . . . . . . . . . . . . . . . . 8
B2.4.2 One Stable State: Fixed Point Near the Mean of the Patterns . . . . . . . . 10
B2.4.3 Many Stable States: Fixed Points Near Stored Patterns . . . . . . . . . . . 15
B2.4.4 Metastable States: Fixed Points Near Mean of Similar Patterns . . . . . . . 21

B2.5 Properties of Fixed Points Near Stored Pattern . . . . . . . . . . . . . . . . . . . 33
B2.5.1 Exponentially Many Patterns can be Stored . . . . . . . . . . . . . . . . . 33
B2.5.2 Convergence after One Update and Small Retrieval Error . . . . . . . . . 43

B2.6 Learning Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
B2.6.1 Initialization: Random Matrix Theory . . . . . . . . . . . . . . . . . . . . 45
B2.6.2 Directly Learning Associations . . . . . . . . . . . . . . . . . . . . . . . 45
B2.6.3 Learning the Mappings to the Association Space . . . . . . . . . . . . . . 46

B2.7 Sequential Softmax Associative Memory . . . . . . . . . . . . . . . . . . . . . . 47
B2.7.1 Infinite Softmax Associative Memory . . . . . . . . . . . . . . . . . . . . 47
B2.7.2 Forgetting Softmax Associative Memory . . . . . . . . . . . . . . . . . . 48

B3 Properties of Softmax, Log-Sum-Exponential, Legendre Transform, Lambert W Function 48
B4 Modern Hopfield Networks: Binary States (Krotov and Hopfield) . . . . . . . . . . . . 56

B4.1 Modern Hopfield Networks: Introduction . . . . . . . . . . . . . . . . . . . . . . 56
B4.1.1 Additional Memory and Attention for Neural Networks . . . . . . . . . . 56
B4.1.2 Modern Hopfield networks: Overview . . . . . . . . . . . . . . . . . . . 56

B4.2 Energy and Update Rule for Binary Modern Hopfield Networks . . . . . . . . . . 56
B5 Hopfield Update Rule is Attention of The Transformer . . . . . . . . . . . . . . . . . . 58

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



List of theorems
B1 Theorem (Global Convergence (Zangwill): Energy) . . . . . . . . . . . . . . . . . 6
B2 Theorem (Global Convergence: Stationary Points) . . . . . . . . . . . . . . . . . . 8
B3 Theorem (Storage Capacity (M=2): Placed Patterns) . . . . . . . . . . . . . . . . 35
B4 Theorem (Storage Capacity (M=5): Placed Patterns) . . . . . . . . . . . . . . . . 35
B5 Theorem (Storage Capacity (Main): Random Patterns) . . . . . . . . . . . . . . . 37
B6 Theorem (Storage Capacity (d computed): Random Patterns) . . . . . . . . . . . . 40
B7 Theorem (Storage Capacity (expected separation): Random Patterns) . . . . . . . . 43
B8 Theorem (Convergence After One Update) . . . . . . . . . . . . . . . . . . . . . . 43
B9 Theorem (Exponentially Small Retrieval Error) . . . . . . . . . . . . . . . . . . . 44
B10 Theorem (Storage Capacity for Binary Modern Hopfield Nets (Demircigil et al. 2017)) 57

List of definitions
B1 Definition (Separation of Patterns) . . . . . . . . . . . . . . . . . . . . . . . . . . 10
B2 Definition (Sphere Si) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
B3 Definition (Sphere Sm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B4 Definition (Pattern Stored and Retrieved) . . . . . . . . . . . . . . . . . . . . . . . 34
B5 Definition (Softmax) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B6 Definition (Log-Sum-Exp Function) . . . . . . . . . . . . . . . . . . . . . . . . . 49
B7 Definition (Convex Conjugate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B8 Definition (Legendre Transform) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B9 Definition (Epi-Sum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B10 Definition (Lambert Function) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2



B1 Introduction

This document is a supplement to the paper "Modern Hopfield Networks and Attention for Immune
Repertoire Classification".
In the next section (Section B2) our new modern Hopfield network is introduced. In Subsection B2.1
we present the new energy function. Then in Subsection B2.2, our new update rule is introduced. In
Subsection B2.3, we show that this update rule ensures global convergence. We show that all the
limit points of any sequence generated by the update rule are the stationary points (local minima
or saddle points) of the energy function. In Section B2.4, we consider the local convergence of the
update rule and see that it converges after one update. In Subsection B2.5, we consider the properties
of the fixed points that are associated with the stored patterns. In Subsection B2.5.1, we show that
exponentially many patterns can be stored. The main result is given in Theorem B5: for random
patterns on a sphere we can store and retrieve exponentially (in the dimension of the space) many
patterns. Subsection B2.5.2 reports that the update converges after one update step and that the
retrieval error is exponentially small.
In Subsection B2.6, we consider how associations for the new Hopfield networks can be learned. In
Subsection B2.6.1, we consider the initialization. In Subsection B2.6.2, we analyze if the association
is learned directly by a bilinear form. In Subsection B2.6.3, we analyze if stored patterns and query
patterns are mapped to the space of the Hopfield network. Therefore we treat the architecture of
the transformer and BERT. In Subsection B2.7, we introduce a temporal component into the new
Hopfield network that leads to a forgetting behavior. The forgetting allows us to treat infinite memory
capacity in Subsection B2.7.1. In Subsection B2.7.2, we consider the controlled forgetting behavior.
In Section B3, we provide the mathematical background that is needed for our proofs. In particular
we give lemmas on properties of the softmax, the log-sum-exponential, the Legendre transform, and
the Lambert W function.
In Section B4, we review the new Hopfield network as introduced by Krotov and Hopfield in 2016.
However in contrast to our new Hopfield network, Krotov and Hopfield’ new Hopfield network is a
binary, that is, a network with binary states. In Subsection B4.1, we give an introduction to neural
networks equipped with associative memories and new Hopfield networks. In Subsection B4.1.1,
we discuss neural networks that are enhanced by an additional external memory and by attention
mechanisms. In Subsection B4.1.2, we give an overview over the modern Hopfield networks. Finally,
in Subsection B4.2, we present the energy function and the update rule for the modern, binary
Hopfield networks.

B2 Modern Hopfield Networks: Continuous States (New Concept)

B2.1 New Energy Function

We have patterns x1, . . . ,xN that are represented by the matrix

X = (x1, . . . ,xN ) . (1)

The largest norm of a pattern is

M = max
i
‖xi‖ . (2)

The query or state of the Hopfield network is ξ.
The energy function E in the new type of Hopfield models of Krotov and Hopfield is E =

−
∑N
i=1 F

(
ξTxi

)
for binary patterns xi and binary state ξ with interaction function F (x) = xn,

where n = 2 gives classical Hopfield model [28]. The storage capacity is proportional to dn−1

[28]. This model was generalized by Demircigil et al. [18] to exponential interaction functions
F (x) = exp(x) which gives the energy E = − exp(lse(1,XT ξ)). This energy leads to an exponen-
tial storage capacity of N = 2d/2 for binary patterns. Furthermore with a single update the fixed
point is recovered with high probability. See more details in Section B4.
In contrast to the these binary modern Hopfield networks, we focus on modern Hopfield networks
with continuous states that can store continuous patterns. We generalize the energy of Demircigil et
al. [18] to continuous states while keeping the lse properties which ensure high storage capacity and
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fast convergence. Our new energy E for a continuous query or state ξ is defined as

E = − lse(β,XT ξ) +
1

2
ξT ξ + β−1 lnN +

1

2
M2 (3)

= − β−1 ln

(
N∑
i=1

exp(βxTi ξ)

)
+ β−1 lnN +

1

2
ξT ξ +

1

2
M2 . (4)

First let us collect and prove some properties of E. The next lemma gives bounds on the energy E.

Lemma 1. The energy E is larger than zero:

0 6 E . (5)

For ξ in the simplex defined by the patterns, the energy E is upper bounded by:

E 6 β−1 lnN +
1

2
M2 , (6)

E 6 2 M2 . (7)

Proof. We start by deriving the lower bound of zero. The pattern most similar to query or state ξ is
xξ:

xξ = xk , k = arg max
i
ξTxi . (8)

We obtain

E = − β−1 ln

(
N∑
i=1

exp(βxTi ξ)

)
+ β−1 lnN +

1

2
ξT ξ +

1

2
M2 (9)

= − β−1 ln

(
1

N

N∑
i=1

exp(βxTi ξ)

)
+

1

2
ξT ξ +

1

2
M2

≥ − β−1 ln

(
1

N

N∑
i=1

exp(βxTi ξ)

)
+

1

2
ξT ξ +

1

2
xTξ xξ

≥ − β−1 ln
(
exp(βxTξ ξ)

)
+

1

2
ξT ξ +

1

2
xTξ xξ

= − xTξ ξ +
1

2
ξT ξ +

1

2
xTξ xξ

=
1

2
(ξ − xξ)

T
(ξ − xξ) =

1

2
‖ξ − xξ‖2 ≥ 0 .

The energy is zero and, therefore, the bound attained, if all xi are equal, that is, xi = x for all i and
ξ = x.
For deriving upper bounds on the energy E, we require the the query ξ to be in the simplex defined
by the patterns, that is,

ξ =

N∑
i=1

pi xi ,

N∑
i=1

pi = 1 , ∀i : 0 6 pi . (10)

The first upper bound is.

E = − β−1 ln

(
N∑
i=1

exp(βxTi ξ)

)
+

1

2
ξT ξ + β−1 lnN +

1

2
M2 (11)

6 −
N∑
i=1

pi (xTi ξ) +
1

2
ξT ξ + β−1 lnN +

1

2
M2

= − 1

2
ξT ξ + β−1 lnN +

1

2
M2 6 β−1 lnN +

1

2
M2 .
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For the first inequality we applied Lemma 19 to −lse(β,XT ξ) with z = p giving

− lse(β,XT ξ) 6 −
N∑
i=1

pi (xTi ξ) + β−1
N∑
i=1

pi ln pi 6 −
N∑
i=1

pi (xTi ξ) , (12)

as the term involving the logarithm is non-positive.
Next we derive the second upper bound, for which we need the meanmx of the patterns

mx =
1

N

N∑
i=1

xi . (13)

We obtain

E = − β−1 ln

(
N∑
i=1

exp(βxTi ξ)

)
+

1

2
ξT ξ + β−1 lnN +

1

2
M2 (14)

6 −
N∑
i=1

1

N
xTi ξ +

1

2
ξT ξ +

1

2
M2

= −mT
xξ +

1

2
ξT ξ +

1

2
M2

6 ‖mx‖ ‖ξ‖ +
1

2
‖ξ‖2 +

1

2
M2

6 2 M2 ,

where for the first inequality we again applied Lemma 19 with z = (1/N, . . . , 1/N) and
β−1

∑
i 1/N ln(1/N) = −β−1 ln(N). This inequality also follows from Jensen’s inequality. The

second inequality uses the Cauchy-Schwarz inequality. The last inequality uses

‖ξ‖ =

∥∥∥∥∥∑
i

pi xi

∥∥∥∥∥ 6 ∑
i

pi ‖xi‖ 6
∑
i

piM = M (15)

and

‖mx‖ =

∥∥∥∥∥∑
i

(1/N) xi

∥∥∥∥∥ 6 ∑
i

(1/N) ‖xi‖ 6
∑
i

(1/N) M = M . (16)

B2.2 New Update Rule
We now introduce an update rule for minimizing the energy function E. The new update rule is

ξnew = Xp = Xsoftmax(βXT ξ) , (17)

where we used

p = softmax(βXT ξ) . (18)

The new state ξnew is in the simplex defined by the patterns, no matter what the previous state ξ was.
In contrast, the synchronous update rule for the classical Hopfield network with threshold zero is

ξnew = sgn (XXT ξ) . (19)

Therefore instead of using the vectorXT ξ as in the classical Hopfield network, its softmax version
softmax(βXT ξ) is used.
In the next section (Section B2.3) we show that the update rule Eq. (17) ensures global convergence.
We show that all the limit points of any sequence generated by the update rule are the stationary
points (local minima or saddle points) of the energy function E. In Section B2.4 we consider the
local convergence of the update rule Eq. (17) and see that it converges after one update.
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B2.3 Global Convergence of the Update Rule
We are interested in the global convergence, that is, convergence from each initial point, of the iterate

ξnew = f(ξ) = Xp = Xsoftmax(βXT ξ) , (20)

where we used

p = softmax(βXT ξ) . (21)

We defined the energy function

E = − lse(β,XT ξ) +
1

2
ξT ξ + β−1 lnN +

1

2
M2 (22)

= − β−1 ln

(
N∑
i=1

exp(βxTi ξ)

)
+ β−1 lnN +

1

2
ξT ξ +

1

2
M2 . (23)

We will show that the update rule in Eq. (20) is the Concave-Convex Procedure (CCCP) for minimiz-
ing the energy E. The CCCP is proven to converge globally.
Theorem B1 (Global Convergence (Zangwill): Energy). The update rule Eq. (20) converges globally:
For ξt+1 = f(ξt), the energy E(ξt)→ E(ξ∗) for t→∞ and a fixed point ξ∗.

Proof. The Concave-Convex Procedure (CCCP) [51, 52] minimizes a function that is the sum of
a concave function and a convex function. CCCP is equivalent to Legendre minimization [36, 37]
algorithms [52]. The Jacobian of the softmax is positive semi-definite according to Lemma 22. The
Jacobian of the softmax is the Hessian of the lse, therefore lse is a convex and−lse a concave function.
Therefore, the energy function E(ξ) is the sum of the convex function E1(ξ) = 1/2ξT ξ + C1 and
the concave function E2(ξ) = −lse:

E(ξ) = E1(ξ) + E2(ξ) , (24)

E1(ξ) =
1

2
ξT ξ + β−1 lnN +

1

2
M2 =

1

2
ξT ξ + C1 , (25)

E2(ξ) = − lse(β,XT ξ) , (26)

where C1 does not depend on ξ.
The Concave-Convex Procedure (CCCP) [51, 52] applied to E is

∇ξE1

(
ξt+1

)
= − ∇ξE2

(
ξt
)
, (27)

which is

∇ξ
(

1

2

(
ξt+1

)T
ξt+1 + C1

)
= ∇ξlse(β,XT ξt) . (28)

The resulting update rule is

ξt+1 = Xpt = Xsoftmax(βXT ξt) (29)

using

pt = softmax(βXT ξt) . (30)

This is the update rule in Eq. (20).
Theorem 2 in [51] and Theorem 2 in [52] state that the update rule Eq. (20) is guaranteed to
monotonically decrease the energy E as a function of time. See also Theorem 2 in [39].

Although the objective converges in all cases, it does not necessarily converge to a local minimum
[30].
However the convergence proof of CCCP in [51, 52] was not as rigorous as required. In [39] a
rigorous analysis of the convergence of CCCP is performed using Zangwill’s global convergence
theory of iterative algorithms.
In [39] the minimization problem

min
ξ

E1 + E2 (31)

s.t. c(ξ) 6 0 , d(ξ) = 0
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is considered with E1 convex, −E2 convex, c component-wise convex function, and d an affine
function. The CCCP algorithm solves this minimization problem by linearization of the concave part
and is defined in [39] as

ξt+1 ∈ arg min
ξ

E1 (ξ) + ξT∇ξE2

(
ξt
)

(32)

s.t. c(ξ) 6 0 , d(ξ) = 0 .

We define the upper bound EC on the energy:

EC

(
ξ, ξt

)
:= E1 (ξ) + E2

(
ξt
)

+
(
ξ − ξt

)T ∇ξE2

(
ξt
)
. (33)

EC is equal to the energy E (ξt) for ξ = ξt:

EC

(
ξt, ξt

)
= E1

(
ξt
)

+ E2

(
ξt
)

= E
(
ξt
)
. (34)

Since −E2 is convex, the first order characterization of convexity holds (Eq. 3.2 in [9]):

− E2 (ξ) ≥ − E2

(
ξt
)
−
(
ξ − ξt

)T ∇ξE2

(
ξt
)
, (35)

that is

E2 (ξ) 6 E2

(
ξt
)

+
(
ξ − ξt

)T ∇ξE2

(
ξt
)
. (36)

Therefore, for ξ 6= ξt the function EC is an upper bound on the energy:

E (ξ) 6 EC

(
ξ, ξt

)
= E1 (ξ) + E2

(
ξt
)

+
(
ξ − ξt

)T ∇ξE2

(
ξt
)

(37)

= E1 (ξ) + ξT∇ξE2

(
ξt
)

+ C2 ,

where C2 does not depend on ξ. Since we do not have constraints, ξt+1 is defined as

ξt+1 ∈ arg min
ξ

EC

(
ξ, ξt

)
, (38)

hence EC

(
ξt+1, ξt

)
6 EC (ξt, ξt). Combining the inequalities gives:

E
(
ξt+1

)
6 EC

(
ξt+1, ξt

)
6 EC

(
ξt, ξt

)
= E

(
ξt
)
. (39)

Since we do not have constraints, ξt+1 is the minimum of

EC

(
ξ, ξt

)
= E1 (ξ) + ξT∇ξE2

(
ξt
)

+ C2 (40)

as a function of ξ.
For a minimum not at the border, the derivative has to be the zero vector

∂EC (ξ, ξt)

∂ξ
= ξ + ∇ξE2

(
ξt
)

= ξ − Xsoftmax(βXT ξt) = 0 (41)

and the Hessian must be positive semi-definite

∂2EC (ξ, ξt)

∂ξ2
= I . (42)

The Hessian is strict positive definite everywhere, therefore the optimization problem is strict convex
(if the domain is convex) and there exist only one minimum, which is a global minimum. EC can
even be written as a quadratic form:

EC

(
ξ, ξt

)
=

1

2

(
ξ + ∇ξE2

(
ξt
))T (

ξ + ∇ξE2

(
ξt
))

+ C3 , (43)

where C3 does not depend on ξ.
Therefore the minimum is

ξt+1 = − ∇ξE2

(
ξt
)

= Xsoftmax(βXT ξt) (44)

if it is in the domain as we assume.
Using M = maxi ‖xi‖, ξt+1 is in the sphere S = {x | ‖x‖ 6M} which is a convex and compact
set. Hence, if ξ0 ∈ S, then the iterate is a mapping from S to S. Therefore the point-set-map defined
by the iteration Eq. (44) is uniformly compact on S according to Remark 7 in [39]. Theorem 2 and
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Theorem 4 in [39] states that all the limit points of the iteration Eq. (44) are stationary points. These
theorems follow from Zangwill’s global convergence theorem: Convergence Theorem A, page 91 in
[53] and page 3 in [49].
The global convergence theorem only assures that for the sequence ξt+1 = f(ξt) and a function
Φ we have Φ(ξt) → Φ(ξ∗) for t → ∞ but not ξt → ξ∗. However, if f is strictly monotone with
respect to Φ, then we can strengthen Zangwill’s global convergence theorem [34]. We set Φ = E and
show E(ξt+1) < E(ξt) if ξt is not a stationary point of E, that is, f is strictly monotone with respect
to E. The following theorem is similar to the convergence results for the expectation maximization
(EM) algorithm in [49] which are given in theorems 1 to 6 in [49]. The following theorem is also
very similar to Theorem 8 in [39].
Theorem B2 (Global Convergence: Stationary Points). For the iteration Eq. (44) we have E (ξt)→
E (ξ∗) = E∗ as t → ∞, for some stationary point ξ∗. Furthermore

∥∥ξt+1 − ξt
∥∥ → 0 and either

{ξt}∞t=0 converges or, in the other case, the set of limit points of {ξt}∞t=0 is a connected and compact
subset of L (E∗), where L (a) = {ξ ∈ L | E (ξ) = a} and L is the set of stationary points of the
iteration Eq. (44). If L (E∗) is finite, then any sequence {ξt}∞t=0 generated by the iteration Eq. (44)
converges to some ξ∗ ∈ L (E∗).

Proof. We have E (ξt) = E1 (ξt) + E2 (ξt). The gradient ∇ξE2 (ξt) = −∇ξlse(β,XT ξ) is
continuous. Therefore Eq. (40) has minimum in the sphere S, which is a convex and compact set.
If ξt+1 6= ξt, then ξt was not the minimum of Eq. (37) as the derivative at ξt is not equal to zero.
Eq. (42) shows that the optimization problem Eq. (37) is strict convex, hence it has only one minimum,
which is a global minimum. Eq. (43) shows that the optimization problem Eq. (37) is even a quadratic
form. Therefore we have

E
(
ξt+1

)
6 EC

(
ξt+1, ξt

)
< EC

(
ξt, ξt

)
= E

(
ξt
)
. (45)

Therefore the point-set-map defined by the iteration Eq. (44) (for definitions see [39]) is strictly
monotonic with respect to E. Therefore we can apply Theorem 3 in [39] or Theorem 3.1 and
Corollary 3.2 in [34], which give the statements of the theorem.

We showed global convergence of the iteration Eq. (20). We have shown that all the limit points of
any sequence generated by the iteration Eq. (20) are the stationary points (local minima or saddle
points) of the energy function E. Local maxima as stationary points are only possible if the iterations
exactly hits a maximum. However, a local maximum as an accumulation of different iteration
points is not possible because Eq. (45) ensures a strict decrease of the energy E. Therefore almost
sure local maxima are not obtained as stationary points. Either the iteration converges or, in the
second case, the set of limit points is a connected and compact set. But what happens if ξ0 is in an
ε-neighborhood around a local minimum ξ∗? Will the iteration Eq. (20) converge to ξ∗? What is the
rate of convergence? These questions are about local convergence which will be treated in detail in
next section.

B2.4 Local Convergence of the Update Rule: Fixed Point Iteration
For the proof of local convergence to a fixed point we will apply Banach fixed point theorem. For the
rate of convergence we will rely on properties of a contraction mapping.

B2.4.1 General Bound on the Jacobian of the Iterate
We consider the iteration

ξnew = f(ξ) = Xp = Xsoftmax(βXT ξ) (46)

using

p = softmax(βXT ξ) . (47)

The Jacobian J is symmetric and has the following form:

J =
∂f(ξ)

∂ξ
= β X

(
diag(p)− ppT

)
XT = XJsX

T , (48)

where Js is Jacobian of the softmax.
To analyze the local convergence of the iterate, we distinguish between the following three cases
(see also Fig. B1). Here we only provide an informal discussion to give the reader some intuition. A
rigorous formulation of the results can be found in the corresponding subsections.
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a) If the patterns xi are not well separated, the iterate goes to a fixed point close to the
arithmetic mean of the vectors. In this case p is close to pi = 1/N .

b) If the patterns xi are well separated, then the iterate goes to the pattern to which the initial ξ
is similar. If the initial ξ is similar to a vector xi then it will converge to a vector close to xi
and p will converge to a vector close to ei.

c) If some vectors are similar to each other but well separated from all other vectors, then
a so called metastable state between the similar vectors exists. Iterates that start near the
metastable state converge to this metastable state.

   fixed point pattern average pattern

Figure B1: The three cases of fixed points. a) Stored patterns (fixed point is single pattern):
patterns are stored if they are well separated. Each pattern xi has a single fixed point x∗i close to it. In
the sphere Si, pattern xi is the only pattern and x∗i the only fixed point. b) Metastable state (fixed
point is average of similar patterns): xi and xj are similar to each other and not well separated.
The fixed point m∗x is a metastable state that is close to the mean mx of the similar patterns. c)
Global fixed point (fixed point is average of all patterns): no pattern is well separated from the
others. A single global fixed pointm∗x exists that is close to the arithmetic meanmx of all patterns.

We begin with a bound on the Jacobian of the iterate, thereby heavily relying on the Jacobian of the
softmax from Lemma 24.
Lemma 2. For N patterns X = (x1, . . . ,xN ), p = softmax(βXT ξ), M = maxi ‖xi‖, and
m = maxi pi(1− pi), the spectral norm of the Jacobian J of the fixed point iteration is bounded:

‖J‖2 6 2 β ‖X‖22 m 6 2 β N M2 m . (49)
If pmax = maxi pi ≥ 1− ε, then for the spectral norm of the Jacobian holds

‖J‖2 6 2 β N M2 ε − 2 ε2 β N M2 < 2 β N M2 ε . (50)
Proof. With

p = softmax(βXT ξ) , (51)
the symmetric Jacobian J is

J =
∂f(ξ)

∂ξ
= β X

(
diag(p)− ppT

)
XT = XJsX

T , (52)

where Js is Jacobian of the softmax.
With m = maxi pi(1− pi), Eq. (465) from Lemma 24 is

‖Js‖2 = β
∥∥diag(p)− ppT

∥∥
2
6 2 m β . (53)

Using this bound on ‖Js‖2, we obtain

‖J‖2 6 β
∥∥XT

∥∥
2
‖Js‖2 ‖X‖2 6 2 m β ‖X‖22 . (54)

The spectral norm ‖.‖2 is bounded by the Frobenius norm ‖.‖F which can be expressed by the norm
squared of its column vectors:

‖X‖2 6 ‖X‖F =

√∑
i

‖xi‖2 . (55)
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Therefore, we obtain the first statement of the lemma:

‖J‖2 6 2 β ‖X‖22 m 6 2 β N M2 m . (56)

With pmax = maxi pi ≥ 1− ε Eq. (469) in Lemma 24 is

‖Js‖2 6 2 β ε − 2 ε2 β < 2 β ε . (57)

Using this inequality, we obtain the second statement of the lemma:

‖J‖2 6 2 β N M2 ε − 2 ε2 β N M2 < 2 β N M2 ε . (58)

We now define the “separation” ∆i of a pattern xi from dataX = (x1, . . . ,xN ) here, since it has an
important role for the convergence properties of the iteration.
Definition B1 (Separation of Patterns). We define ∆i, i.e. the separation of pattern xi from data
X = (x1, . . . ,xN ) as:

∆i = min
j,j 6=i

(
xTi xi − xTi xj

)
= xTi xi − max

j,j 6=i
xTi xj . (59)

The pattern is separated from the other data if 0 < ∆i. Using the parallelogram identity, ∆i can
also be expressed as

∆i = min
j,j 6=i

1

2

(
‖xi‖2 − ‖xj‖2 + ‖xi − xj‖2

)
(60)

=
1

2
‖xi‖2 −

1

2
max
j,j 6=i

(
‖xj‖2 − ‖xi − xj‖2

)
.

For ‖xi‖ = ‖xj‖ we have ∆i = 1/2 minj,j 6=i ‖xi − xj‖2.
Analog we say for a query ξ and data X = (x1, . . . ,xN ), that xi is least separated from ξ while
being separated from other xj with j 6= i if

i = arg max
k

min
j,j 6=k

(
ξTxk − ξTxj

)
= arg max

k

(
ξTxk − max

j,j 6=k
ξTxj

)
(61)

0 6 c = max
k

min
j,j 6=k

(
ξTxk − ξTxj

)
= max

k

(
ξTxk − max

j,j 6=k
ξTxj

)
. (62)

Next we consider the case where the iteration has only one stable fixed point.

B2.4.2 One Stable State: Fixed Point Near the Mean of the Patterns
We start with the case where no pattern is well separated from the others.

Global Fixed Point Near the Global Mean: Analysis Using the Data Center. We revisit the
bound on the Jacobian of the iterate by utilizing properties of pattern distributions. We begin with
a probabilistic interpretation where we consider pi as the probability of selecting the vector xi.
Consequently, we define expectations as Ep[f(x)] =

∑N
i=1 pif(xi). In this setting the matrix

X
(
diag(p)− ppT

)
XT (63)

is the covariance matrix of dataX when its vectors are selected according to the probability p:

X
(
diag(p) − ppT

)
XT = Xdiag(p)XT − XppTXT (64)

=

N∑
i=1

pi xi x
T
i −

(
N∑
i=1

pi xi

)(
N∑
i=1

pi xi

)T
(65)

= Ep[x xT ] − Ep[x] Ep[x]T = Varp[x] , (66)

therefore we have

J = β Varp[x] . (67)

The largest eigenvalue of the covariance matrix (equal to the largest singular value) is the variance in
the direction of the eigenvector associated with the largest eigenvalue.
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We define:

mx =
1

N

N∑
i=1

xi , (68)

mmax = max
16i6N

‖xi − mx‖2 . (69)

mx is the arithmetic mean (the center) of the patterns. mmax is the maximal distance of the patterns
to the centermx .
The variance of the patterns is

Varp[x] =

N∑
i=1

pi xi x
T
i −

(
N∑
i=1

pi xi

) (
N∑
i=1

pi xi

)T
(70)

=

N∑
i=1

pi

(
xi −

N∑
i=1

pixi

) (
xi −

N∑
i=1

pixi

)T
.

The maximal distance to the center mmax allows to derive a bound on the norm of the Jacobian.
Next lemma gives a condition for a global fixed point.
Lemma 3. The following bound on the norm ‖J‖2 of the Jacobian of the fixed point iteration f holds
independent of p or the query ξ.

‖J‖2 6 β m2
max . (71)

For β m2
max < 1 there exists a unique fixed point (global fixed point) of iteration f in each compact

set.

Proof. In order to bound the variance we compute the vector a that minimizes

f(a) =

N∑
i=1

pi‖xi − a‖2 =

N∑
i=1

pi(xi − a)T (xi − a) . (72)

The solution to

∂f(a)

∂a
= 2

N∑
i=1

pi(a − xi) = 0 (73)

is

a =

N∑
i=1

pixi . (74)

The Hessian of f is positive definite since

∂2f(a)

∂a2
= 2

N∑
i=1

pi I = 2 I (75)

and f is a convex function. Hence, the mean

x̄ :=

N∑
i=1

pi xi (76)

minimizes
∑N
i=1 pi‖xi − a‖

2. Therefore we have

N∑
i=1

pi‖xi − x̄‖2 6
N∑
i=1

pi‖xi − mx‖2 6 m2
max . (77)

Let us quickly recall that the spectral norm of an outer product of two vectors is the product of the
Euclidean norms of the vectors:∥∥abT∥∥

2
=
√
λmax(baTabT ) = ‖a‖

√
λmax(bbT ) = ‖a‖ ‖b‖ , (78)
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since bbT has eigenvector b/‖b‖ with eigenvalue ‖b‖2 and otherwise zero eigenvalues.
We now bound the variance of the patterns:

‖Varp[x]‖2 6
N∑
i=1

pi

∥∥∥(xi − x̄) (xi − x̄)
T
∥∥∥

2
(79)

=

N∑
i=1

pi‖xi − x̄‖2 6
N∑
i=1

pi‖xi − mx‖2 6 m2
max .

The bound of the lemma on ‖J‖2 follows from Eq. (67).
For ‖J‖2 6 β m2

max < 1 we have a contraction mapping on each compact set. Banach fixed point
theorem says there is a unique fixed point in the compact set.

Now let us further investigate the tightness of the bound on ‖Varp[x]‖2 via ‖xi − x̄‖2: we consider
the trace, which is the sum

∑d
k=1 ek of the w.l.o.g. ordered nonnegative eigenvalues ek of Varp[x]

The spectral norm is equal to the largest eigenvalue e1, which is equal to the largest singular value, as
we have positive semidefinite matrices. We obtain:

‖Varp[x]‖2 = Tr

(
N∑
i=1

pi (xi − x̄) (xi − x̄)
T

)
−

d∑
k=2

ek (80)

=

N∑
i=1

piTr
(

(xi − x̄) (xi − x̄)
T
)
−

d∑
k=2

ek

=

N∑
i=1

pi‖xi − x̄‖2 −
d∑
k=2

ek .

Therefore the tightness of the bound depends on eigenvalues which are not the largest. Hence
variations which are not along the largest variation weaken the bound.

Next we investigate the location of fixed points which existence is ensured by the global convergence
stated in Theorem B2. For N patternsX = (x1, . . . ,xN ), we consider the iteration

ξnew = f(ξ) = Xp = Xsoftmax(βXT ξ) (81)

using

p = softmax(βXT ξ) . (82)

ξnew is in the simplex of the patterns, that is, ξnew =
∑
i pixi with

∑
i pi = 1 and 0 6 pi. Hence,

after one update ξ is in the simplex of the pattern and stays there. If the centermx is the zero vector
mx = 0, that is, the data is centered, then the mean is a fixed point of the iteration. For ξ = mx = 0
we have

p = 1/N 1 (83)

and

ξnew = 1/N X 1 = mx = ξ . (84)

In particular normalization methods like batch normalization would promote the mean as a fixed
point.
We consider the differences of dot products for xi: xTi xi−xTi xj = xTi (xi−xj), for fixed pointm∗x:
(m∗x)Txi−(m∗x)Txj = (m∗x)T (xi−xj), and for the centermx: mT

xxi−mT
xxj = mT

x(xi−xj).
Using the Cauchy-Schwarz inequality, we get∣∣ξT (xi − xj)

∣∣ 6 ‖ξ‖ ‖xi − xj‖ 6 ‖ξ‖ (‖xi − mx‖ + ‖xj − mx‖) (85)

6 2 mmax ‖ξ‖ .
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This inequality gives: ∣∣ξT (xi − xj)
∣∣ 6 2 mmax (mmax + ‖mx‖) , (86)∣∣ξT (xi − xj)
∣∣ 6 2 mmax M ,

where we used ‖ξ − 0‖ 6 ‖ξ −mx‖ + ‖mx − 0‖, ‖ξ −mx‖ = ‖
∑
i pixi −mx‖ 6∑

i pi‖xi −mx‖ 6 mmax, and M = maxi ‖xi‖. In particular

β
∣∣mT

x(xi − xj)
∣∣ 6 2 β mmax ‖mx‖ , (87)

β
∣∣(m∗x)T (xi − xj)

∣∣ 6 2 β mmax ‖m∗x‖ 6 2 β mmax (mmax + ‖mx‖) , (88)

β
∣∣xTi (xi − xj)

∣∣ 6 2 β mmax ‖xi‖ 6 2 β mmax (mmax + ‖mx‖) . (89)

Let i = arg maxj ξ
Txj , therefore the maximal softmax component is i. For the maximal softmax

component i we have:

[softmax(β XT ξ)]i =
1

1 +
∑
j 6=i exp(− β (ξTxi − ξTxj))

(90)

6
1

1 +
∑
j 6=i exp(− 2 β mmax (mmax + ‖mx‖))

=
1

1 + (N − 1) exp(− 2 β mmax (mmax + ‖mx‖))

=
exp(2 β mmax (mmax + ‖mx‖))

exp(2 β mmax (mmax + ‖mx‖)) + (N − 1)

6 1/N exp(2 β mmax (mmax + ‖mx‖)) .

Analogously we obtain for i = arg maxjm
T
xxj , a bound on the maximal softmax component i if

the center is put into the iteration:

[softmax(β XTmx)]i 6 1/N exp(2 β mmax ‖mx‖) . (91)

Analog we obtain a bound for i = arg maxj(m
∗
x)Txj on the maximal softmax component i of the

fixed point:

[softmax(β XTm∗x)]i 6 1/N exp(2 β mmax ‖m∗x‖) (92)
6 1/N exp(2 β mmax (mmax + ‖mx‖)) .

The two important terms are mmax, the variance or spread of the data and ‖mx‖, which tells how
well the data is centered. For a contraction mapping we already required βm2

max < 1, therefore the
first term in the exponent is 2βm2

max < 2. The second term 2βmmax‖mx‖ is small if the data is
centered.

Global Fixed Point Near the Global Mean: Analysis Using Softmax Values. If ξTxi ≈ ξTxj
for all i and j, then pi ≈ 1/N and we have m = maxi pi(1 − pi) < 1/N . For M 6 1/

√
2β we

obtain from Lemma 2:

‖J‖2 < 1 . (93)

The local fixed point ism∗x ≈mx = (1/N)
∑N
i=1 xi with pi ≈ 1/N .

We now treat this case more formally. First we discuss conditions that ensure that the iteration is a
contraction mapping. We consider the iteration Eq. (46) in the variable p:

pnew = g(p) = softmax(βXTXp) . (94)

The Jacobian is

J(p) =
∂g(p)

∂p
= XTX Js (95)

with

Js(p
new) = β

(
diag(pnew) − pnew(pnew)T

)
. (96)
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The mean value theorem states for Jm =
∫ 1

0
J(λp) dλ = XTXJms with the symmetric matrix

Jms =
∫ 1

0
Js(λp) dλ:

pnew = g(p) = g(0) + (Jm)Tp = g(0) + Jms X
TX p = 1/N 1 + Jms X

TX p . (97)

With m = maxi pi(1− pi), Eq. (465) from Lemma 24 is

‖Js(p)‖2 = β
∥∥diag(p)− ppT

∥∥
2
6 2 m β . (98)

First observe that λpi(1− λpi) 6 pi(1− pi) for pi 6 0.5 and λ ∈ [0, 1], since pi(1− pi)− λpi(1−
λpi) = (1 − λ)pi(1 − (1 + λ)pi) ≥ 0. For maxi pi 6 0.5 this observation leads to the following
bound for Jms :

‖Jms ‖2 6 2 m β . (99)

Eq. (468) in Lemma 24 states that every Js is bounded by 1/2β, therefore also the mean:

‖Jms ‖2 6 0.5 β . (100)

Since m = maxi pi(1− pi) < maxi pi = pmax, the previous bounds can be combined as follows:

‖Jms ‖2 6 2 min{0.25, pmax} β . (101)

Consequently,

‖Jm‖2 6 N M2 2 min{0.25, pmax} β , (102)

where we used Eq. (159).
∥∥XTX

∥∥
2

=
∥∥XXT

∥∥
2
, therefore

∥∥XTX
∥∥

2
is N times the maximal

second moment of the data squared.
Obviously, g(p) is a contraction mapping in compact sets, where

N M2 2 min{0.25, pmax} β < 1 . (103)

S is the sphere around the origin 0 with radius one. For

pnew = g(p) = 1/N 1 + Jm p , (104)

we have ‖p‖ 6 ‖p‖1 = 1 and ‖pnew‖ 6 ‖pnew‖1 = 1. Therefore, g maps points from S into S. g is
a contraction mapping for

‖Jm‖2 6 N M2 2 min{0.25, pmax} β = c < 1 . (105)

According to Banach fixed point theorem g has a fixed point in the sphere S.
Hölder’s inequality gives:

‖p‖2 = pTp 6 ‖p‖1‖p‖∞ = ‖p‖∞ = pmax . (106)

Alternatively:

‖p‖2 =
∑
i

p2
i = pmax

∑
i

pi
pmax

pi 6 pmax

∑
i

pi = pmax . (107)

Let now S be the sphere around the origin 0 with radius 1/
√
N +

√
pmax and let ‖Jm(p)‖2 6 c < 1

for p ∈ S. The old p is in the sphere S (p ∈ S) since pmax <
√
pmax for pmax < 1. We have

‖pnew‖ 6 1/
√
N + ‖Jm‖2 ‖p‖ 6 1/

√
N +

√
pmax . (108)

Therefore g is a mapping from S into S and a contraction mapping. According to Banach fixed point
theorem, a fixed point exists in S.

For the 1-norm, we use Lemma 24 and ‖p‖1 = 1 to obtain from Eq. (104):

‖pnew − 1/N 1‖1 6 ‖J
m‖1 6 2 β m ‖X‖∞ M1 , (109)

‖pnew − 1/N 1‖1 6 ‖J
m‖1 6 2 β m N M∞ M1 , (110)

‖pnew − 1/N 1‖1 6 ‖J
m‖1 6 2 β m N M2 , (111)
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where m = maxi pi(1− pi), M1 = ‖X‖1 = maxi ‖xi‖1, M = maxi ‖xi‖, ‖X‖∞ =
∥∥XT

∥∥
1

=

maxi
∥∥[XT ]i

∥∥
1

(maximal absolute row sum norm), andM∞ = maxi ‖xi‖∞. Let us quickly mention
some auxiliary estimates related toXTX:

∥∥XTX
∥∥

1
= max

i

N∑
j=1

∣∣xTi xj∣∣ 6 max
i

N∑
j=1

‖xi‖∞ ‖xj‖1 (112)

6 M∞

N∑
j=1

M1 = N M∞ M1 ,

where the first inequaltiy is from Hölder’s inequality. We used

∥∥XTX
∥∥

1
= max

i

N∑
j=1

∣∣xTi xj∣∣ 6 max
i

N∑
j=1

‖xi‖ ‖xj‖ (113)

6 M

N∑
j=1

M = N M2 ,

where the first inequality is from Hölder’s inequality (here the same as the Cauchy-Schwarz inequality).
See proof of Lemma 24 for the 1-norm bound on Js. Everything else follows from the fact that the
1-norm is sub-multiplicative as induced matrix norm.

We consider the minimal ‖p‖.

min
p
‖p‖2 (114)

s.t.
∑
i

pi = 1

∀i : pi ≥ 0 .

The solution to this minimization problem is p = (1/N)1. Therefore we have 1/
√
N 6 ‖p‖ and

1/N 6 ‖p‖2 Using Eq. (108) we obtain

1/
√
N 6 ‖pnew‖ 6 1/

√
N +

√
pmax . (115)

Moreover

‖pnew‖2 = (pnew)Tpnew = 1/N + (pnew)T Jm p 6 1/N + ‖Jm‖2 ‖p‖ (116)
6 1/N + ‖Jm‖2 ,

since pnew ∈ S and p ∈ S.
For the fixed point, we have

‖p∗‖2 = (p∗)Tp∗ = 1/N + (p∗)T Jm p∗ 6 1/N + ‖Jm‖2 ‖p
∗‖2 , (117)

and hence

1/N 6 ‖p∗‖2 6 1/N
1

1 − ‖Jm‖2
= 1/N (1 +

‖Jm‖2
1 − ‖Jm‖2

) . (118)

Therefore, for small ‖Jm‖2 we have p∗ ≈ (1/N)1.

B2.4.3 Many Stable States: Fixed Points Near Stored Patterns
We move on to the next case, where the patterns xi are well separated. In this case the iterate goes to
the pattern to which the initial ξ is most similar. If the initial ξ is similar to a vector xi then it will
converge to xi and p will be ei. The main ingredients are again Banach’s Theorem and estimates on
the Jacobian norm.
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Proof of a Fixed Point by Banach Fixed Point Theorem Mapped Vectors Stay in a Compact
Environment. We show that if xi is sufficient dissimilar to other xj then there is an compact
environment of xi (a sphere) where the fixed point iteration maps this environment into itself. The
idea of the proof is to define a sphere around xi for which points from the sphere are mapped by f
into the sphere.
We first need following lemma which bounds the distance ‖xi − f(ξ)‖, where xi is the pattern that
is least separated from ξ but separated from other patterns.
Lemma 4. For a query ξ and dataX = (x1, . . . ,xN ), there exists a xi that is least separated from
ξ while being separated from other xj with j 6= i:

i = arg max
k

min
j,j 6=k

(
ξTxk − ξTxj

)
= arg max

k

(
ξTxk − max

j,j 6=k
ξTxj

)
(119)

0 6 c = max
k

min
j,j 6=k

(
ξTxk − ξTxj

)
= max

k

(
ξTxk − max

j,j 6=k
ξTxj

)
. (120)

For xi, the following holds:

‖xi − f(ξ)‖ 6 2 ε M , (121)

where

M = max
i
‖xi‖ , (122)

ε = (N − 1) exp(− β c) . (123)

Proof. For the softmax component i we have:

[softmax(β XT ξ)]i =
1

1 +
∑
j 6=i exp(β (ξTxj − ξTxi))

≥ 1

1 +
∑
j 6=i exp(− β c)

(124)

=
1

1 + (N − 1) exp(− β c)
= 1 − (N − 1) exp(− β c)

1 + (N − 1) exp(− β c)
≥ 1 − (N − 1) exp(− β c) = 1 − ε

For softmax components k 6= i we have

[softmax(βXT ξ)]k =
exp(β (ξTxk − ξTxi))

1 +
∑
j 6=i exp(β (ξTxj − ξTxi))

6 exp(− β c) =
ε

N − 1
.

(125)

The iteration f can be written as

f(ξ) = Xsoftmax(βXT ξ) =
N∑
j=1

xj [softmax(βXT ξ)]j . (126)

We now can bound ‖xi − f(ξ)‖:

‖xi − f(ξ)‖ =

∥∥∥∥∥∥xi −
N∑
j=1

[softmax(βXT ξ)]j xj

∥∥∥∥∥∥ (127)

=

∥∥∥∥∥∥(1− [softmax(βXT ξ)]i) xi −
N∑

j=1,j 6=i

[softmax(βXT ξ)]j xj

∥∥∥∥∥∥
6 ε ‖xi‖ +

ε

N − 1

N∑
j=1,j 6=i

‖xj‖

6 ε M +
ε

N − 1

N∑
j=1,j 6=i

M = 2 ε M .
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We define ∆i, i.e. the separation of pattern xi from dataX = (x1, . . . ,xN ) as:

∆i = min
j,j 6=i

(
xTi xi − xTi xj

)
= xTi xi − max

j,j 6=i
xTi xj . (128)

The pattern is separated from the other data if 0 < ∆i. Using the parallelogram identity, ∆i can also
be expressed as

∆i = min
j,j 6=i

1

2

(
‖xi‖2 − ‖xj‖2 + ‖xi − xj‖2

)
(129)

=
1

2
‖xi‖2 −

1

2
max
j,j 6=i

(
‖xj‖2 − ‖xi − xj‖2

)
.

For ‖xi‖ = ‖xj‖ we have ∆i = 1/2 minj,j 6=i ‖xi − xj‖2.
Next we define the sphere where we want to apply Banach fixed point theorem.
Definition B2 (Sphere Si). The sphere Si is defined as

Si :=

{
ξ | ‖ξ − xi‖ 6

1

β N M

}
. (130)

Lemma 5. With ξ given, if the assumptions
A1: ξ is inside sphere: ξ ∈ Si,
A2: data point xi is well separated from the other data:

∆i ≥
2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
(131)

hold, then f(ξ) is inside the sphere: f(ξ) ∈ Si. Therefore with assumption (A2), f is a mapping
from Si into Si.

Proof. We need the separation ∆̃i of ξ from the data.

∆̃i = min
j,j 6=i

(
ξTxi − ξTxj

)
. (132)

Using the Cauchy-Schwarz inequality, we obtain for 1 6 j 6 N :∣∣ξTxj − xTi xj
∣∣ 6 ‖ξ − xi‖ ‖xj‖ 6 ‖ξ − xi‖M . (133)

We have the lower bound
∆̃i ≥ min

j,j 6=i

((
xTi xi − ‖ξ − xi‖M

)
−
(
xTi xj + ‖ξ − xi‖M

))
(134)

= − 2 ‖ξ − xi‖M + min
j,j 6=i

(
xTi xi − xTi xj

)
= ∆i − 2 ‖ξ − xi‖M

≥ ∆i −
2

β N
,

where we used the assumption (A1) of the lemma.
From the proof in Lemma 4 we have

pmax = [softmax(βXT ξ)]i ≥ 1 − (N − 1) exp(− β ∆̃i) = 1 − ε̃ . (135)
Lemma 4 states that

‖xi − f(ξ)‖ 6 2 ε̃ M = 2 (N − 1) exp(− β ∆̃i) M (136)

6 2 (N − 1) exp(− β (∆i −
2

β N
)) M .

We have
‖xi − f(ξ)‖ (137)

6 2 (N − 1) exp(− β (
2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
− 2

β N
)) M

= 2 (N − 1) exp(− ln
(
2 (N − 1) N β M2

)
) M

=
1

N β M
,

where we used assumption (A2) of the lemma. Therefore, f(ξ) is a mapping from the sphere Si into
the sphere Si: If ξ ∈ Si then f(ξ) ∈ Si.
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Contraction Mapping. For applying Banach fixed point theorem we need to show that f is
contraction in the compact environment Si.
Lemma 6. Assume that

A1:

∆i ≥
2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
, (138)

then f is a contraction mapping in Si.

Proof. The mean value theorem states for Jm =
∫ 1

0
J(λξ + (1− λ)xi) dλ:

f(ξ) = f(xi) + Jm (ξ − xi) . (139)

Therefore

‖f(ξ) − f(xi)‖ 6 ‖Jm‖2 ‖ξ − xi‖ . (140)

We define ξ̃ = λξ + (1− λ)xi for some λ ∈ [0, 1]. From the proof in Lemma 4 we have

pmax(ξ̃) = [softmax(β XT ξ̃)]i ≥ 1 − (N − 1) exp(− β ∆̃i) = 1 − ε̃ , (141)

ε̃ = (N − 1) exp(− β ∆̃i) , (142)

∆̃i = min
j,j 6=i

(
ξ̃Txi − ξ̃Txj

)
. (143)

First we compute an upper bound on ε̃. We need the separation ∆̃i of ξ from the data. Using the
Cauchy-Schwarz inequality, we obtain for 1 6 j 6 N :∣∣∣ξ̃Txj − xTi xj

∣∣∣ 6 ∥∥∥ξ̃ − xi

∥∥∥ ‖xj‖ 6 ∥∥∥ξ̃ − xi

∥∥∥M . (144)

We have the lower bound on ∆̃i:

∆̃i ≥ min
j,j 6=i

((
xTi xi −

∥∥∥ξ̃ − xi

∥∥∥M) − (
xTi xj +

∥∥∥ξ̃ − xi

∥∥∥M)) (145)

= − 2
∥∥∥ξ̃ − xi

∥∥∥M + min
j,j 6=i

(
xTi xi − xTi xj

)
= ∆i − 2

∥∥∥ξ̃ − xi

∥∥∥M
≥ ∆i − 2 ‖ξ − xi‖M ,

where we used
∥∥∥ξ̃ − xi∥∥∥ = λ‖ξ − xi‖ 6 ‖ξ − xi‖. From the definition of ε̃ in Eq. (141) we have

ε̃ = (N − 1) exp(− β ∆̃i) (146)
6 (N − 1) exp (− β (∆i − 2 ‖ξ − xi‖M))

6 (N − 1) exp

(
− β

(
∆i −

2

β N

))
,

where we used ξ ∈ Si, therefore ‖ξ − xi‖ 6 1
β N M .

Next we compute an lower bound on ε̃. We start with an upper on ∆̃i:

∆̃i 6 min
j,j 6=i

((
xTi xi +

∥∥∥ξ̃ − xi

∥∥∥M) − (
xTi xj −

∥∥∥ξ̃ − xi

∥∥∥M)) (147)

= 2
∥∥∥ξ̃ − xi

∥∥∥M + min
j,j 6=i

(
xTi xi − xTi xj

)
= ∆i + 2

∥∥∥ξ̃ − xi

∥∥∥M
6 ∆i + 2 ‖ξ − xi‖M ,

where we used
∥∥∥ξ̃ − xi∥∥∥ = λ‖ξ − xi‖ 6 ‖ξ − xi‖. From the definition of ε̃ in Eq. (141) we have

ε̃ = (N − 1) exp(− β ∆̃i) (148)
≥ (N − 1) exp (− β (∆i + 2 ‖ξ − xi‖M))

≥ (N − 1) exp

(
− β

(
∆i +

2

β N

))
,
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where we used ξ ∈ Si, therefore ‖ξ − xi‖ 6 1
β N M .

Now we bound the Jacobian. We can assume ε̃ 6 0.5 otherwise (1 − ε̃) 6 0.5 in the following.
From the proof of Lemma 24 we know for pmax(ξ̃) ≥ 1 − ε̃, then pi(ξ̃) 6 ε̃ for pi(ξ̃) 6= pmax(ξ̃).
Therefore pi(ξ̃)(1− pi(ξ̃)) 6 m 6 ε̃(1− ε̃) for all i. Next we use the derived upper and lower bound
on ε̃ in previous Eq. (50) in Lemma 2:∥∥∥J(ξ̃)

∥∥∥
2
6 2 β N M2 ε̃ − 2 ε̃2 β N M2 (149)

6 2 β N M2 (N − 1) exp

(
− β

(
∆i −

2

β N

))
−

2 (N − 1)2 exp

(
− 2 β

(
∆i +

2

β N

))
β N M2 .

The bound Eq. (149) holds for the mean Jm, too, since it averages over J(ξ̃):

‖Jm‖2 6 2 β N M2 (N − 1) exp

(
− β

(
∆i −

2

β N

))
− (150)

2 (N − 1)2 exp

(
− 2 β

(
∆i +

2

β N

))
β N M2 .

The assumption of the lemma is

∆i ≥
2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
, (151)

This is

∆i −
2

β N
≥ 1

β
ln
(
2 (N − 1) N β M2

)
, (152)

Therefore the spectral norm ‖J‖2 can be bounded by:

‖Jm‖2 6 2 β (N − 1) exp

(
− β 1

β
ln
(
2 (N − 1) N β M2

))
N M2 − (153)

2 (N − 1)2 exp

(
− 2 β

(
∆i +

2

β N

))
β N M2

= 2 β (N − 1)
1

2 (N − 1) N β M2
N M2 −

2 (N − 1)2 exp

(
− 2 β

(
∆i +

2

β N

))
β N M2

= 1 − 2 (N − 1)2 exp

(
− 2 β

(
∆i +

2

β N

))
β N M2 < 1 .

Therefore f is a contraction mapping in Si.

Banach Fixed Point Theorem. Now we have all ingredients to apply Banach fixed point theorem.

Lemma 7. Assume that

A1:

∆i ≥
2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
, (154)

then f has a fixed point in Si.

Proof. We use Banach fixed point theorem: Lemma 5 says that f maps from Si into Si. Lemma 6
says that f is a contraction mapping in Si.
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Contraction Mapping with a Fixed Point We have shown that a fixed point exists. We want to
know how fast the iteration converges to the fixed point. Let x∗i be the fixed point of the iteration f
in the sphere Si. Using the mean value theorem, we have with Jm =

∫ 1

0
J(λξ + (1− λ)x∗i ) dλ:

‖f(ξ) − x∗i ‖ = ‖f(ξ) − f(x∗i )‖ 6 ‖Jm‖2 ‖ξ − x∗i ‖ (155)
According to Lemma 24, if pmax = maxi pi ≥ 1− ε for all x̃ = λξ + (1− λ)x∗i , then the spectral
norm of the Jacobian is bounded by

‖Js(x̃)‖2 < 2 ε β . (156)
The norm of Jacobian at x̃ is bounded

‖J(x̃)‖2 6 2 β ‖X‖22 ε 6 2 β NM2 ε . (157)
We used that the spectral norm ‖.‖2 is bounded by the Frobenius norm ‖.‖F which can be expressed
by the norm squared of its column vectors:

‖X‖2 6 ‖X‖F =

√∑
i

‖xi‖2 . (158)

Therefore
‖X‖22 6 N M2 . (159)

The norm of Jacobian of the fixed point iteration is bounded

‖Jm‖2 6 2 β ‖X‖22 ε 6 2 β NM2 ε . (160)
The separation of pattern xi from dataX = (x1, . . . ,xN ) is

∆i = min
j,j 6=i

(
xTi xi − xTi xj

)
= xTi xi − max

j,j 6=i
xTi xj . (161)

We need the separation ∆̃i of x̃ = λξ + (1− λ)x∗i from the data:

∆̃i = min
j,j 6=i

(
x̃Txi − x̃Txj

)
. (162)

We compute a lower bound on ∆̃i. Using the Cauchy-Schwarz inequality, we obtain for 1 6 j 6 N :∣∣x̃Txj − xTi xj
∣∣ 6 ‖x̃ − xi‖ ‖xj‖ 6 ‖x̃ − xi‖M . (163)

We have the lower bound
∆̃i ≥ min

j,j 6=i

((
xTi xi − ‖x̃ − xi‖M

)
−
(
xTi xj + ‖x̃ − xi‖M

))
(164)

= − 2 ‖x̃ − xi‖M + min
j,j 6=i

(
xTi xi − xTi xj

)
= ∆i − 2 ‖x̃ − xi‖M .

Since
‖x̃ − xi‖ = ‖λξ + (1− λ)x∗i − xi‖ (165)

6 λ ‖ξ − xi‖ + (1− λ) ‖x∗i − xi‖
6 max{‖ξ − xi‖, ‖x∗i − xi‖} ,

we have
∆̃i ≥ ∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M . (166)

For the softmax component i we have:

[softmax(β XT ξ̃)]i =
1

1 +
∑
j 6=i exp(β (ξ̃Txj − ξ̃Txi))

(167)

≥ 1

1 +
∑
j 6=i exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M))

=
1

1 + (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M))

= 1 − (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M))

1 + (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M))

≥ 1 − (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M))

= 1 − ε .
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Therefore

ε = (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) . (168)

We can bound the spectral norm of the Jacobian, which upper bounds the Lipschitz constant:

‖Jm‖2 6 2 β N M2 (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) . (169)

For a contraction mapping we require

‖Jm‖2 < 1 , (170)

which can be ensured by

2 β NM2 (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) < 1 . (171)

Solving this inequality for ∆i gives

∆i > 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M +
1

β
ln
(
2 (N − 1) N β M2

)
. (172)

In an environment around x∗i in which Eq. (172) holds, f is a contraction mapping and every point
converges under the iteration f to x∗i when the iteration stays in the environment. After every iteration
the mapped point f(ξ) is closer to the fixed point x∗i than the original point xi:

‖f(ξ) − x∗i ‖ 6 ‖Jm‖2 ‖ξ − x∗i ‖ < ‖ξ − x∗i ‖ . (173)

Using

‖f(ξ) − x∗i ‖ 6 ‖Jm‖2 ‖ξ − x∗i ‖ 6 ‖Jm‖2 ‖ξ − f(ξ)‖ + ‖Jm‖2 ‖f(ξ) − x∗i ‖ , (174)

we obtain

‖f(ξ) − x∗i ‖ 6
‖Jm‖2

1 − ‖Jm‖2
‖ξ − f(ξ)‖ . (175)

For large ∆i the iteration is close to the fixed point even after one update. This has been confirmed in
several experiments.

B2.4.4 Metastable States: Fixed Points Near Mean of Similar Patterns
The proof concept is the same as for a single pattern but now for the arithmetic mean of similar
patterns.

Bound on the Jacobian. The Jacobian of the fixed point iteration is

J = β X
(
diag(p)− ppT

)
XT = XJsX

T . (176)

If we consider pi as the probability of selecting the vector xi, then we can define expectations as
Ep[f(x)] =

∑N
i=1 pif(xi). In this setting the matrix

X
(
diag(p)− ppT

)
XT (177)

is the covariance matrix of dataX when its vectors are selected according to the probability p:

X
(
diag(p) − ppT

)
XT = Xdiag(p)XT − XppTXT (178)

=

N∑
i=1

pi xi x
T
i −

(
N∑
i=1

pi xi

)(
N∑
i=1

pi xi

)T
(179)

= Ep[x xT ] − Ep[x] Ep[x]T = Varp[x] , (180)

therefore we have

J = β Varp[x] . (181)

We now elaborate more on this interpretation as variance. Specifically the singular values of J (or in
other words: the covariance) should be reasonably small. The singular values are the key to ensure
convergence of the iteration Eq. (46). Next we present some thoughts.
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1. It’s clear that the largest eigenvalue of the covariance matrix (equal to the largest singu-
lar value) is the variance in the direction of the eigenvector associated with the largest
eigenvalue.

2. Furthermore the variance goes to zero as one pi goes to one, since only one pattern is chosen
and there is no variance.

3. The variance is reasonable small if all patterns are chosen with equal probability.

4. The variance is small if few similar patterns are chosen with high probability. If the patterns
are sufficient similar, then the spectral norm of the covariance matrix is smaller than one.

The first three issues have already been adressed. Now we focus on the last one in greater detail. We
assume that the first l patterns are much more probable (and similar to one another) than the other
patterns. Therefore we define:

M := max
i
‖xi‖ , (182)

γ =

N∑
i=l+1

pi 6 ε , (183)

1− γ =

l∑
i=1

pi ≥ 1 − ε , (184)

p̃i :=
pi

1− γ
6 pi/(1− ε) , (185)

l∑
i=1

p̃i = 1 , (186)

mx =
1

l

l∑
i=1

xi , (187)

mmax = max
16i6l

‖xi − mx‖ . (188)

M is an upper bound on the Euclidean norm of the patterns, which are vectors. ε is an upper bound
on the probability γ of not choosing one of the first l patterns, while 1 − ε is a lower bound the
probability (1 − γ) of choosing one of the first l patterns. mx is the arithmetic mean (the center)
of the first l patterns. mmax is the maximal distance of the patterns to the center mx . p̃ is the
probability p normalized for the first l patterns.
The variance of the first l patterns is

Varp̃[x1:l] =

l∑
i=1

p̃i xi x
T
i −

(
l∑
i=1

p̃i xi

) (
l∑
i=1

p̃i xi

)T
(189)

=

l∑
i=1

p̃i

(
xi −

l∑
i=1

p̃ixi

) (
xi −

l∑
i=1

p̃ixi

)T
.

Lemma 8. With the definitions in Eq. (182) to Eq. (189), the following bounds on the norm ‖J‖2 of
the Jacobian of the fixed point iteration hold. The γ-bound for ‖J‖2 is

‖J‖2 6 β
(
(1− γ) m2

max + γ 2 (2 − γ) M2
)

(190)

and the ε-bound for ‖J‖2 is:

‖J‖2 6 β
(
m2

max + ε 2 (2 − ε) M2
)
. (191)
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Proof. The variance Varp̃[x1:l] can be expressed as:

(1− γ) Varp̃[x1:l] =

l∑
i=1

pi

(
xi −

1

1− γ

l∑
i=1

pi xi

) (
xi −

1

1− γ

l∑
i=1

pi xi

)T
(192)

=

l∑
i=1

pi xi x
T
i −

(
l∑
i=1

pi xi

)
1

1− γ

(
l∑
i=1

pi xi

)T

− 1

1− γ

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T

+

∑l
i=1 pi

(1− γ)2

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T

=

l∑
i=1

pi xi x
T
i −

1

1− γ

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T

=

l∑
i=1

pi xi x
T
i −

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T
+

(
1 − 1

1− γ

) ( l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T

=

l∑
i=1

pi xi x
T
i −

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T
− γ

1− γ

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T
.

Therefore we have

l∑
i=1

pi xi x
T
i −

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T
(193)

= (1− γ) Varp̃[x1:l] +
γ

1− γ

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T
.

23



We now can reformulate the Jacobian J:

J = β

(
l∑
i=1

pi xi x
T
i +

N∑
i=l+1

pi xi x
T
i (194)

−

(
l∑
i=1

pi xi +

N∑
i=l+1

pi xi

)(
l∑
i=1

pi xi +

N∑
i=l+1

pi xi

)T
= β

 l∑
i=1

pi xi x
T
i −

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T

+

N∑
i=l+1

pi xi x
T
i −

(
N∑

i=l+1

pi xi

) (
N∑

i=l+1

pi xi

)T

−

(
l∑
i=1

pi xi

) (
N∑

i=l+1

pi xi

)T
−

(
N∑

i=l+1

pi xi

)(
l∑
i=1

pi xi

)T
= β

(1− γ) Varp̃[x1:l] +
γ

1− γ

(
l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T

+

N∑
i=l+1

pi xi x
T
i −

(
N∑

i=l+1

pi xi

) (
N∑

i=l+1

pi xi

)T

−

(
l∑
i=1

pi xi

) (
N∑

i=l+1

pi xi

)T
−

(
N∑

i=l+1

pi xi

)(
l∑
i=1

pi xi

)T .

The spectral norm of an outer product of two vectors is the product of the Euclidean norms of the
vectors: ∥∥abT∥∥

2
=
√
λmax(baTabT ) = ‖a‖

√
λmax(bbT ) = ‖a‖ ‖b‖ , (195)

since bbT has eigenvector b/‖b‖ with eigenvalue ‖b‖2 and otherwise zero eigenvalues.
We now bound the norms of some matrices and vectors:∥∥∥∥∥

l∑
i=1

pi xi

∥∥∥∥∥ 6
l∑
i=1

pi ‖xi‖ 6 (1− γ) M , (196)∥∥∥∥∥
N∑

i=l+1

pi xi

∥∥∥∥∥ 6
N∑

i=l+1

pi ‖xi‖ 6 γ M , (197)∥∥∥∥∥
N∑

i=l+1

pi xi x
T
i

∥∥∥∥∥
2

6
N∑

i=l+1

pi
∥∥xi xTi ∥∥2

=

N∑
i=l+1

pi ‖xi‖2 6
N∑

i=l+1

pi M
2 = γ M2 . (198)

In order to bound the variance of the first l patterns, we compute the vector a that minimizes

f(a) =

l∑
i=1

pi‖xi − a‖2 =

l∑
i=1

pi(xi − a)T (xi − a) . (199)

The solution to

∂f(a)

∂a
= 2

N∑
i=1

pi(a − xi) = 0 (200)

is

a =

N∑
i=1

pixi . (201)
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The Hessian of f is positive definite since

∂2f(a)

∂a2
= 2

N∑
i=1

pi I = 2 I (202)

and f is a convex function. Hence, the mean

x̄ :=

N∑
i=1

pi xi (203)

minimizes
∑N
i=1 pi‖xi − a‖

2. Therefore we have
l∑
i=1

pi‖xi − x̄‖2 6
l∑
i=1

pi‖xi − mx‖2 6 (1 − γ) m2
max . (204)

We now bound the variance on the first l patterns:

(1− γ) ‖Varp̃[x1:l]‖2 6
l∑
i=1

pi

∥∥∥(xi − x̄) (xi − x̄)
T
∥∥∥

2
(205)

=

l∑
i=1

pi‖xi − x̄‖2 6
l∑
i=1

pi‖xi − mx‖2 6 (1 − γ) m2
max .

We obtain for the spectral norm of J:
‖J‖2 6 β

(
(1− γ) ‖Varp̃[x1:l]‖2 (206)

+
γ

1− γ

∥∥∥∥∥∥
(

l∑
i=1

pi xi

) (
l∑
i=1

pi xi

)T∥∥∥∥∥∥
2

+

∥∥∥∥∥
N∑

i=l+1

pi xi x
T
i

∥∥∥∥∥
2

+

∥∥∥∥∥∥
(

N∑
i=l+1

pi xi

) (
N∑

i=l+1

pi xi

)T∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
(

l∑
i=1

pi xi

) (
N∑

i=l+1

pi xi

)T∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
(

N∑
i=l+1

pi xi

)(
l∑
i=1

pi xi

)T∥∥∥∥∥∥
2


6 β

(
(1− γ) ‖Varp̃[x1:l]‖2 + γ (1− γ) M2 + γ M2 + γ2 M2 +

γ (1− γ) M2 + γ (1− γ) M2
)

= β
(
(1− γ) ‖Varp̃[x1:l]‖2 + γ 2 (2 − γ) M2

)
.

Combining the previous two estimates immediately leads to Eq. (190).
The function h(x) = x2(2− x) has the derivative h′(x) = 4(1− x). Therefore h(x) is monotone
increasing for x < 1. For 0 6 γ 6 ε < 1, we can immediately deduce that γ2(2− γ) 6 ε2(2− ε).
Since ε is larger than γ, we obtain the following ε-bound for ‖J‖2:

‖J‖2 6 β
(
m2

max + ε 2 (2 − ε) M2
)
. (207)

We revisit the bound on (1− γ) Varp̃[x1:l]. The trace
∑d
k=1 ek is the sum of the eigenvalues ek. The

spectral norm is equal to the largest eigenvalue e1, that is, the largest singular value. We obtain:

‖Varp̃[x1:l]‖2 = Tr

(
l∑
i=1

pi (xi − x̄) (xi − x̄)
T

)
−

d∑
k=2

ek (208)

=

l∑
i=1

piTr
(

(xi − x̄) (xi − x̄)
T
)
−

d∑
k=2

ek

=

l∑
i=1

pi‖xi − x̄‖2 −
d∑
k=2

ek .

Therefore the tightness of the bound depends on eigenvalues which are not the largest. That is
variations which are not along the strongest variation weaken the bound.
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Proof of a Fixed Point by Banach Fixed Point Theorem Without restricting the generality, we
assume that the first l patterns are much more probable (and similar to one another) than the other
patterns. Therefore we define:

M := max
i
‖xi‖ , (209)

γ =

N∑
i=l+1

pi 6 ε , (210)

1− γ =

l∑
i=1

pi ≥ 1 − ε , (211)

p̃i :=
pi

1− γ
6 pi/(1− ε) , (212)

l∑
i=1

p̃i = 1 , (213)

mx =
1

l

l∑
i=1

xi , (214)

mmax = max
16i6l

‖xi − mx‖ . (215)

M is an upper bound on the Euclidean norm of the patterns, which are vectors. ε is an upper bound
on the probability γ of not choosing one of the first l patterns, while 1 − ε is a lower bound the
probability (1 − γ) of choosing one of the first l patterns. mx is the arithmetic mean (the center)
of the first l patterns. mmax is the maximal distance of the patterns to the center mx . p̃ is the
probability p normalized for the first l patterns.

Mapped Vectors Stay in a Compact Environment. We show that if mx is sufficient dissimilar
to other xj with l < j then there is an compact environment ofmx (a sphere) where the fixed point
iteration maps this environment into itself. The idea of the proof is to define a sphere aroundmx for
which the points from the sphere are mapped by f into the sphere.
We first need following lemma which bounds the distance ‖mx − f(ξ)‖ of a ξ which is close to
mx.
Lemma 9. For a query ξ and dataX = (x1, . . . ,xN ), we define

0 6 c = min
j,l<j

(
ξTmx − ξTxj

)
= ξTmx − max

j,l<j
ξTxj . (216)

The following holds:

‖mx − f(ξ)‖ 6 mmax + 2 γ M 6 mmax + 2 ε M , (217)

where

M = max
i
‖xi‖ , (218)

ε = (N − l) exp(− β c) . (219)

Proof. Let s = arg maxj,j6l ξ
Txj , therefore ξTmx = 1

l

∑l
i=1 ξ

Txi 6 1
l

∑l
i=1 ξ

Txs = ξTxs.
For softmax components j with l < j we have

[softmax(βXT ξ)]j =
exp(β (ξTxj − ξTxs))

1 +
∑
k,k 6=s exp(β (ξTxk − ξTxs))

6 exp(− β c) =
ε

N − l
,

(220)

since ξTxs − ξTxj ≥ ξTmx − ξTxj for each j with l < j, therefore ξTxs − ξTxj ≥ c
The iteration f can be written as

f(ξ) = Xsoftmax(βXT ξ) =

N∑
j=1

xj [softmax(βXT ξ)]j . (221)
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We set pi = [softmax(βXT ξ)]i, therefore
∑l
i=1 pi = 1 − γ ≥ 1 − ε and

∑N
i=l+1 pi = γ 6 ε.

Therefore∥∥∥∥∥∥mx −
l∑

j=1

pj
1− γ

xj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
l∑

j=1

pj
1− γ

(mx − xj)

∥∥∥∥∥∥
2

(222)

=

l∑
j=1,k=1

pj
1− γ

pk
1− γ

(mx − xj)
T

(mx − xk)

=
1

2

l∑
j=1,k=1

pj
1− γ

pk
1− γ

(
‖mx − xj‖2 + ‖mx − xk‖2 − ‖xj − xk‖2

)

=

l∑
j=1

pj
1− γ

‖mx − xj‖2 −
1

2

l∑
j=1,k=1

pj
1− γ

pk
1− γ

‖xj − xk‖2

6
l∑

j=1

pj
1− γ

‖mx − xj‖2 6 m2
max .

It follows that ∥∥∥∥∥∥mx −
l∑

j=1

pj
1− γ

xj

∥∥∥∥∥∥ 6 mmax (223)

We now can bound ‖mx − f(ξ)‖:

‖mx − f(ξ)‖ =

∥∥∥∥∥∥mx −
N∑
j=1

pj xj

∥∥∥∥∥∥ (224)

=

∥∥∥∥∥∥mx −
l∑

j=1

pj xj −
N∑

j=l+1

pj xj

∥∥∥∥∥∥
=

∥∥∥∥∥∥mx −
l∑

j=1

pj
1− γ

xj +
γ

1− γ

l∑
j=1

pj xj −
N∑

j=l+1

pj xj

∥∥∥∥∥∥
6

∥∥∥∥∥∥mx −
l∑

j=1

pj
1− γ

xj

∥∥∥∥∥∥ +
γ

1− γ

∥∥∥∥∥∥
l∑

j=1

pj xj

∥∥∥∥∥∥ +

∥∥∥∥∥∥
N∑

j=l+1

pj xj

∥∥∥∥∥∥
6

∥∥∥∥∥∥mx −
l∑

j=1

pj
1− γ

xj

∥∥∥∥∥∥ +
γ

1− γ

l∑
j=1

pj M +

N∑
j=l+1

pj M

6

∥∥∥∥∥∥mx −
l∑

j=1

pj
1− γ

xj

∥∥∥∥∥∥ + 2 γ M

6 mmax + 2 γ M 6 mmax + 2 ε M ,

where we applied Eq. (222) in the penultimate inequality. This is the statement of the lemma.

The separation of the center (the arithmetic mean)mx of the first l from dataX = (xl+1, . . . ,xN )
is ∆m, defined as

∆m = min
j,l<j

(
mT
xmx − mT

xxj
)

= mT
xmx − max

j,l<j
mT
xxj . (225)
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The center is separated from the other data xj with l < j if 0 < ∆m. By the same arguments as in
Eq. (129), ∆m can also be expressed as

∆m = min
j,l<j

1

2

(
‖mx‖2 − ‖xj‖2 + ‖mx − xj‖2

)
(226)

=
1

2
‖mx‖2 −

1

2
max
j,l<j

(
‖xj‖2 − ‖mx − xj‖2

)
.

For ‖mx‖ = ‖xj‖ we have ∆m = 1/2 minj,l<j ‖mx − xj‖2.
Next we define the sphere where we want to apply Banach fixed point theorem.
Definition B3 (Sphere Sm). The sphere Sm is defined as

Sm :=

{
ξ | ‖ξ − mx‖ 6

1

β mmax

}
. (227)

Lemma 10. With ξ given, if the assumptions
A1: ξ is inside sphere: ξ ∈ Sm,
A2: the centermx is well separated from other data xj with l < j:

∆m ≥
2 M

β mmax
− 1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)
, (228)

A3: the distance mmax of similar patterns to the center is sufficient small:

β m2
max 6 1 (229)

hold, then f(ξ) ∈ Sm. Therefore, under conditions (A2) and (A3), f is a mapping from Sm into Sm.

Proof. We need the separation ∆̃m of ξ from the rest of the data, which is the last N − l data points
X = (xl+1, . . . ,xN ).

∆̃m = min
j,l<j

(
ξTmx − ξTxj

)
. (230)

Using the Cauchy-Schwarz inequality, we obtain for l + 1 6 j 6 N :∣∣ξTxj − mT
xxj

∣∣ 6 ‖ξ − mx‖ ‖xj‖ 6 ‖ξ − mx‖M . (231)

We have the lower bound

∆̃m ≥ min
j,l<j

((
mT
xmx − ‖ξ − mx‖M

)
−
(
mT
xxj + ‖ξ − mx‖M

))
(232)

= − 2 ‖ξ − mx‖M + min
j,l<j

(
mT
xmx − mT

xxj
)

= ∆m − 2 ‖ξ − mx‖M

≥ ∆m − 2
M

β mmax
,

where we used the assumption (A1) of the lemma.
From the proof in Lemma 9 we have

l∑
i=1

pi ≥ 1 − (N − l) exp(− β ∆̃m) = 1 − ε̃ , (233)

N∑
i=l+1

pi 6 (N − l) exp(− β ∆̃m) = ε̃ . (234)

Lemma 9 states that

‖mx − f(ξ)‖ 6 mmax + 2 ε̃ M (235)

6 mmax + 2 (N − l) exp(− β ∆̃m) M .

6 mmax + 2 (N − l) exp(− β (∆m − 2
M

β mmax
)) M .
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Therefore we have

‖mx − f(ξ)‖ 6 mmax + 2 (N − l) exp

(
− β (∆m − 2

M

β mmax
)

)
M (236)

6 mmax + 2 (N − l) exp

(
− β

(
2 M

β mmax
−

1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)
− 2

M

β mmax

))
M

= mmax + 2 (N − l) 1 − β m2
max

2 β (N − l) M max{mmax , 2 M}
M

6 mmax +
1 − β m2

max

β mmax
=

1

β mmax
,

where we used assumption (A2) of the lemma. Therefore, f(ξ) is a mapping from the sphere Sm into
the sphere Sm.

mmax = max
16i6l

‖xi −mx‖ (237)

= max
16i6l

∥∥∥∥∥∥xi − 1/l

l∑
j=1

xj

∥∥∥∥∥∥ (238)

= max
16i6l

∥∥∥∥∥∥1/l

l∑
j=1

(xi − xj)

∥∥∥∥∥∥ (239)

6 max
16i,j6l

‖xi − xj‖ (240)

6 max
16i6l

‖xi‖+ max
16j6l

‖xi‖ (241)

6 2M (242)

Contraction Mapping. For applying Banach fixed point theorem we need to show that f is
contraction in the compact environment Sm.
Lemma 11. Assume that

A1:

∆m ≥
2 M

β mmax
− 1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)
, (243)

and
A2:

β m2
max 6 1 , (244)

then f is a contraction mapping in Sm.

Proof. The mean value theorem states for the symmetric Jm =
∫ 1

0
J(λξ + (1− λ)mx) dλ:

f(ξ) = f(mx) + Jm (ξ − mx) . (245)

In complete analogy to Lemma 6, we get:

‖f(ξ) − f(mx)‖ 6 ‖Jm‖2 ‖ξ − mx‖ . (246)

We define ξ̃ = λξ + (1− λ)mx for some λ ∈ [0, 1]. We need the separation ∆̃m of ξ̃ from the rest
of the data, which is the last N − l data pointsX = (xl+1, . . . ,xN ).

∆̃m = min
j,l<j

(
ξ̃Tmx − ξ̃Txj

)
. (247)
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From the proof in Lemma 9 we have

ε̃ = (N − l) exp(− β ∆̃m) , (248)
l∑
i=1

pi(ξ̃) ≥ 1 − (N − l) exp(− β ∆̃m) = 1 − ε̃ , (249)

N∑
i=l+1

pi(ξ̃) 6 (N − l) exp(− β ∆̃m) = ε̃ . (250)

We first compute an upper bound on ε̃. Using the Cauchy-Schwarz inequality, we obtain for l + 1 6
j 6 N : ∣∣∣ξ̃Txj − mT

xxj

∣∣∣ 6 ∥∥∥ξ̃ − mx

∥∥∥ ‖xj‖ 6 ∥∥∥ξ̃ − mx

∥∥∥M . (251)

We have the lower bound on ∆̃m:

∆̃m ≥ min
j,l<j

((
mT
xmx −

∥∥∥ξ̃ − mx

∥∥∥M) − (
mT
xxj +

∥∥∥ξ̃ − mx

∥∥∥M)) (252)

= − 2
∥∥∥ξ̃ − mx

∥∥∥M + min
j,l<j

(
mT
xmx − mT

xxj
)

= ∆m − 2
∥∥∥ξ̃ − mx

∥∥∥M
≥ ∆m − 2 ‖ξ − mx‖M .

where we used
∥∥∥ξ̃ −mx

∥∥∥ = λ‖ξ −mx‖ 6 ‖ξ −mx‖. We obtain the upper bound on ε̃:

ε̃ 6 (N − l) exp (− β (∆m − 2 ‖ξ − mx‖M)) (253)

6 (N − l) exp

(
− β

(
∆m −

2 M

β mmax

))
.

where we used that in the sphere Si holds:

‖ξ − mx‖ 6
1

β mmax
, (254)

therefore

2 ‖ξ − mx‖M 6
2 M

β mmax
. (255)

Next we compute a lower bound on ε̃ and to this end start with the upper bound on ∆̃m using the
same arguments as in Eq. (147) in combination with Eq. (255).

∆̃m ≥ min
j,l<j

((
mT
xmx +

∥∥∥ξ̃ − mx

∥∥∥M) − (
mT
xxj −

∥∥∥ξ̃ − mx

∥∥∥M)) (256)

= 2
∥∥∥ξ̃ − mx

∥∥∥M + min
j,l<j

(
mT
xmx − mT

xxj
)

= ∆m + 2
∥∥∥ξ̃ − mx

∥∥∥M
≥ ∆m + 2 ‖ξ − mx‖M .

where we used
∥∥∥ξ̃ −mx

∥∥∥ = λ‖ξ −mx‖ 6 ‖ξ −mx‖. We obtain the lower bound on ε̃:

ε̃ ≥ (N − l) exp

(
− β

(
∆m +

2 M

β mmax

))
, (257)

where we used that in the sphere Si holds:

‖ξ − mx‖ 6
1

β mmax
, (258)

therefore

2 ‖ξ − mx‖M 6
2 M

β mmax
. (259)
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From Lemma 8 we have∥∥∥J(ξ̃)
∥∥∥

2
6 β

(
m2

max + ε̃ 2 (2 − ε̃) M2
)

(260)

= β
(
m2

max + ε̃4 M2 − 2 ε̃2 M2
)

6 β

(
m2

max + (N − l) exp

(
− β

(
∆m −

2 M

β mmax

))
4 M2 −

2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

)
.

The bound Eq. (260) holds for the mean Jm, too, since it averages over J(ξ̃):

‖Jm‖2 6 β

(
m2

max + (N − l) exp

(
− β

(
∆m −

2 M

β mmax

))
4 M2 − (261)

2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

)
.

The assumption of the lemma is

∆m ≥
2 M

β mmax
− 1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)
, (262)

Therefore we have

∆m −
2 M

β mmax
≥ − 1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)
. (263)

Therefore the spectral norm ‖Jm‖2 can be bounded by:

‖Jm‖2 6 (264)

β

(
m2

max + (N − l) exp

(
− β

(
− 1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)))
4 M2 − 2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

)
= β

(
m2

max + (N − l) exp

(
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

))
4 M2 − 2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

)
= β

(
m2

max + (N − l) 1 − β m2
max

2 β (N − l) M max{mmax , 2 M}
4 M2 −

2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

)
= βm2

max +
1 − β m2

max

max{mmax , 2 M}
2 M −

β 2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

6 βm2
max + 1 − β m2

max − β 2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2

= 1 − β 2 (N − l)2 exp

(
− 2 β

(
∆m +

2 M

β mmax

))
M2 < 1 .

For the last but one inequality we used 2M 6 max{mmax, 2M}.
Therefore f is a contraction mapping in Sm.
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Banach Fixed Point Theorem. Now we have all ingredients to apply Banach fixed point theorem.
Lemma 12. Assume that

A1:

∆m ≥
2 M

β mmax
− 1

β
ln

(
1 − β m2

max

2 β (N − l) M max{mmax , 2 M}

)
, (265)

and
A2:

β m2
max 6 1 , (266)

then f has a fixed point in Sm.

Proof. We use Banach fixed point theorem: Lemma 10 says that f maps from the compact set Sm
into the same compact set Sm. Lemma 11 says that f is a contraction mapping in Sm.

Contraction Mapping with a Fixed Point We assume that the first l patterns are much more
probable (and similar to one another) than the other patterns. Therefore we define:

M := max
i
‖xi‖ , (267)

γ =

N∑
i=l+1

pi 6 ε , (268)

1− γ =

l∑
i=1

pi ≥ 1 − ε , (269)

p̃i :=
pi

1− γ
6 pi/(1− ε) , (270)

l∑
i=1

p̃i = 1 , (271)

mx =
1

l

l∑
i=1

xi , (272)

mmax = max
16i6l

‖xi − mx‖ . (273)

M is an upper bound on the Euclidean norm of the patterns, which are vectors. ε is an upper bound
on the probability γ of not choosing one of the first l patterns, while 1 − ε is a lower bound the
probability (1 − γ) of choosing one of the first l patterns. mx is the arithmetic mean (the center)
of the first l patterns. mmax is the maximal distance of the patterns to the center mx . p̃ is the
probability p normalized for the first l patterns.
The variance of the first l patterns is

Varp̃[x1:l] =

l∑
i=1

p̃i xi x
T
i −

(
l∑
i=1

p̃i xi

) (
l∑
i=1

p̃i xi

)T
(274)

=

l∑
i=1

p̃i

(
xi −

l∑
i=1

p̃ixi

) (
xi −

l∑
i=1

p̃ixi

)T
.

We have shown that a fixed point exists. We want to know how fast the iteration converges to the
fixed point. Let m∗x be the fixed point of the iteration f in the sphere Sm. Using the mean value
theorem, we have with Jm =

∫ 1

0
J(λξ + (1− λ)m∗x) dλ:

‖f(ξ) − m∗x‖ = ‖f(ξ) − f(m∗x)‖ 6 ‖Jm‖2 ‖ξ − m∗x‖ (275)

According to Lemma 8 the following bounds on the norm ‖J‖2 of the Jacobian of the fixed point
iteration hold. The γ-bound for ‖J‖2 is

‖J‖2 6 β
(
(1− γ) m2

max + γ 2 (2 − γ) M2
)
, (276)
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while the ε-bound for ‖J‖2 is:

‖J‖2 6 β
(
m2

max + ε 2 (2 − ε) M2
)
. (277)

From the last condition we require for a contraction mapping:

β m2
max < 1 . (278)

We want to see how large ε is. The separation of centermx from dataX = (xl+1, . . . ,xN ) is

∆m = min
j,l<j

(
mT
xmx − mT

xxj
)

= mT
xmx − max

j,l<j
mT
xxj . (279)

We need the separation ∆̃m of x̃ = λξ + (1− λ)m∗x from the data.

∆̃m = min
j,l<j

(
x̃Tmx − x̃Txj

)
. (280)

We compute a lower bound on ∆̃m. Using the Cauchy-Schwarz inequality, we obtain for 1 6 j 6 N :∣∣x̃Txj − mT
xxj

∣∣ 6 ‖x̃ − mx‖ ‖xj‖ 6 ‖x̃ − mx‖M . (281)

We have the lower bound

∆̃m ≥ min
j,l<j

((
mT
xmx − ‖x̃ − mx‖M

)
−
(
mT
xxj + ‖x̃ − mx‖M

))
(282)

= − 2 ‖x̃ − mx‖M + min
j,l<j

(
mT
xmx − mT

xxj
)

= ∆m − 2 ‖x̃ − mx‖M .

Since

‖x̃ − mx‖ = ‖λξ + (1− λ)m∗x − mx‖ (283)
6 λ ‖ξ − mx‖ + (1− λ) ‖m∗x − mx‖
6 max{‖ξ − mx‖, ‖m∗x − mx‖} ,

we have

∆̃m ≥ ∆m − 2 max{‖ξ − mx‖, ‖m∗x − mx‖}M . (284)

ε = (N − l) exp(− β (∆m − 2 max{‖ξ − mx‖, ‖m∗x − mx‖}M)) . (285)

B2.5 Properties of Fixed Points Near Stored Pattern
In Subsection B2.4.3 many stable states that are fixed points near the stored patterns are considered.
We now consider this case. In the fist subsection we investigate the storage capacity if all patterns are
sufficiently separated so that metastable states do not appear. In the next subsection we look into the
convergence speed and error when retrieving the stored patterns. For metastable states we can do the
same analyses if each metastable state is treated as one state like one pattern.
We see a trade-off that is known from classical Hopfield networks and for modern Hopfield networks.
Small separation ∆i of the pattern xi from the other patterns gives high storage capacity. However
the convergence speed is lower and the retrieval error higher. In contrast, large separation ∆i of the
pattern xi from the other pattern gives exponentially fast convergence (one update is sufficient) and
exponentially low retrieval error.

B2.5.1 Exponentially Many Patterns can be Stored
From Subsection B2.4.3 need some definitions. We assume to have N patterns, the separation of
pattern xi from the other patterns {x1, . . . ,xi−1,xi+1, . . . ,xN} is ∆i, defined as

∆i = min
j,j 6=i

(
xTi xi − xTi xj

)
= xTi xi − max

j,j 6=i
xTi xj . (286)

The pattern is separated from the other data if 0 < ∆i. The separation ∆i can also be expressed as

∆i = min
j,j 6=i

1

2

(
‖xi‖2 − ‖xj‖2 + ‖xi − xj‖2

)
(287)

=
1

2
‖xi‖2 −

1

2
max
j,j 6=i

(
‖xj‖2 − ‖xi − xj‖2

)
.
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For ‖xi‖ = ‖xj‖ we have ∆i = 1/2 minj,j 6=i ‖xi − xj‖2. The sphere Si with center xi is defined
as

Si =

{
ξ | ‖ξ − xi‖ 6

1

β N M

}
. (288)

The maximal length of a pattern is M = maxi ‖xi‖.
We next define what we mean with storing and retrieving a pattern.
Definition B4 (Pattern Stored and Retrieved). We assume that around every pattern xi a sphere Si is
given. We say xi is stored if there is a single fixed point x∗i ∈ Si to which all points ξ ∈ Si converge,
and Si ∩ Sj = ∅ for i 6= j. We say xi is retrieved if iteration (update rule) Eq. (81) converged to the
single fixed point x∗i ∈ Si. The retrieval error is ‖xi − x∗i ‖.
For a query ξ ∈ Si to converge to a fixed point x∗i ∈ Si we required for the application of Banach
fixed point theorem and for ensuring a contraction mapping the following inequality:

∆i ≥
2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
. (289)

This is the assumption in Lemma 7 to ensure a fixed point in sphere Si. Since replacing (N − 1)N
by N2 gives

2

β N
+

1

β
ln
(
2 N2 β M2

)
>

2

β N
+

1

β
ln
(
2 (N − 1) N β M2

)
, (290)

the inequality follows from following master inequality

∆i ≥
2

β N
+

1

β
ln
(
2 N2 β M2

)
, (291)

If we assume that Si∩Sj 6= ∅with i 6= j, then the triangle inequality with a point from the intersection
gives

‖xi − xj‖ 6
2

β N M
. (292)

Therefore we have using the Cauchy-Schwarz inequality:

∆i 6 xTi (xi − xj) 6 ‖xi‖ ‖xi − xj‖ 6M
2

β N M
=

2

β N
. (293)

The last inequality is a contraction to Eq. (291) if we assume that
1 < 2 (N − 1) N β M2 . (294)

With this assumption, the spheres Si and Sj do not intersect. Therefore each xi has its separate fixed
point in Si. We define

∆min = min
16i6N

∆i (295)

to obtain the master inequality

∆min ≥
2

β N
+

1

β
ln
(
2 N2 β M2

)
. (296)

Patterns on a sphere. For simplicity and in accordance with the results of the classical Hopfield
network, we assume all patterns being on a sphere with radius M :

∀i : ‖xi‖ = M . (297)
Under assumption Eq. (294) we have only to show that the master inequality Eq. (296) is fulfilled for
each xi to have a separate fixed point near each xi.
We defined αij as the angle between xi and xj . The minimal angle αmin between two data points is

αmin = min
16i<j6N

αij . (298)

On the sphere with radius M we have
∆min = min

16i<j6N
M2(1 − cos(αij)) = M2(1 − cos(αmin)) , (299)

therefore it is sufficient to show the master inequality on the sphere:

M2(1 − cos(αmin)) ≥ 2

β N
+

1

β
ln
(
2 N2 β M2

)
. (300)

Under assumption Eq. (294) we have only to show that the master inequality Eq. (296) is fulfilled
for ∆min. We consider patterns on the sphere, therefore the master inequality Eq. (296) becomes
Eq. (300). First we show results when pattern positions on the sphere are constructed and ∆min is
ensured. Then we move on to random patterns on a sphere, where ∆min becomes a random variable.
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Storage Capacity for Patterns Placed on the Sphere. Next theorem says how many patterns we
can stored (fixed point with attraction basin near pattern) if we are allowed to place them on the
sphere.
Theorem B3 (Storage Capacity (M=2): Placed Patterns). We assume β = 1 and patterns on
the sphere with radius M . If M = 2

√
d− 1 and the dimension d of the space is d ≥ 4 or if

M = 1.7
√
d− 1 and the dimension d of the space is d ≥ 50, then the number of patterns N that can

be stored (fixed point with attraction basin near pattern) is at least

N = 22(d−1) . (301)

Proof. For random patterns on the sphere, we have to show that the master inequality Eq. (300)
holds:

M2(1 − cos(αmin)) ≥ 2

β N
+

1

β
ln
(
2 N2 β M2

)
. (302)

We now place the patterns equidistant on the sphere where the pattern are separated by an angle αmin:

∀i : min
j,j 6=i

αij = αmin , (303)

In a d-dimensional space we can place

N =

(
2π

αmin

)d−1

(304)

points on the sphere. In a spherical coordinate system a pattern differs from its most closest patterns
by an angle αmin and there are d− 1 angles. Solving for αmin gives

αmin =
2π

N1/(d−1)
. (305)

The number of patterns that can be stored is determined by the largest N that fulfils

M2

(
1 − cos

(
2π

N1/(d−1)

))
≥ 2

β N
+

1

β
ln
(
2 N2 β M2

)
. (306)

We set N = 22(d−1) and obtain for Eq. (306):

M2
(

1 − cos
(π

2

))
≥ 2

β 23(d−1)
+

1

β
ln
(
2 β M2

)
+

1

β
4 (d− 1) ln 2 . (307)

This inequality is equivalent to

β M2 ≥ 1

22(d−1)−1
+ ln

(
2 β M2

)
+ 4 (d− 1) ln 2 . (308)

The last inequality can be fulfilled with M = K
√
d− 1 and proper K. For β = 1, d = 4 and K = 2

the inequality is fulfilled. The left hand side minus the right hand side is 4(d− 1)− 1/22(d−1)−1 −
ln(8(d− 1))− 4(d− 1) ln 2. Its derivative with respect to d is strict positive. Therefore the inequality
holds for d ≥ 4.
For β = 1, d = 50 and K = 1.7 the inequality is fulfilled. The left hand side minus the right hand
side is 2.89(d− 1)− 1/22(d−1)−1 − ln(5.78(d− 1))− 4(d− 1) ln 2. Its derivative with respect to d
is strict positive. Therefore the inequality holds for d ≥ 50.

If we want to store considerably more patterns, then we have to increase the length of the vectors or
the dimension of the space where the vectors live. The next theorem shows results for the number of
patterns N with N = 23(d−1).
Theorem B4 (Storage Capacity (M=5): Placed Patterns). We assume β = 1 and patterns on
the sphere with radius M . If M = 5

√
d− 1 and the dimension d of the space is d ≥ 3 or if

M = 4
√
d− 1 and the dimension d of the space is d ≥ 13, then the number of patterns N that can

be stored (fixed point with attraction basin near pattern) is at least

N = 23(d−1) . (309)
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Proof. We set N = 23(d−1) and obtain for Eq. (306):

M2
(

1 − cos
(π

4

))
≥ 2

β 23(d−1)
+

1

β
ln
(
2 β M2

)
+

1

β
6 (d− 1) ln 2 . (310)

This inequality is equivalent to

β M2

(
1 −

√
2

2

)
≥ 1

23(d−1)−1
+ ln

(
2 β M2

)
+ 6 (d− 1) ln 2 . (311)

The last inequality can be fulfilled with M = K
√
d− 1 and proper K. For β = 1, d = 13 and

K = 4 the inequality is fulfilled. The left hand side minus the right hand side is 4.686292(d −
1)− 1/23(d−1)−1 − ln(32(d− 1))− 6(d− 1) ln 2. Its derivative with respect to d is strict positive.
Therefore the inequality holds for d ≥ 13.
For β = 1, d = 3 and K = 5 the inequality is fulfilled. The left hand side minus the right hand side
is 7.32233(d− 1)− 1/23(d−1)−1 − ln(50(d− 1))− 6(d− 1) ln 2. Its derivative with respect to d is
strict positive. Therefore the inequality holds for d ≥ 3.

Storage Capacity for Random Patterns on the Sphere. Next we investigate random points on the
sphere. Under assumption Eq. (294) we have to show that the master inequality Eq. (300) is fulfilled
for αmin, where now αmin is now a random variable. We use results on the distribution of the minimal
angles between random patterns on a sphere according to [12] and [10]. Theorem 2 in [12] gives the
distribution of the minimal angle for random patterns on the unit sphere. Proposition 3.5 in [10] gives
a lower bound on the probability of the minimal angle being larger than a given constant. We require
this proposition to derive the probability of pattern having a minimal angle αmin. Proposition 3.6
in[10] gives the expectation of the minimal angle.
We will prove high probability bounds for the expected storage capacity. We need the following
tail-bound on αmin (the minimal angle of random patterns on a sphere):
Lemma 13 ([10]). Let d be the dimension of the pattern space,

κd :=
1

d
√
π

Γ((d+ 1)/2)

Γ(d/2)
. (312)

and δ > 0 such that κd−1

2 δ(d−1) 6 1. Then

Pr(N
2

d−1αmin ≥ δ) ≥ 1 − κd−1

2
δd−1 . (313)

Proof. The statement of the lemma is Eq. (3-6) from Proposition 3.5 in [10].

Next we derive upper and lower bounds on the constant κd since we require them later for proving
storage capacity bounds.
Lemma 14. For κd defined in Eq. (312) we have the following bounds for every d ≥ 1:

1

exp(1/6)
√
e π d

6 κd 6
exp(1/12)√

2 π d
< 1 . (314)

Proof. We use for x > 0 the following bound related to Stirling’s approximation formula for the
gamma function, c.f. [35, (5.6.1)]:

1 < Γ(x) (2 π)−
1
2x

1
2 − x exp(x) < exp

(
1

12 x

)
. (315)

Using Stirling’s formula Eq. (315), we upper bound κd:

κd =
1

d
√
π

Γ((d+ 1)/2)

Γ(d/2)
<

1

d
√
π

exp
(

1
6(d+1)

)
exp

(
− d+1

2

) (
d+1

2

) d
2

exp
(
− d

2

) (
d
2

) d
2 −

1
2

(316)

=
1

d
√
π e

exp

(
1

6(d+ 1)

) (
1 +

1

d

) d
2

√
d

2
6

exp
(

1
12

)
√

2 π
√
d
.
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For the first inequality, we applied Eq. (315), while for the second we used (1 + 1
d )d < e for d ≥ 1.

Next, we lower bound κd by again applying Stirling’s formula Eq. (315):

κd =
1

d
√
π

Γ((d+ 1)/2)

Γ(d/2)
>

1

d
√
π

exp
(
− d+1

2

) (
d+1

2

) d
2

exp
(

1
6 d

)
exp

(
−d2
) (

d
2

) d
2−

1
2

(317)

=
1

d
√
π e exp

(
1

6 d

) (1 +
1

d

) d
2

√
d

2
≥ 1

exp
(

1
6

) √
e π d

,

where the last inequality holds because of monotonicity of (1 + 1
d )d and using the fact that for d = 1

it takes on the value 2.

We require a bound on cos to bound the master inequality Eq. (300).
Lemma 15. For 0 6 x 6 π the function cos can be upper bounded by:

cos(x) = 1 − x2

5
. (318)

Proof. We use the infinite product representation of cos from [35, (4.22.2)]:

cos(x) =

∞∏
n=1

(
1− 4 x2

(2n− 1)2 π2

)
. (319)

It holds

1 − 4 x2

(2n− 1)2 π2
6 1 (320)

for |x| 6 π and n ≥ 2, we can get the following upper bound on Eq. (319):

cos(x) 6
2∏

n=1

(
1− 4 x2

(2n− 1)2π2

)
=

(
1 − 4 x2

π2

) (
1 − 4 x2

9 π2

)
(321)

= 1 − 40 x2

9 π2
+

16 x4

9 π4
6 1 − 40 x2

9 π2
+

16 x2

9 π2

= 1 − 24 x2

9 π2
6 1 − x2

5
.

The last but one inequality uses x 6 π, which implies x/π 6 1. Thus Eq. (318) is proven.

Exponential storage capacity: the base c as a function of the parameter β, the radius of the
sphere M , the probability p, and the dimension d of the space. We express the number N of
stored patterns by an exponential function with base c > 1 and an exponent linear in d. We derive
constraints on he base c as a function of β, the radius of the sphere M , the probability p that all
patterns can be stored, and the dimension d of the space. With β > 0, K > 0, and d ≥ 2 (to ensure a
sphere), the following theorem gives our main result.
Theorem B5 (Storage Capacity (Main): Random Patterns). We assume a failure probability 0 <
p 6 1 and randomly chosen patterns on the sphere with radius M = K

√
d− 1. We define

a :=
2

d− 1
(1 + ln(2 β K2 p (d− 1))) , b :=

2 K2 β

5
,

c =
b

W0(exp(a + ln(b))
, (322)

where W0 is the upper branch of the Lambert W function and ensure

c ≥
(

2
√
p

) 4
d−1

. (323)

Then with probability 1− p, the number of random patterns that can be stored is

N ≥ √p c
d−1
4 . (324)

Examples are c ≥ 3.1546 for β = 1, K = 3, d = 20 and p = 0.001 (a + ln(b) > 1.27) and
c ≥ 1.3718 for β = 1 K = 1, d = 75, and p = 0.001 (a+ ln(b) < −0.94).
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Proof. We consider the probability that the master inequality Eq. (300) is fulfilled:

Pr

(
M2(1 − cos(αmin))) ≥ 2

β N
+

1

β
ln
(
2 N2 β M2

))
≥ 1 − p . (325)

Using Eq. (318), we have:

1 − cos(αmin) ≥ 1

5
α2

min . (326)

Therefore with probability 1− p the storage capacity is largest N that fulfills

Pr

(
M2α

2
min

5
≥ 2

β N
+

1

β
ln
(
2 N2 β M2

))
≥ 1 − p . (327)

This inequality is equivalent to

Pr

(
N

2
d−1 αmin ≥

√
5 N

2
d−1

M

(
2

β N
+

1

β
ln
(
2 N2 β M2

)) 1
2

)
≥ 1 − p . (328)

We use Eq. (313) to obtain:

Pr

(
N

2
d−1 αmin ≥

√
5 N

2
d−1

M

(
2

β N
+

1

β
ln
(
2 N2 β M2

)) 1
2

)
(329)

≥ 1 − κd−1

2
5

d−1
2 N2 M−(d−1)

(
2

β N
+

1

β
ln
(
2 N2 β M2

)) d−1
2

.

For Eq. (328) to be fulfilled, it is sufficient that

κd−1

2
5

d−1
2 N2 M−(d−1)

(
2

β N
+

1

β
ln
(
2 N2 βM2

)) d−1
2

− p 6 0 . (330)

If we insert the assumption Eq. (323) of the theorem into Eq. (324), then we obtain N ≥ 2. We now
apply the upper bound κd−1/2 < κd−1 < 1 from Eq. (314) and the upper bound 2

βN 6
1
β from

N ≥ 2 to inequality Eq. (330). In the resulting inequality we insert N =
√
pc

d−1
4 to check whether

it is fulfilled with this special value of N and obtain:

5
d−1
2 p c

d−1
2 M−(d−1)

(
1

β
+

1

β
ln
(

2 p c
d−1
2 βM2

)) d−1
2

6 p . (331)

Dividing by p, inserting M = K
√
d− 1, and exponentiation of the left and right side by 2

d−1 gives:

5 c

K2 (d− 1)

(
1

β
+

1

β
ln
(

2 β c
d−1
2 p K2 (d− 1)

))
− 1 6 0 . (332)

After some algebraic manipulation, this inequality can be written as
a c + c ln(c) − b 6 0 , (333)

where we used

a :=
2

d− 1
(1 + ln(2 β K2 p (d− 1))) , b :=

2 K2 β

5
.

We determine the value ĉ of c which makes the inequality Eq. (333) equal to zero. We solve
a ĉ + ĉ ln(ĉ) − b = 0 (334)

for ĉ:
a ĉ + ĉ ln(ĉ) − b = 0 (335)

⇔ a + ln(ĉ) = b/ĉ

⇔ a + ln(b) + ln(ĉ/b) = b/ĉ

⇔ b/ĉ + ln(b/ĉ) = a + ln(b)

⇔ b/ĉ exp(b/ĉ) = exp(a + ln(b))

⇔ b/ĉ = W0(exp(a + ln(b)))

⇔ ĉ =
b

W0(exp(a + ln(b))
,
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where W0 is the upper branch of the Lambert W function (see Def. B10). Hence, the solution is

ĉ =
b

W0(exp(a + ln(b))
. (336)

The solution exist, since the Lambert function W0(x) is defined for −1/e < x and we have 0 <
exp(a+ ln(b).
Since ĉ fulfills inequality Eq. (333) and therefore also Eq. (331), we have a lower bound on the
storage capacity N :

N ≥ √p ĉ
d−1
4 . (337)

Next we aim at a lower bound on c which does not use the Lambert W function. Therefore we upper
bound W0(exp(a+ ln(b)) to obtain a lower bound on c, therefore, also a lower bound on the storage
capacity N . The lower bound is given in the next corollary.

Corollary 1. We assume a failure probability 0 < p 6 1 and randomly chosen patterns on the sphere
with radius M = K

√
d− 1. We define

a :=
2

d− 1
(1 + ln(2 β K2 p (d− 1))) , b :=

2 K2 β

5
.

Using the omega constant Ω ≈ 0.56714329 we set

c =

b ln
(

Ω exp(a + ln(b)) + 1
Ω (1 + Ω)

)−1

for a + ln(b) 6 0 ,

b (a + ln(b))−
a + ln(b)

a + ln(b) + 1 for a + ln(b) > 0
(338)

and ensure

c ≥
(

2
√
p

) 4
d−1

. (339)

Then with probability 1− p, the number of random patterns that can be stored is

N ≥ √p c
d−1
4 . (340)

Examples are c ≥ 3.1444 for β = 1, K = 3, d = 20 and p = 0.001 (a + ln(b) > 1.27) and
c ≥ 1.2585 for β = 1 K = 1, d = 75, and p = 0.001 (a+ ln(b) < −0.94).

Proof. We lower bound the c defined in Theorem B5. According to [26, Theorem 2.3] we have for
any real u and y > 1

e :

W0(exp(u)) 6 ln

(
exp(u) + y

1 + ln(y)

)
. (341)

To upper bound W0(x) for x ∈ [0, 1], we set

y = 1/W0(1) = 1/Ω = exp Ω = − 1/ ln Ω ≈ 1.76322 , (342)

where the Omega constant Ω is

Ω =

(∫ ∞
−∞

dt

(et − t)
2

+ π2

)−1

− 1 ≈ 0.56714329 . (343)

See for these equations the special values of the Lambert W function in Lemma 31. We have the
upper bound on W0:

W0(exp(u)) 6 ln

(
exp(u) + 1/Ω

1 + ln(1/Ω)

)
= ln

(
Ω exp(u) + 1

Ω(1 + Ω)

)
. (344)
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At the right hand side of interval [0, 1], we have u = 0 and exp(u) = 1 and get:

ln

(
Ω 1 + 1

Ω(1 + Ω)

)
= ln

(
1

Ω

)
= − ln (Ω) = Ω = W0(1) . (345)

Therefore the bound is tight at the right hand side of of interval [0, 1], that is for exp(u) = 1, i.e. u = 0.
We have derived an bound for W0(exp(u)) with exp(u) ∈ [0, 1] or, equivalently, u ∈ [−∞, 0]. We
obtain from [26, Corollary 2.6] the following bound on W0(exp(u)) for 1 < exp(u), or, equivalently
0 < u:

W0(exp(u)) 6 u
u

1 + u . (346)

A lower bound on ĉ is obtained via the upper bounds Eq. (346) and Eq. (344) on W0 as W0 > 0. We
set u = a+ ln(b) and obtain

W0(exp(a + ln(b))) 6

ln
(

Ω exp(a + ln(b)) + 1
Ω (1 + Ω)

)−1

for a + ln(b) 6 0 ,

(a + ln(b))−
a + ln(b)

a + ln(b) + 1 for a + ln(b) > 0
(347)

We insert this bound into Eq. (336), the solution for ĉ, to obtain the statement of the theorem.

Exponential storage capacity: the dimension d of the space as a function of the parameter β,
the radius of the sphere M , and the probability p. We express the number N of stored patterns
by an exponential function with base c > 1 and an exponent linear in d. We derive constraints on
the dimension d of the space as a function of β, the radius of the sphere M , the probability p that all
patterns can be stored, and the base of the exponential storage capacity. The following theorem gives
this result.
Theorem B6 (Storage Capacity (d computed): Random Patterns). We assume a failure probability
0 < p 6 1 and randomly chosen patterns on the sphere with radius M = K

√
d− 1. We define

a :=
ln(c)

2
− K2 β

5 c
, b := 1 + ln

(
2 p β K2

)
,

d =

{
1 + 1

a W (a exp(−b)) for a 6= 0 ,

1 + exp(−b) for a = 0 ,
(348)

where W is the Lambert W function. For 0 < a the function W is the upper branch W0 and for
a < 0 we use the lower branch W−1. If we ensure that

c ≥
(

2
√
p

) 4
d−1

, − 1

e
6 a exp(−b) , (349)

then with probability 1− p, the number of random patterns that can be stored is

N ≥ √p c
d−1
4 . (350)

Proof. We consider the probability that the master inequality Eq. (300) is fulfilled:

Pr

(
M2(1 − cos(αmin))) ≥ 2

β N
+

1

β
ln
(
2 N2 β M2

))
≥ 1 − p . (351)

Using Eq. (318), we have:

1 − cos(αmin) ≥ 1

5
α2

min . (352)

Therefore with probability 1− p the storage capacity is largest N that fulfills

Pr

(
M2α

2
min

5
≥ 2

β N
+

1

β
ln
(
2 N2 β M2

))
≥ 1 − p . (353)

This inequality is equivalent to

Pr

(
N

2
d−1 αmin ≥

√
5 N

2
d−1

M

(
2

β N
+

1

β
ln
(
2 N2 β M2

)) 1
2

)
≥ 1 − p . (354)
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We use Eq. (313) to obtain:

Pr

(
N

2
d−1 αmin ≥

√
5 N

2
d−1

M

(
2

β N
+

1

β
ln
(
2 N2 β M2

)) 1
2

)
(355)

≥ 1 − κd−1

2
5

d−1
2 N2 M−(d−1)

(
2

β N
+

1

β
ln
(
2 N2 β M2

)) d−1
2

.

For Eq. (354) to be fulfilled, it is sufficient that

κd−1

2
5

d−1
2 N2 M−(d−1)

(
2

β N
+

1

β
ln
(
2 N2 βM2

)) d−1
2

− p 6 0 . (356)

If we insert the assumption Eq. (349) of the theorem into Eq. (350), then we obtain N ≥ 2. We now
apply the upper bound κd−1/2 < κd−1 < 1 from Eq. (314) and the upper bound 2

βN 6
1
β from

N ≥ 2 to inequality Eq. (356). In the resulting inequality we insert N =
√
pc

d−1
4 to check whether

it is fulfilled with this special value of N and obtain:

5
d−1
2 p c

d−1
2 M−(d−1)

(
1

β
+

1

β
ln
(

2 p c
d−1
2 βM2

)) d−1
2

6 p . (357)

Dividing by p, inserting M = K
√
d− 1, and exponentiation of the left and right side by 2

d−1 gives:

5 c

K2 (d− 1)

(
1

β
+

1

β
ln
(

2 β c
d−1
2 p K2 (d− 1)

))
− 1 6 0 . (358)

This inequality Eq. (358) can be reformulated as:

1 + ln
(

2 p β c
d−1
2 K2 (d− 1)

)
− (d− 1) K2 β

5 c
6 0 . (359)

Using

a :=
ln(c)

2
− K2 β

5 c
, b := 1 + ln

(
2 p β K2

)
,

(360)

we write inequality Eq. (359) as

ln(d− 1) + a (d− 1) + b 6 0 . (361)

We determine the value d̂ of d which makes the inequality Eq. (361) equal to zero. We solve

ln(d̂− 1) + a (d̂− 1) + b = 0 . (362)

for d̂
For a 6= 0 we have

ln(d̂− 1) + a (d̂− 1) + b = 0 (363)

⇔ a (d̂− 1) + ln(d̂− 1) = − b
⇔ (d̂− 1) exp(a (d̂− 1)) = exp(−b)
⇔ a (d̂− 1) exp(a (d̂− 1)) = a exp(−b)
⇔ a (d̂− 1) = W (a exp(−b))

⇔ d̂ − 1 =
1

a
W (a exp(−b))

⇔ d̂ = 1 +
1

a
W (a exp(−b)) ,

where W is the Lambert W function (see Def. B10). For a > 0 we have to use the upper branch
W0 of the Lambert W function and for a < 0 we use the lower branch W−1 of the Lambert W
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function. We have to ensure that −1/e 6 a exp(−b) for a solution to exist. For a = 0 we have
d̂ = 1 + exp(−b).
Hence, the solution is

d̂ = 1 +
1

a
W (a exp(−b)) . (364)

Since d̂ fulfills inequality Eq. (358) and therefore also Eq. (357), we have a lower bound on the
storage capacity N :

N ≥ √p ĉ
d−1
4 . (365)

Corollary 2. We assume a failure probability 0 < p 6 1 and randomly chosen patterns on the sphere
with radius M = K

√
d− 1. We define

a :=
ln(c)

2
− K2 β

5 c
, b := 1 + ln

(
2 p β K2

)
,

d = 1 +
1

a
(− ln(−a) + b) , (366)

and ensure

c ≥
(

2
√
p

) 4
d−1

, − 1

e
6 a exp(−b) , a < 0 , (367)

then with probability 1− p, the number of random patterns that can be stored is

N ≥ √p c
d−1
4 . (368)

Setting β = 1, K = 3, c = 2 and p = 0.001 yields d < 24.

Proof. For a < 0 the Eq. (348) from Theorem (B6) can be written as

d = 1 +
W−1(a exp(−b))

a
= 1 +

W−1(− exp (−(− ln(−a) + b− 1)− 1))

a
(369)

From [2, Theorem 3.1] we get the following bound on W−1:

− e

e− 1
(u+ 1) < W−1(− exp(−u− 1)) < − (u+ 1) . (370)

for u > 0. We apply Eq. (370) to Eq. (369) with u = − ln(−a) + b− 1.
Since a < 0 we get

d > 1 +
− ln(−a) + b

a
. (371)

Storage capacity for the expected minimal separation instead of the probability that all pat-
terns can be stored. In contrast to the previous paragraph, we want to argue about the storage
capacity for the expected minimal separation. Therefore we will use the following bound on the
expectation of αmin (minimal angle), which gives also a bound on the expected of ∆min (minimal
separation):
Lemma 16 (Proposition 3.6 in [10]). We have the following lower bound on the expectation of αmin:

E
[
N

2
d−1 αmin

]
≥

(
Γ(d2 )

2(d− 1)
√
π Γ(d−1

2 )

)− 1
d−1

Γ(1 +
1

d− 1
)

d−
1

d−1

Γ(2 + 1
d−1 )

:= Cd−1. (372)

The bound is valid for all N ≥ 2 and d ≥ 2.

Let us start with some preliminary estimates. First of all we need some asymptotics for the constant
Cd−1 in Eq. (372):
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Lemma 17. The following estimate holds for d ≥ 2:

Cd ≥ 1 − ln(d+ 1)

d
. (373)

Proof. The recursion formula for the Gamma function is [35, (5.5.1)]:

Γ(x+ 1) = x Γ(x) . (374)

We use Eq. (314) and the fact that d
1
d ≥ 1 for d ≥ 1 to obtain:

Cd ≥ (2
√
d)

1
d Γ(1 +

1

d
)

(d+ 1)−
1
d

Γ(2 + 1
d )

= (2
√
d)

1
d

(d+ 1)−
1
d

1− 1
d

> (d+ 1)
1
d (375)

= exp(−1

d
ln(d+ 1)) ≥ 1 − 1

d
ln(d+ 1) ,

where in the last step we used the elementary inequality exp(x) ≥ 1 + x, which follows from the
mean value theorem.

The next theorem states the number of stored patterns for the expected minimal separation.
Theorem B7 (Storage Capacity (expected separation): Random Patterns). We assume patterns on
the sphere with radius M = K

√
d− 1 that are randomly chosen. Then for all values c ≥ 1 for which

1

5
(d− 1) K2 c−1(1 − ln(d− 1)

(d− 1)
)2 ≥ 2

β c
d−1
4

+
1

β
ln
(

2 c
d−1
2 β (d− 1) K2

)
(376)

holds, the number of stored patterns for the expected minimal separation is at least

N = c
d−1
4 . (377)

The inequality Eq. (376) is e.g. fulfilled with β = 1, K = 3, c = 2 and d ≥ 17.

Proof. Instead of considering the probability that the master inequality Eq. (300) is fulfilled we now
consider whether this inequality is fulfilled for the expected minimal distance. We consider the
expectation of the minimal distance ∆min:

E[∆min] = E[M2(1 − cos(αmin)))] = M2(1 − E[cos(αmin))]) . (378)

For this expectation, the master inequality Eq. (300) becomes

M2(1 − E[cos(αmin))]) ≥ 2

β N
+

1

β
ln
(
2 N2 β M2

)
. (379)

We want to find the largest N that fulfills this inequality.
We apply Eq. (318) and Jensen’s inequality to deduce the following lower bound:

1 − E[cos(αmin)] ≥ 1

5
E
[
α2

min

]
≥ 1

5
E[αmin]2 . (380)

Now we use Eq. (372) and Eq. (373) to arrive at

E[αmin]2 ≥ N−
4

d−1 E[N
2

d−1 αmin]2 ≥ N−
4

d−1 C2
d−1 ≥ N−

4
d−1 (1− ln(d− 1)

(d− 1)
)2 , (381)

for sufficiently large d. Thus in order to fulfill Eq. (379), it is enough to find values that satisfy
Eq. (376).

B2.5.2 Convergence after One Update and Small Retrieval Error
Theorem B8 (Convergence After One Update). With query ξ, after one update the distance of the
new point f(ξ) to the fixed point x∗i is exponentially small in the separation ∆i. The precise bounds
are:

‖f(ξ) − x∗i ‖ 6 ‖Jm‖2 ‖ξ − x∗i ‖ , (382)

‖Jm‖2 6 2 β N M2 (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) .
(383)

43

http://dlmf.nist.gov/5.5.1


Proof. From Eq. (169) we have
‖Jm‖2 6 2 β N M2 (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) . (384)

After every iteration the mapped point f(ξ) is closer to the fixed point x∗i than the original point xi:
‖f(ξ) − x∗i ‖ 6 ‖Jm‖2 ‖ξ − x∗i ‖ . (385)

We want to estimate how large ∆i is. For xi we have:
∆i = min

j,j 6=i

(
xTi xi − xTi xj

)
= xTi xi − max

j,j 6=i
xTi xj . (386)

To estimate how large ∆i is, assume vectors x ∈ Rd and y ∈ Rd that have as components standard
normally distributed values. The expected value of the separation of two points with normally
distributed components is

E
[
xTx − xTy

]
=

d∑
j=1

E
[
x2
j

]
+

d∑
j=1

E [xj ]

d∑
j=1

E [yj ] = d . (387)

The variance of the separation of two points with normally distributed components is

Var
[
xTx − xTy

]
= E

[(
xTx − xTy

)2] − d2 (388)

=

d∑
j=1

E
[
x4
j

]
+

d∑
j=1,k=1,k 6=j

E
[
x2
j

]
E
[
x2
k

]
− 2

d∑
j=1

E
[
x3
j

]
E [yj ] −

2

d∑
j=1,k=1,k 6=j

E
[
x2
j

]
E [xk] E [yk] +

d∑
j=1

E
[
x2
j

]
E
[
y2
j

]
+

d∑
j=1,k=1,k 6=j

E [xj ] E [yj ] E [xk] E [yk] − d2

= 3 d + d (d− 1) + d − d2 = 3 d .

The expected value for the separation of two random vectors gives:
‖Jm‖2 6 2 β N M2 (N − 1) exp(− β (d − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) . (389)

For the exponential storage we set M = 2
√
d− 1. We see the Lipschitz constant ‖Jm‖2 decreases

exponentially with the dimension. Therefore ‖f(ξ) − x∗i ‖ is exponentially small after just one
update. Therefore the fixed point is well retrieved after one update.

The retrieval error decreases exponentially with the separation ∆i.
Theorem B9 (Exponentially Small Retrieval Error). The retrieval error ‖xi − x∗i ‖ of pattern xi is
bounded by

‖xi − x∗i ‖ 6 2 (N − 1) exp(− β (∆i − 2 ‖x∗i − xi‖M)) M (390)
and for ‖xi − x∗i ‖ 6 1

2 β M by

‖xi − x∗i ‖ 6 e (N − 1) M exp(− β ∆i) . (391)
Proof. We compute the retrieval error which is just ‖xi − x∗i ‖. From Lemma 4 we have

‖xi − f(ξ)‖ 6 2 ε M , (392)
From Eq. (168) we have

ε = (N − 1) exp(− β (∆i − 2 max{‖ξ − xi‖, ‖x∗i − xi‖}M)) . (393)
We use ξ = x∗i and get

ε = (N − 1) exp(− β (∆i − 2 ‖x∗i − xi‖M)) . (394)
We obtain

‖xi − x∗i ‖ 6 2 (N − 1) exp(− β (∆i − 2 ‖x∗i − xi‖M)) M . (395)
For ‖xi − x∗i ‖ 6 1

2 β M inequality Eq. (395) gives

‖xi − x∗i ‖ 6 e (N − 1) M exp(− β ∆i) . (396)
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B2.6 Learning Associations
B2.6.1 Initialization: Random Matrix Theory
For the initial matrices and scaling, the random matrix theory is of interest. For matrix entries with
variance σ2 we know from the circular law [43] and the Marchenko-Pastur quarter circular law
[31, 50, 8] that 1/(σ2

√
N)X has a singular value density concentrated at values smaller than one.

The maximal singular value of X ∈ RN×n is smax(X) ∝
√
N +

√
n [38]. Furthermore large

singular values have lower density according the quarter circular law. Initialization of mappings to
the space, where the modern Hopfield networks works, can be based on the largest singular value.
Therefore we can estimate the largest possible norm M of the patterns as we used in the theory.

B2.6.2 Directly Learning Associations
In the first setting, x is mapped by Wx to the query space, where the query ξ lives. With and the
largest norm of a pattern

MW = max
i

∥∥W Txi
∥∥ , (397)

the energy function E is now

E = − lse(β,XTW T ξ) +
1

2
ξT ξ + β−1 lnN +

1

2
M2
W (398)

= − β−1 ln

(
N∑
i=1

exp(βxTi W
T ξ)

)
+

1

2
ξT ξ + β−1 lnN +

1

2
M2
W . (399)

The derivative of the energy E with respect to ξ is
∂E

∂ξ
= −WXsoftmax(βXTW T ξ) + ξ = −WXp + ξ , (400)

where we used

p = softmax(βXTW T ξ) . (401)

The gradient update rule gives

ξnew = WXp = ξ − ∂E

∂ξ
. (402)

We consider the query ξ with result y:

y = WXp = WXsoftmax(βXTW T ξ) (403)

Since the retrieved vector y is mapped by a weight matrix V to another vector, we consider the
simplified update rule:

y = Xp = Xsoftmax(βXTW T ξ) (404)

The derivative with respect toW is

∂aTy

∂W
=

∂y

∂W

∂aTy

∂y
=

∂y

∂(W T ξ)

∂(W T ξ)

∂W

∂aTy

∂y
. (405)

∂y

∂(W T ξ)
= β X

(
diag(p)− ppT

)
XT (406)

∂aTy

∂y
= a . (407)

We have the product of the 3-dimensional tensor ∂(WT ξ)
∂W with the vector a which gives a 2-

dimensional tensor, i.e. a matrix:

∂(W T ξ)

∂W

∂aTy

∂y
=

∂(W T ξ)

∂W
a = ξTaI . (408)

∂aTy

∂W
= β X

(
diag(p)− ppT

)
XT (ξTa) . (409)

45



B2.6.3 Learning the Mappings to the Association Space
We consider the patterns x that are mapped to x̃ in the association space Rd by x̃ = WKx. The
query ξ is mapped to ξ̃ in the space Rd by ξ̃ = WQξ, too.
With and the largest norm of a pattern

MW = max
i

∥∥WKxi
∥∥ , (410)

the energy function E with mappingsWK andWQ is

E = − lse(β,XT (WK)TWQξ) +
1

2
ξT (WQ)TWQξ (411)

+ β−1 lnN +
1

2
M2
W

= − β−1 ln

(
N∑
i=1

exp(βxTi (WK)TWQξ)

)
+

1

2
ξT (WQ)TWQξ

+ β−1 lnN +
1

2
M2
W .

In the association space that is

E = − lse(β, X̃T ξ̃) +
1

2
ξ̃T ξ̃ + β−1 lnN +

1

2
x̃Tmaxx̃max (412)

= − β−1 ln

(
N∑
i=1

exp(βx̃Ti ξ̃)

)
+

1

2
ξ̃T ξ̃ + β−1 lnN +

1

2
x̃Tmaxx̃max . (413)

The derivative of the energy E with respect to ξ̃ is

∂E

∂ξ̃
= − X̃softmax(βX̃T ξ̃) + ξ̃ = − X̃p + ξ̃ , (414)

where we used

p = softmax(βX̃T ξ̃) . (415)

The gradient update rule gives

ξ̃new = X̃p = ξ̃ − ∂E

∂ξ̃
. (416)

We consider the query ξ that is mapped to ξ̃ to obtain ξ̃new:

ξ̃new = WQξnew = WKXp = WKXsoftmax(βXT (WK)TWQξ) . (417)

Since the retrieved vector is mapped by a weight matrix V to another vector, we consider the
simplified update rule. The retrieved vector is now y given by

y = Xp = Xsoftmax(βXT (WK)TWQξ) . (418)

The vector y does not live in the association space but in the pattern space of x. OnlyWK would
map it to the association space.
The derivative with respect toWQ is

∂aTy

∂WQ
=

∂y

∂WQ

∂aTy

∂y
=

∂y

∂(WQξ)

∂(WQξ)

∂WQ

∂aTy

∂y
. (419)

∂y

∂(WQξ)
= β X

(
diag(p)− ppT

)
XT (WK)T (420)

∂aTy

∂y
= a . (421)
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We have the product of the 3-dimensional tensor ∂(WQξ)
∂WQ with the vector a which gives a 2-

dimensional tensor, i.e. a matrix:

∂(WQξ)

∂WQ

∂aTy

∂y
=

∂(WQξ)

∂WQ
a = ξTaI . (422)

∂aTy

∂W
= β X

(
diag(p)− ppT

)
XT (WK)T (ξTa) . (423)

The derivative with respect toWK is

∂aTy

∂WK
=

∂y

∂WK

∂aTy

∂y
=

∂y

∂((WK)TWQξ)

∂((WK)TWQξ)

∂WK

∂aTy

∂y
. (424)

∂y

∂((WK)TWQξ)
= β X

(
diag(p)− ppT

)
XT (425)

∂aTy

∂y
= a . (426)

We have the product of the 3-dimensional tensor ∂(Wξ)
∂WK with the vector awhich gives a 2-dimensional

tensor, i.e. a matrix:

∂((WK)TWQξ)

∂WK

∂aTy

∂y
=

∂((WK)TWQξ)

∂WK
a = (WQ)T ξTaI . (427)

∂aTy

∂WK
= β X

(
diag(p)− ppT

)
XT ((WQ)T ξTa) . (428)

B2.7 Sequential Softmax Associative Memory
B2.7.1 Infinite Softmax Associative Memory
We have infinite many patterns x1,x2, . . . that are represented by the infinite matrix

X = (x1,x2, . . . , ) . (429)

The pattern index is now a time index, that is, we observe xt at time t.
The pattern matrix at time t is

Xt = (x1,x2, . . . ,xt) . (430)

The query at time t is ξt.
The energy function at time t is Et

Et = − lse(β,XT
t ξt) +

1

2
ξTt ξt + β−1 lnN +

1

2
M2 (431)

= − β−1 ln

(
T∑
i=1

exp(βxTi ξt)

)
+

1

2
ξTt ξt + β−1 lnN +

1

2
M2 . (432)

The derivative of the energy Et with respect to ξt is

∂Et
∂ξt

= −Xtsoftmax(βXT
t ξt) + ξt = −Xtpt + ξt , (433)

where we used

pt = softmax(βXT
t ξt) . (434)

The fixed point iteration is

ξnew
t = Xtpt = ξt −

∂Et
∂ξt

. (435)
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ξnew
t = Xtpt = Xtsoftmax(βXT

t ξt) . (436)

We can use an infinite pattern matrix with an infinite softmax. The pattern matrix at time t is

Xt = (x1,x2, . . . ,xt,−αξt,−αξt, . . .) , (437)

with the query ξt and α→∞. The energy function at time t is Et

Et = − lse(β,XT
t ξt) +

1

2
ξTt ξt (438)

= − β−1 ln

 t∑
i=1

exp(βxTi ξt) +

bαc∑
i=t+1

exp(−βα‖ξi‖2)

 +
1

2
ξTt ξt . (439)

For α→∞ and ‖ξt‖ ≥ k > 0 this becomes

Et = − lse(β,XT
t ξt) +

1

2
ξTt ξt (440)

= − β−1 ln

(
t∑
i=1

exp(βxTi ξt)

)
+

1

2
ξTt ξt . (441)

B2.7.2 Forgetting Softmax Associative Memory
We have infinite many patterns x1,x2, . . . that are represented by the infinite matrix

X = (x1,x2, . . . , ) . (442)

The pattern index is now a time index, that is, we observe xt at time t.
The pattern matrix at time t is

Xt = (x1,x2, . . . ,xt) . (443)

The query at time t is ξt.
The energy function with forgetting parameter γ at time t is Et

Et = − lse(β,XT
t ξt − γ(t− 1, t− 2, . . . , 0)T ) +

1

2
ξTt ξt + β−1 lnN +

1

2
M2 (444)

= − β−1 ln

(
T∑
i=1

exp(βxTi ξt − γ(t− i))

)
+

1

2
ξTt ξt + β−1 lnN +

1

2
M2 . (445)

The derivative of the energy Et with respect to ξt is

∂Et
∂ξt

= −Xtsoftmax(βXT
t ξt − γ(t− 1, t− 2, . . . , 0)T ) + ξt = −Xtpt + ξt , (446)

where we used

pt = softmax(βXT
t ξt) . (447)

The fixed point iteration is

ξnew
t = Xtpt = ξt −

∂Et
∂ξt

. (448)

ξnew
t = Xtpt = Xtsoftmax(βXT

t ξt) . (449)

B3 Properties of Softmax, Log-Sum-Exponential, Legendre Transform,
Lambert W Function

For β > 0, the softmax is defined as
Definition B5 (Softmax).

p = softmax(βx) (450)

pi = [softmax(βx)]i =
exp(βxi)∑
k exp(βxk)

. (451)
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We also need the log-sum-exp function (lse), defined as
Definition B6 (Log-Sum-Exp Function).

lse(β,x) = β−1 ln

(
N∑
i=1

exp(βxi)

)
. (452)

Next, we give the relation between the softmax and the lse function.
Lemma 18. The softmax is the gradient of the lse:

softmax(βx) = ∇xlse(β,x) . (453)

In the next lemma we report some important properties of the lse function.
Lemma 19. We define

L := zTx − β−1
N∑
i=1

zi ln zi (454)

with L ≥ pTx. The lse is the maximum of L on the N -dimensional simplex D with D = {z |∑
i zi = 1, 0 6 zi}:

lse(β,x) = max
z∈D

zTx − β−1
N∑
i=1

zi ln zi . (455)

The softmax p = softmax(βx) is the argument of the maximum of L on the N -dimensional simplex
D with D = {z |

∑
i zi = 1, 0 6 zi}:

p = softmax(βx) = arg max
z∈D

zTx − β−1
N∑
i=1

zi ln zi . (456)

Proof. Eq. (455) is obtained from Equation (8) in [22] and Eq. (456) from Equation (11) in [22].

From a physical point of view, the lse function represents the “free energy” in statistical thermody-
namics [22].
Next we consider the Jacobian of the softmax and its properties.
Lemma 20. The Jacobian Js of the softmax p = softmax(βx) is

Js =
∂softmax(βx)

∂x
= β

(
diag(p)− ppT

)
, (457)

which gives the elements

[Js]ij =

{
βpi(1− pi) for i = j

−βpipj for i 6= j
. (458)

Next we show that Js has eigenvalue 0.
Lemma 21. The Jacobian Js of the softmax function p = softmax(βx) has a zero eigenvalue with
eigenvector 1.

Proof.

[Js1]i = β

pi(1− pi) − ∑
j,j 6=i

pipj

 = β pi(1 −
∑
j

pj) = 0 . (459)

Next we show that 0 is the smallest eigenvalue of Js, therefore Js is positive semi-definite but not
(strict) positive definite.
Lemma 22. The Jacobian Js of the softmax p = softmax(βξ) is symmetric and positive semi-
definite.
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Proof. For an arbitrary y, we have

yT
(
diag(p)− ppT

)
y =

∑
i

piy
2
i −

(∑
i

piyi

)2

(460)

=

(∑
i

piy
2
i

) (∑
i

pi

)
−

(∑
i

piyi

)2

≥ 0 .

The last inequality hold true because the Cauchy-Schwarz inequality says (aTa)(bT b) ≥ (aT b)2,
which is the last inequality with ai = yi

√
pi and bi =

√
pi. Consequently

(
diag(p)− ppT

)
is

positive semi-definite.
Alternatively

∑
i piy

2
i − (

∑
i piyi)

2 can be viewed as the expected second moment minus the mean
squared which gives the variance that is larger equal to zero.
The Jacobian is 0 < β times a positive semi-definite matrix, which is a positive semi-definite
matrix.

Moreover, the softmax is a monotonic map, as described in the next lemma.
Lemma 23. The softmax p = softmax(βx) is monotone, that is,

(softmax(βx) − softmax(βx′))
T

(x − x′) ≥ 0 . (461)

Proof. We use the mean value theorem with the symmetric matrix Jms =
∫ 1

0
Js(λx + (1−λ)x′) dλ:

softmax(x) − softmax(x′) = Jms (x − x′) . (462)

Therefore

(softmax(x) − softmax(x′))
T

(x − x′) = (x − x′)
T

Jms (x − x′) ≥ 0 , (463)

since Jms is positive semi-definite. For all λ the Jacobians Js(λx + (1 − λ)x′) are positive
semi-definite according to Lemma 22. Since

xT Jms x =

∫ 1

0

xT Js(λx + (1− λ)x′) x dλ ≥ 0 (464)

is an integral over positive values for every x, Jms is positive semi-definite, too.

Next we give upper bounds on the norm of Js.
Lemma 24. For a softmax p = softmax(βx) with m = maxi pi(1− pi), the spectral norm of the
Jacobian Js of the softmax is bounded:

‖Js‖2 6 2 m β , (465)
‖Js‖1 6 2 m β , (466)
‖Js‖∞ 6 2 m β . (467)

In particular everywhere holds

‖Js‖2 6
1

2
β . (468)

If pmax = maxi pi ≥ 1− ε ≥ 0.5, then for the spectral norm of the Jacobian holds

‖Js‖2 6 2 ε β − 2 ε2 β < 2 ε β . (469)

Proof. We consider the maximum absolute column sum norm

‖A‖1 = max
j

∑
i

|aij | (470)

and the maximum absolute row sum norm

‖A‖∞ = max
i

∑
j

|aij | . (471)
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We have forA = Js = β
(
diag(p)− ppT

)
∑
j

|aij | = β

pi(1− pi) +
∑
j,j 6=i

pipj

 = β pi (1 − 2pi +
∑
j

pj) (472)

= 2 β pi (1− pi) 6 2 m β ,∑
i

|aij | = β

pj (1− pj) +
∑
i,i 6=j

pjpi

 = β pj (1 − 2pj +
∑
i

pi) (473)

= 2 β pj (1− pj) 6 2 m β .

Therefore we have

‖Js‖1 6 2 m β , (474)
‖Js‖∞ 6 2 m β , (475)

‖Js‖2 6
√
‖Js‖1‖Js‖∞ 6 2 m β . (476)

The last inequality is a direct consequence of Hölder’s inequality.
For 0 6 pi 6 1, we have pi(1− pi) 6 0.25. Therefore m 6 0.25 for all values of pi.
If pmax ≥ 1 − ε ≥ 0.5 (ε 6 0.5), then 1 − pmax 6 ε and for pi 6= pmax pi 6 ε. The derivative
∂x(1− x)/∂x = 1− 2x > 0 for x < 0.5, therefore x(1− x) increases with x for x < 0.5. Using
x = 1− pmax and for pi 6= pmax x = pi, we obtain pi(1− pi) 6 ε(1− ε) for all i. Consequently,
we have m 6 ε(1− ε).

Using the bounds on the norm of the Jacobian, we give some Lipschitz properties of the softmax
function.
Lemma 25. The softmax function p = softmax(βx) is (β/2)-Lipschitz. The softmax function p =
softmax(βx) is (2βm)-Lipschitz in a convex environment U for which m = maxx∈U maxi pi(1−
pi). For pmax = minx∈U maxi pi = 1−ε, the softmax function p = softmax(βx) is (2βε)-Lipschitz.
For β < 2m, the softmax p = softmax(βx) is contractive in U on which m is defined.

Proof. The mean value theorem states for the symmetric matrix Jms =
∫ 1

0
J(λx+ (1− λ)x′) dλ:

softmax(x) − softmax(x′) = Jms (x − x′) . (477)

According to Lemma 24 for all x̃ = λx+ (1− λ)x′)

‖Js(x̃)‖2 6 2 m̃ β , (478)

where m̃ = maxi p̃i(1 − p̃i). Since x ∈ U and x′ ∈ U we have x̃ ∈ U , since U is convex. For
m = maxx∈U maxi pi(1− pi) we have m̃ 6 m for all m̃. Therefore we have

‖Js(x̃)‖2 6 2 m β (479)

which also holds for the mean:

‖Jms ‖2 6 2 m β . (480)

Therefore

‖softmax(x) − softmax(x′)‖ 6 ‖Jms ‖2 ‖x − x′‖ 6 2 m β ‖x − x′‖ . (481)

From Lemma 24 we know m 6 1/4 globally. For pmax = minx∈U maxi pi = 1 − ε we have
according to Lemma 24: m 6 ε.

For completeness we present a result about cocoercivity of the softmax:
Lemma 26. For m = maxx∈U maxi pi(1− pi), softmax function p = softmax(βx) is 1/(2mβ)-
cocoercive in U , that is,

(softmax(x) − softmax(x′))
T

(x − x′) ≥ 1

2 m β
‖softmax(x) − softmax(x′)‖. (482)

In particular the softmax function p = softmax(βx) is (2/β)-cocoercive everywhere. With pmax =
minx∈U maxi pi = 1− ε, the softmax function p = softmax(βx) is 1/(2βε)-cocoercive in U .
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Proof. We apply the Baillon-Haddad theorem (e.g. Theorem 1 in [22]) together with Lemma 25.

Finally, we introduce the Legendre transform and use it to describe further properties of the lse. We
start with the definition of the convex conjugate.

Definition B7 (Convex Conjugate). The Convex Conjugate (Legendre-Fenchel transform) of a
function f from a Hilbert Space X to [−∞,∞] is f∗ which is defined as

f∗(x∗) = sup
x∈X

(xTx∗ − f(x)) , x∗ ∈ X (483)

See page 219 Def. 13.1 in [7] and page 134 in [23]. Next we define the Legendre transform, which is
a more restrictive version of the convex conjugate.

Definition B8 (Legendre Transform). The Legendre transform of a convex function f from a convex
set X ⊂ Rn to R (f : X → R) is f∗, which is defined as

f∗(x∗) = sup
x∈X

(xTx∗ − f(x)) , x∗ ∈ X∗ , (484)

X∗ =

{
x∗ ∈ Rn | sup

x∈X
(xTx∗ − f(x)) <∞

}
. (485)

See page 91 in [9].

Definition B9 (Epi-Sum). Let f and g be two functions from X to (−∞,∞], then the infimal
convolution (or epi-sum) of f and g is

f�g : X → [−∞,∞] , x 7→ inf
y∈X

(f(y) + g(x− y)) (486)

See Def. 12.1 in [7].

Lemma 27. Let f and g be functions from X to (−∞,∞]. Then the following hold:

1. Convex Conjugate of norm squared(
1

2
‖.‖2

)∗
=

1

2
‖.‖2 . (487)

2. Convex Conjugate of a function multiplied by scalar 0 < α ∈ R

(α f)
∗

= α f∗(./α) . (488)

3. Convex Conjugate of the sum of a function and a scalar β ∈ R

(f + β)
∗

= f∗ − β . (489)

4. Convex Conjugate of affine transformation of the arguments. LetA be a non-singular matrix
and b a vector

(f (Ax + b))
∗

= f∗
(
A−Tx∗

)
− bTA−Tx∗ . (490)

5. Convex Conjugate of epi-sums

(f�g)
∗

= f∗ + g∗ . (491)

Proof. 1. Since h(t) := t2

2 is a non-negative convex function and h(t) = 0 ⇐⇒ t = 0

we have because of Proposition 11.3.3 in [23] that h (‖x‖)∗ = h∗ (‖x∗‖). Additionally,

by example (a) on page 137 we get for 1 < p < ∞ and 1
p + 1

q = 1 that
(
|t|p
p

)∗
= |t∗|q

q .
Putting all together we get the desired result. The same result can also be deduced from
page 222 Example 13.6 in [7].

2. Follows immediately from the definition since

αf∗
(
x∗

α

)
= α sup

x∈X

(
xT
x∗

α
− f(x)

)
= sup
x∈X

(xTx∗ − αf(x)) = (αf)∗(x∗)

3. (f + β)∗ := supx∈X
(
xTx∗ − f(x)− β

)
=: f∗ − β
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4.

(f (Ax+ b))
∗

(x∗) = sup
x∈X

(
xTx∗ − f (Ax+ b)

)
= sup
x∈X

(
(Ax+ b)

T
A−Tx∗ − f (Ax+ b)

)
− bTA−Tx∗

= sup
y∈X

(
yTA−Tx∗ − f (y)

)
− bTA−Tx∗

= f∗
(
A−Tx∗

)
− bTA−Tx∗

5. From Proposition 13.24 (i) in [7] and Proposition 11.4.2 in [23] we get

(f�g)
∗

(x∗) = sup
x∈X

(
xTx∗ − inf

y∈X
(f(y)− g(x− y))

)
= sup
x,y∈X

(
xTx∗ − f(y)− g(x− y)

)
= sup
x,y∈X

((
yTx∗ − f(y)

)
+
(

(x− y)
T
x∗ − g(x− y)

))
= f∗(x∗) + g∗(x∗)

Lemma 28. The Legendre transform of the lse is the negative entropy function, restricted to the
probability simplex and vice versa. For the log-sum exponential

f(x) = ln

(
n∑
i=1

exp(xi)

)
, (492)

the Legendre transform is the negative entropy function, restricted to the probability simplex:

f∗(x∗) =

{∑n
i=1 x

∗
i ln(x∗i ) for 0 6 x∗i and

∑n
i=1 x

∗
i = 1

∞ otherwise
. (493)

For the negative entropy function, restricted to the probability simplex:

f(x) =

{∑n
i=1 xi ln(xi) for 0 6 xi and

∑n
i=1 xi = 1

∞ otherwise
. (494)

the Legendre transform is the log-sum exponential

f∗(x∗) = ln

(
n∑
i=1

exp(x∗i )

)
, (495)

Proof. See page 93 Example 3.25 in [9] and [22]. If f is a regular convex function (lower semi-
continuous convex function), then f∗∗ = f according to page 135 Exercise 11.2.3 in [23]. If f is
lower semi-continuous and convex, then f∗∗ = f according to Theorem 13.37 (Fenchel-Moreau) in
[7]. The log-sum-exponential is continuous and convex.

Lemma 29. LetXXT be non-singular and X a Hilbert space. We define

X∗ =
{
a | 0 6 XT

(
XXT

)−1
a , 1TXT

(
XXT

)−1
a = 1

}
. (496)

and

Xv =
{
a | a = XT ξ , ξ ∈ X

}
. (497)

The Legendre transform of lse(β,XT ξ) with ξ ∈ X is(
lse(β,XT ξ)

)∗
(ξ∗) = (lse(β,v))

∗
(
XT

(
XXT

)−1
ξ∗
)
, (498)

with ξ∗ ∈ X∗ and v ∈ Xv . The domain of
(
lse(β,XT ξ)

)∗
is X∗.

Furthermore we have (
lse(β,XT ξ)

)∗∗
= lse(β,XT ξ) . (499)
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Proof. We use the definition of the Legendre transform:(
lse(β,XT ξ)

)∗
(ξ∗) = sup

ξ∈X
ξT ξ∗ − lse(β,XT ξ) (500)

= sup
ξ∈X

(
XT ξ

)T
XT

(
XXT

)−1
ξ∗ − lse(β,XT ξ)

= sup
v∈Xv

vTXT
(
XXT

)−1
ξ∗ − lse(β,v)

= sup
v∈Xv

vTv∗ − lse(β,v)

= (lse(β,v))
∗

(v∗) = (lse(β,v))
∗
(
XT

(
XXT

)−1
ξ∗
)
,

where we used v∗ = XT
(
XXT

)−1
ξ∗.

According to page 93 Example 3.25 in [9], the equations for the maximum maxv∈Xv vTv∗ −
lse(β,v) are solvable if and only if 0 < v∗ = XT

(
XXT

)−1
ξ∗ and 1Tv∗ =

1TXT
(
XXT

)−1
ξ∗ = 1. Therefore we assumed ξ∗ ∈ X∗.

The domain of
(
lse(β,XT ξ)

)∗
is X∗, since on page 93 Example 3.25 in [9] it was shown that

outside X∗ the supv∈Xv vTv∗ − lse(β,v) is not bounded.
Using

p = softmax(βXT ξ) , (501)

the Hessian of lse(β,XT ξ)

∂2lse(β,XT ξ)

∂ξ2
= β X

(
diag(p)− ppT

)
XT (502)

is positive semi-definite since diag(p) − ppT is positive semi-definite according to Lemma 22.
Therefore lse(β,XT ξ) is convex and continuous.
If f is a regular convex function (lower semi-continuous convex function), then f∗∗ = f according to
page 135 Exercise 11.2.3 in [23]. If f is lower semi-continuous and convex, then f∗∗ = f according
to Theorem 13.37 (Fenchel-Moreau) in [7]. Consequently we have(

lse(β,XT ξ)
)∗∗

= lse(β,XT ξ) . (503)

We introduce the Lambert W function and some of its properties, since it is needed to derive bounds
on the storage capacity of our new Hopfield networks.

Definition B10 (Lambert Function). The Lambert W function is the inverse function of

f(y) = yey . (504)

The Lambert W function has an upper branch W0 for −1 6 y and a lower branch W−1 for y 6 −1.
We use W if a formula holds for both branches. We have

W (x) = y ⇒ yey = x . (505)

We present some identities for the Lambert W function:
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Lemma 30. Identities for the Lambert W function are

W (x) eW (x) = x , (506)
W (xex) = x , (507)

eW (x) =
x

W (x)
, (508)

e−W (x) =
W (x)

x
, (509)

enW (x) =

(
x

W (x)

)n
, (510)

W0 (x lnx) = lnx for x ≥ 1

e
, (511)

W−1 (x lnx) = lnx for x 6
1

e
, (512)

W (x) = ln
x

W (x)
for x ≥ − 1

e
, (513)

W

(
n xn

W (x)
n−1

)
= n W (x) for n, x > 0 , (514)

W (x) + W (y) = W

(
x y

(
1

W (x)
+

1

W (y)

))
for x, y > 0 , (515)

W0

(
− lnx

x

)
= − lnx for 0 < x 6 e , (516)

W−1

(
− lnx

x

)
= − lnx for x > e , (517)

e− W (− ln x) =
W (− lnx)

− lnx
for x 6= 1 . (518)

We also present some special values for the Lambert W function:

Lemma 31.

W (0) = 0 , (519)
W (e) = 1 , (520)

W

(
−1

e

)
= −1 , (521)

W
(
e1+e

)
= e , (522)

W (2 ln 2) = ln 2 , (523)
W (1) = Ω , (524)

W (1) = e−W (1) = ln

(
1

W (1)

)
= − lnW (1) , (525)

W
(
−π

2

)
=

iπ

2
, (526)

W (−1) ≈ −0.31813 + 1.33723i , (527)

where the Omega constant Ω is

Ω =

(∫ ∞
−∞

dt

(et − t)
2

+ π2

)−1

− 1 ≈ 0.56714329 . (528)
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B4 Modern Hopfield Networks: Binary States (Krotov and Hopfield)
B4.1 Modern Hopfield Networks: Introduction
B4.1.1 Additional Memory and Attention for Neural Networks
Modern Hopfield networks may serve as additional memory for neural networks. Different ap-
proaches have been suggested to equip neural networks with an additional memory beyond recurrent
connections. The neural Turing machine (NTM) is a neural network equipped with an external
memory and an attention process [24]. The NTM can write to the memory and can read from it.
A memory network [48] consists of a memory together with the components: (1) input feature
map (converts the incoming input to the internal feature representation) (2) generalization (updates
old memories given the new input), (3) output feature map (produces a new output), (4) response
(converts the output into the response format). Memory networks are generalized to an end-to-end
trained model, where the arg max memory call is replaced by a differentiable softmax [40, 41].
Linear Memory Network use a linear autoencoder for sequences as a memory [13].
To enhance RNNs with additional associative memory like Hopfield networks have been proposed
[3, 4]. The associative memory stores hidden states of the RNN, retrieves stored states if they are
similar to actual ones, and has a forgetting parameter. The forgetting and storing parameters of the
RNN associative memory have been generalized to learned matrices [54]. LSTMs with associative
memory via Holographic Reduced Representations have been proposed [15].
Recently most approaches to new memories are based on attention. The neural Turing machine
(NTM) is equipped with an external memory and an attention process [24]. End to end memory
networks (EMN) make the attention scheme of memory networks [48] differentiable by replacing
arg max through a softmax [40, 41]. EMN with dot products became very popular and implement
a key-value attention [16] for self-attention. An enhancement of EMN is the transformer [45, 46]
and its extensions [17]. The transformer had great impact on the natural language processing (NLP)
community as new records in NLP benchmarks have been achieved [45, 46]. MEMO uses the
transformer attention mechanism for reasoning over longer distances [5]. Current state-of-the-art for
language processing is a transformer architecture called “the Bidirectional Encoder Representations
from Transformers” (BERT) [19, 20].

B4.1.2 Modern Hopfield networks: Overview
The storage capacity of classical binary Hopfield networks [27] has been shown to be very limited.
In a d-dimensional space, the standard Hopfield model can store d uncorrelated patterns without
errors but only Cd/ ln(d) random patterns with C < 1/2 for a fixed stable pattern or C < 1/4 if all
patterns are stable [33]. The same bound holds for nonlinear learning rules [32]. Using tricks-of-trade
and allowing small retrieval errors, the storage capacity is about 0.138d [14, 25, 44]. If the learning
rule is not related to the Hebb rule then up to d patterns can be stored [1]. Using a Hopfield networks
with non-zero diagonal matrices, the storage can be increased to Cd ln(d) [21]. In contrast to the
storage capacity, the number of energy minima (spurious states, stable states) of Hopfield networks is
exponentially in d [42, 11, 47].
Recent advances in the field of binary Hopfield networks [27] led to new properties of Hopfield
networks. The stability of spurious states or metastable states was sensibly reduced by a Hamiltonian
treatment for the new relativistic Hopfield model [6]. Recently the storage capacity of Hopfield
networks could be increased by new energy functions. Interaction functions of the form F (x) = xn

lead to storage capacity of αndn−1, where αn depends on the allowed error probability [28, 29, 18]
(see [29] for the non-binary case). Interaction functions of the form F (x) = xn lead to storage
capacity of αn dn−1

cn ln d for cn > 2(2n− 3)!! [18].
Interaction functions of the form F (x) = exp(x) lead to exponential storage capacity of 2d/2 where
all stored pattern are fixed points but the radius of attraction vanishes [18]. It has been shown that the
network converges even after one update [18].

B4.2 Energy and Update Rule for Binary Modern Hopfield Networks
We follow [18] where the goal is to store a set of input data x1, . . . ,xN that are represented by the
matrix

X = (x1, . . . ,xN ) . (529)

The xi is pattern with binary components xij ∈ {−1,+1} for all i and j. ξ is the actual state of
the units of the Hopfield model. Krotov and Hopfield [28] defined the energy function E with the
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interaction function F that evaluates the dot product between patterns xi and the actual state ξ:

E = −
N∑
i=1

F
(
ξTxi

)
(530)

with F (a) = an, where n = 2 gives the energy function of the classical Hopfield network. This
allows to store αndn−1 patterns [28]. Krotov and Hopfield [28] suggested for minimizing this energy
an asynchronous updating dynamics T = (Tj) for component ξj :

Tj(ξ) := sgn
[ N∑
i=1

(
F
(
xij +

∑
l 6=j

xil ξl
)
− F

(
− xij +

∑
l 6=j

xil ξl
))]

(531)

While Krotov and Hopfield used F (a) = an, Demircigil et al. [18] went a step further and analyzed
the model with the energy function F (a) = exp(a), which leads to an exponential storage capacity
of N = 2d/2. Furthermore with a single update the final pattern is recovered with high probability.
These statements are given in next theorem.
Theorem B10 (Storage Capacity for Binary Modern Hopfield Nets (Demircigil et al. 2017)). Con-
sider the generalized Hopfield model with the dynamics described in Eq. (531) and interaction
function F given by F (x) = ex. For a fixed 0 < α < ln(2)/2 let N = exp (αd) + 1 and let
x1, . . . ,xN be N patterns chosen uniformly at random from {−1,+1}d. Moreover fix % ∈ [0, 1/2).
For any i and any x̃i taken uniformly at random from the Hamming sphere with radius %d centered in
xi, S(xi, %D), where %d is assumed to be an integer, it holds that

Pr (∃i ∃j : Tj (x̃i) 6= xij) → 0 ,

if α is chosen in dependence of % such that

α <
I(1− 2%)

2
with

I : a 7→ 1

2
((1 + a) ln(1 + a) + (1− a) ln(1− a)) .

Proof. The proof can be found in [18].

The number of patterns N = exp (αd) + 1 is exponential in the number d of components. The result
Pr (∃i ∃j : Tj (x̃i) 6= xij) → 0

means that one update for each component is sufficient to recover the pattern with high probability.
The constraint α < I(1−2%)

2 on α gives the trade-off between the radius of attraction %N and the
number N = exp (αd) + 1 of pattern that can be stored.
Theorem B10 in particular implies that

Pr (∃i ∃j : Tj (xi) 6= xij) → 0

as d→∞, i.e. with a probability converging to 1, all the patterns are fixed points of the dynamics. In
this case we can have α→ I(1)

2 = ln(2)/2.
Krotov and Hopfield define the update dynamics Tj(ξ) in Eq. (531) via energy differences of the
energy in Eq. (530). First we express the energy in Eq. (530) with F (a) = exp(a) [18] by the lse
function. Then we use the mean value theorem to express the update dynamics Tj(ξ) in Eq. (531) by
the softmax function. For simplicity, we set β = 1 in the following. There exists a v ∈ [−1, 1] with

Tj(ξ) = sgn
[
E(ξj = 1) − E(ξj = −1)

]
= sgn

[
− exp(lse(ξj = 1)) + exp(lse(ξj = −1))

]
(532)

= sgn
[
(2ej)

T∇ξE(ξj = v)
]

= sgn
[
exp(lse(ξj = v)) (2ej)

T lse(ξj = v)

∂ξ

]
= sgn

[
exp(lse(ξj = 1)) (2ej)

TXsoftmax(XT ξ(ξj = v))
]

= sgn
[
[Xsoftmax(XT ξ(ξj = v))]j

]
= sgn

[
[Xp(ξj = v)]j

]
,

where ej is the Cartesian unit vector with a one at position j and zeros elsewhere, [.]j is the projection
to the j-th component, and

p = softmax(XT ξ) . (533)
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B5 Hopfield Update Rule is Attention of The Transformer
The Hopfield network update rule is the attention mechanism used in the transformer and BERT (see
Fig. B2). To see this, we assume patterns yi that are mapped to the Hopfield space of dimension dk.
We set xi = W T

Kyi, ξi = W T
Qyi, and multiply the result of our update rule withWV . The matrix

Y = (y1, . . . ,yN )T combines the yi as row vectors. We define the matrices XT = K = YWK ,
Q = YWQ, and V = YWKWV = XTWV , where WK ∈ Rdy×dk ,WQ ∈ Rdy×dk ,WV ∈
Rdk×dv . For combining all queries in matrixQ, β = 1/

√
dk, and softmax ∈ RN changed to a row

vector, we obtain for the update rule Eq. (17) multiplied byWV :

softmax
(

1/
√
dk QK

T
)
V . (534)

This formula is the transformer attention.

Figure B2: We generalized the energy of binary modern Hopfield networks for allowing continuous
states while keeping convergence and storage capacity properties. We defined for the new energy also
a new update rule that minimizes the energy. The new update rule is the attention mechanism of the
transformer. Formulae are modified to express softmax as row vector as for transformers. "="-sign
means "keeps the properties".
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[31] V. A. Marŏenko and L. A. Pastur. Distribution of eigenvalues or some sets of random matrices.
Mathematics of the USSR-Sbornik, 1(4):457, 1967.

[32] C. Mazza. On the storage capacity of nonlinear neural networks. Neural Networks, 10(4):593–
597, 1997.

[33] R. J. McEliece, E. C. Posner, E. R. Rodemich, and S. S. Venkatesh. The capacity of the Hopfield
associative memory. IEEE Trans. Inf. Theor., 33(4):461–482, 1987.

[34] R. R. Meyer. Sufficient conditions for the convergence of monotonic mathematical programming
algorithms. Journal of Computer and System Sciences, 12(1):108–121, 1976.

[35] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark. NIST handbook of mathematical
functions. Cambridge University Press, 1 pap/cdr edition, 2010.

[36] A. Rangarajan, S. Gold, and E. Mjolsness. A novel optimizing network architecture with
applications. Neural Computation, 8(5):1041–1060, 1996.

[37] A. Rangarajan, A. Yuille, and Eric E. Mjolsness. Convergence properties of the softassign
quadratic assignment algorithm. Neural Computation, 11(6):1455–1474, 1999.

[38] A. Soshnikov. A note on universality of the distribution of the largest eigenvalues in certain
sample covariance matrices. J. Statist. Phys., 108(5-6):1033–1056, 2002.

[39] B. K. Sriperumbudur and G. R. Lanckriet. On the convergence of the concave-convex procedure.
In Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances
in Neural Information Processing Systems 22, pages 1759–1767. Curran Associates, Inc., 2009.

[40] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. In C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 28, pages 2440–2448. Curran Associates, Inc., 2015.

[41] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory networks. ArXiv, 2015.

[42] F. Tanaka and S. F. Edwards. Analytic theory of the ground state properties of a spin glass. I.
Ising spin glass. Journal of Physics F: Metal Physics, 10(12):2769–2778, 1980.

[43] T. Tao and V. Vu. Random matrices: Universality of ESDs and the circular law. Ann. Probab.,
38:2023–2065, 2010. With an appendix by M. Krishnapur.

[44] J. J. Torres, L. Pantic, and Hilbert H. J. Kappen. Storage capacity of attractor neural networks
with depressing synapses. Phys. Rev. E, 66:061910, 2002.

[45] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems 30, pages 5998–6008. Curran Associates, Inc., 2017.

[46] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. ArXiv, 2017.

[47] G. Wainrib and J. Touboul. Topological and dynamical complexity of random neural networks.
Phys. Rev. Lett., 110:118101, 2013.

[48] J. Weston, S. Chopra, and A. Bordes. Memory networks. ArXiv, 2014.

[49] J. C. F. Wu. On the convergence properties of the em algorithm. Ann. Statist., 11(1):95–103,
1983.

[50] Y. Q. Yin. Limiting spectral distribution for a class of random matrices. Journal of Multivariate
Analysis, 20(1):50–68, 1986.

[51] A. L. Yuille and A. Rangarajan. The concave-convex procedure (CCCP). In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14,
pages 1033–1040. MIT Press, 2002.

60



[52] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15(4):915–
936, 2003.

[53] W. I. Zangwill. Nonlinear programming: a unified approach. Prentice-Hall international series
in management. Englewood Cliffs, N.J., 1969.

[54] W. Zhang and B. Zhou. Learning to update auto-associative memory in recurrent neural
networks for improving sequence memorization. ArXiv, 2017.

61


	Introduction
	Modern Hopfield Networks: Continuous States (New Concept)
	New Energy Function
	New Update Rule
	Global Convergence of the Update Rule
	Local Convergence of the Update Rule: Fixed Point Iteration
	General Bound on the Jacobian of the Iterate
	One Stable State: Fixed Point Near the Mean of the Patterns
	Many Stable States: Fixed Points Near Stored Patterns
	Metastable States: Fixed Points Near Mean of Similar Patterns

	Properties of Fixed Points Near Stored Pattern
	Exponentially Many Patterns can be Stored
	Convergence after One Update and Small Retrieval Error

	Learning Associations
	Initialization: Random Matrix Theory
	Directly Learning Associations
	Learning the Mappings to the Association Space

	Sequential Softmax Associative Memory
	Infinite Softmax Associative Memory
	Forgetting Softmax Associative Memory


	Properties of Softmax, Log-Sum-Exponential, Legendre Transform, Lambert W Function
	Modern Hopfield Networks: Binary States (Krotov and Hopfield)
	Modern Hopfield Networks: Introduction
	Additional Memory and Attention for Neural Networks
	Modern Hopfield networks: Overview

	Energy and Update Rule for Binary Modern Hopfield Networks

	Hopfield Update Rule is Attention of The Transformer

