
Interpretable Sequence Learning for
COVID-19 Forecasting
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Abstract

We propose a novel approach that integrates machine learning into compartmental
disease modeling (e.g., SEIR) to predict the progression of COVID-19. Our model
is explainable by design as it explicitly shows how different compartments evolve
and it uses interpretable encoders to incorporate covariates and improve perfor-
mance. Explainability is valuable to ensure that the model’s forecasts are credible
to epidemiologists and to instill confidence in end-users such as policy makers
and healthcare institutions. Our model can be applied at different geographic
resolutions, and we demonstrate it for states and counties in the United States. We
show that our model provides more accurate forecasts compared to the alternatives,
and that it provides qualitatively meaningful explanatory insights.

1 Introduction
The rapid spread of COVID-19, the disease caused by the SARS-CoV-2 virus, has had a significant
impact on humanity. Accurately forecasting the progression of COVID-19 can help (i) healthcare
institutions to ensure sufficient supply of equipment and personnel to minimize fatalities, (ii) policy
makers to consider potential outcomes of their policy decisions, (iii) manufacturers and retailers to
plan their business decisions based on predicted attenuation or recurrence of the pandemic and (iv)
the general populace to have confidence in the choices made by the above actors.

Data is one of the greatest assets of the modern era, including for healthcare [1]. We aim to exploit
this abundance of data for COVID-19 forecasting. From available healthcare supply to mobility
indices, many information sources are expected to have predictive value for forecasting the spread of
COVID-19. Data-driven time-series forecasting has enjoyed great success, particularly with advances
in deep learning [2, 3, 4]. However, several features of the current pandemic limit the success of
standard time-series forecasting methods:

• Because there is no close precedent for the COVID-19 pandemic, it is necessary to integrate
existing data with priors based on epidemiological knowledge of disease dynamics.

• The data generating processes are non-stationary because progression of the disease influences
public policy and individuals’ public behaviors, and vice versa.

• There are many potential sources of data, but their causal impact on the disease is unclear, and
their impact on the progression of the disease is unknown.

• The problem is non-identifiable as most infected can be undocumented.
• Data sources are noisy due to reporting issues or due to data collection problems.
• Beyond accuracy, explainability is desired – the users, either from healthcare or policy or business

angles, should be able to interpret the results in a meaningful way for optimal strategic planning.
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Figure 1: Our approach is based on distilling the inductive bias from compartmental models (as
exemplified here for the popular SIR, Susceptible-Infected-Recovered, model) into a computational
graph, where the transitions depend on the related covariates.

Compartmental models, such as the SIR and SEIR [5] models, are widely used for disease modeling
by healthcare and public authorities. Such models represent the number of people in each of
the compartments (see Fig. 1) and model the transitions between them via differential equations.
Compartmental models often have several shortcomings: (i) only few learnable parameters resulting
low model capacity (ii) non-stationary dynamics due to static rates in the differential equations;
(iii) no covariates to extract information; (iv) assumptions on well-mixed compartments, i.e. each
individual is statistically identical to others in the same compartment [6]; (v) no information sharing
across time or geography, and (vi) non-identifiability – identical results may arise from different
parametrizations [7].

While preserving interpretability for domain experts, we aim for accurate forecasts that go beyond
the capabilities of standard compartmental models by utilizing rich datasets with high temporal
and spatial granularity. Our approach is based on integrating covariate encoding into compartment
transitions to extract relevant information via end-to-end learning (Fig. 1). In this way, we provide
an inherently interpretable model that reflects the inductive biases of epidemiology. To get high
accuracy, we introduce several innovative contributions:
1. We extend the standard SEIR model to also include compartments for undocumented cases and

hospital resource usage. Our end-to-end modeling framework can infer meaningful estimates for
undocumented cases even if there is no direct supervision for them.

2. The disease dynamics vary over time, e.g., as mobility reduces, the spreading would decay. To
accurately reflect such dynamics, we propose time-varying encoding of the covariates.

3. We propose learning mechanisms to improve generalization while learning from limited training
data, using (i) masked supervision from partial observations, (ii) partial teacher-forcing to minimize
error propagation, (iii) regularization and (iv) cross-location information-sharing.

We demonstrate our approach for COVID-19 forecasting for the United States (US), the country
that has suffered from the highest number of confirmed cases and deaths as of October 2020. For
both at State- and County-level granularities, we show that our model outperforms commonly-used
alternatives. Beyond accurate forecasts, we show how our model can be used for insights towards
better understanding of COVID-19 pandemic.

2 Related work

Compartmental models: Using compartmental models [8] for infectious diseases can be dated back
to [5], which has three compartments including susceptible, infected and recovered. Several infectious
diseases, including COVID-19, manifest an incubation period during which an individual is infected,
but are not yet spreaders. To this end, the Exposed (E) compartment is employed, yielding the SEIR
model [9]. Beyond these basic types of compartment models, several other types of compartment
models have been used, such as granular infections [10] and undocumented compartments [11]. A
mixture of state-space model [12] in machine learning is presented in [13].
Integrating covariates into compartmental models: Policy changes such as travel bans or public
restrictions have a marked, if local, effect on the disease progression. [14] designs a model that predict
the effect of travel restrictions on the disease spread in China. [15] uses a modified SEIR model
with mobility covariates to show the impact of interventions in the US. [16] presents a Bayesian
hierarchical model for the effect of non-pharmaceutical interventions on COVID-19 in Europe. Such
studies have typically been limited to the impact of one or two covariates, while our method models
numerous static and time-varying ones in conjunction.
Disease modeling using machine learning: Apart from compartmental models, a wide variety of
methods exist for modeling infectious disease. These include diffusion models [17], agent-based
models [18], and cellular automata [19]. With the motivation of data-driven learning, some also
integrate covariates into disease modeling, e.g. using LSTM-based models [20, 21, 22].
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Figure 2: The modeled compartments and the corresponding covariates, with the legend on the right.

Learning from data and equations: Strong inductive biases can improve machine learning. One
type of such bias is the set of equations between input and output, particularly common in physics or
chemistry. To incorporate the inductive bias of equations, several recent works [23, 24, 25, 26] have
studied parametric approaches, as in our paper, where trainable models are incorporated to model
only certain terms in the equations, while the equations still govern the end-to-end relationships.
Other COVID-19 forecasting works: Different works have adopted compartmental models for
COVID-19 forecasting via modeling different comparments, such as YYG [27]. However, they do not
leverage additional covariates. IHME [28] is based on �tting a curve to model the non-linear mixing
effects, which does not explicitly model the transitions between the compartments. LANL [29] is
based on statistical-dynamical growth modeling for the susceptible and infected cases.

3 Proposed compartmental model for COVID-19
We adapt the standard SEIR model with some major changes, as shown in Fig. 2:
� Undocumented infected and recovered compartments: Recent studies suggest that majority

of the infected people are not detected and they dominate disease spreading1 [30, 31] (as the
documented ones are either self-isolated or hospitalized) An undocumented infected individual is
able to spread the disease, until being documented or recovered without being undocumented.

� Hospitalized, ICU and ventilator compartments: We introduce compartments for the people
who are hospitalized, in the ICU, or on a ventilator, as there is a demand to model these [32] and
there is partially-available observed data to be used for supervision.

� Partial immunity : To date, there is no scienti�c consensus on what fraction of recovered cases
demonstrate immunity to future infection. Due to reports of reinfection [33] we model the rate of
reinfection from recovered compartments (though our model infers low reinfection rates).

� Other Assumptions: We assume the published COVID-19 death counts are coming from doc-
umented cases, not undocumented. Also, we assume that the entire population is invariant, i.e.
births and non-Covid deaths are negligible in comparison to the entire population. Last, by data
publishing frequency, we assume a �xed sampling interval of 1 day.

Table 1: Modeled compartments.

Compartment Description Compartment Description

S Susceptible R( u ) Recovered undocumented
E Exposed H Hospitalized

I ( d) Infected documented C In intensive care unit (ICU)
I ( u ) Infected undocumented V On ventilator
R( d) Recovered documented D Death

The modeled compartments are shown in Table 1. For a compartmentX , X i [t] denotes the number
of individuals in that compartment at locationi and timet. N [t] denotes the total population. Fig. 2
describes transition rate variables used to relate the compartments, via the equations (we omit the
indexi for concision):

1[11] estimates that> 80%of cases in China were undocumented during the early phase of the pandemic.
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S[t] � S[t � 1] = � (� (d) I (d) [t � 1] + � (u ) I (u ) [t � 1]) S[t� 1]
N [t� 1] + � (R(d) [t � 1]+ R(u ) [t � 1]);

E [t] � E [t � 1] = ( � (d) I (d) [t � 1] + � (u ) I (u ) [t � 1]) S[t� 1]
N [t� 1] � �E [t � 1];

I (u ) [t] � I (u ) [t � 1] = �E [t � 1] � (� ( I;u ) +  )I (u ) [t � 1];
I (d) [t] � I (d) [t � 1] = I (u ) [t � 1] � (� ( I;d ) + � ( I;d ) + h)I (d) [t � 1];

R(u ) [t] � R(u ) [t � 1] = � ( I;u ) I (u ) [t � 1] � �R (u ) [t � 1];
R(d) [t] � R(d) [t � 1] = � ( I;d ) I (d) [t � 1] + � (H ) (H [t � 1] � C[t � 1]) � �R (d) [t � 1];

H [t] � H [t � 1] = hI (d) [t � 1] � (� (H ) + � (H ) )(H [t � 1] � C[t � 1]) � � (C ) (C[t � 1] � V [t � 1]) � � (V ) V[t � 1];
C[t] � C[t � 1] = c(H [t � 1] � C[t � 1]) � (� (C ) + � (C ) + v)(C[t � 1] � V [t � 1]) � � (V ) V[t � 1];
V [t] � V [t � 1] = v(C[t � 1] � V [t � 1]) � (� (V ) + � (V ) )V [t � 1];
D [t] � D [t � 1] = � (V ) V[t � 1] + � (C ) (C[t � 1] � V [t � 1]) + � (H )(H [t� 1] � C[t � 1]) + � ( I;d ) I (d) [t � 1];

Corollary: Basic reproduction number An analysis of our compartmental model using the Next-
Generation Matrix method [34] yields the effective reproductive number (spectral radius) as:

Re =
� (d)  + � (u ) (� ( I;d ) + � ( I;d ) + h)
( + � ( I;u ) ) � (� ( I;d ) + � ( I;d ) + h)

: (1)

Please see Appendix for derivations. Note that when = 0 , our compartmental model reduces to the
standard SEIR model with the undocumented infected and recovered. In this case,R0 = � (u ) =� ( I;u ) .

4 Encoding covariates

Time-varying modeling of variables: Instead of using static rate variables across time to model
compartment transitions as in standard compartmental models, there should be time-varying functions
that map them from known observations. For example, if human mobility decreases over time, the
S ! E transition should re�ect that. Consequently, we propose replacing all static rate variables
with learnable functions that output their value from the related static and time-varying covariates
at each location and timestep. We list all the covariates used for each rate variable in the Appendix.
We note that learnable encoding of variables still preserves the inductive bias of the compartmental
modeling framework while increasing the model capacity via learnable encoders.
Interpretable encoder architecture: In addition to making accurate forecasts, it is valuable to
understand how each covariate affects the model. Such explanations greatly help users from healthcare
and public sector to understand the disease dynamics better, and also help model developers to ensure
the model is learning appropriate dynamics via sanity checks with known scienti�c studies or common
knowledge. To this end we adopt a generalized additive model [35] for each variablevi from Table
2 based on additionalcovariatescov(vi ; t) at different timet. The covariates we consider include
(i) the set of static covariatesS, such as population density, and (ii)f f [t � j ]gf 2F i ;j =1 ;:::;k the set
of time-varying covariates (features)F i with the observation fromt � 1 to t � k, such as mobility.
Omitting individual feature interactions and applying additive aggregation, we obtain

vi [t] = vi;L + ( vi;U � vi;L ) � �
�
c + bi + w > cov(vi ; t)

�
; (2)

wherevi;L andvi;U are the lower and upper bounds ofvi for all t, c is the global bias,bi is the
location-dependent bias.w is the trainable parameter, and� () is the sigmoid function to limit the
range to[vi;L ; vi;U ]2, which is important to stabilize training and avoid over�tting. We note that
although Eq.(2) denotes a linear decomposition forvi [t] at each timestep, the overall behavior is still
highly non-linear due to the relationships between compartments.
Covariate forecasting:The challenge of using Eq.(2) for future forecasting is that some time-varying
covariates are not available for the entire forecasting horizon. Assume we have the observations
of covariates and compartments untilT , and we want to forecast fromT +1 to T + � . To forecast
vi [T + � ], we need the time varying covariatesf [T + � � k : T + � � 1] for f 2 F i , but some of them
are not observed when� > k . To solve this issue, we propose to forecastf [T+ � � k : T+ � � 1] based
on their own past observations untilT , which is a standard one dimensional time series forecasting
for a given covariatef at a given location. In this paper, we use a standard XGBoost model [36]
which inputs time-series features.3

Information-sharing across locations: Some aspects of the disease dynamics are location-
dependent while others are not. In addition, data availability varies across locations – there may be
limited observations to learn the impact of a covariate. A model able to learn both location dependent

2We usevi;L =0 for all variables,vi;U = 1 for � , 0.2 for� , 0.001 for� and 0.1 for others.
3We used the lagged features of the past 7 days plus the 2 weeks ago, and mean/max in the windows of sizes

of 3, 5, 7, 14 and 21 days.
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and independent dynamics is desirable. Our encoders in Eq.(2) partially capture location-shared dy-
namics via sharedw and the global biasc. To allow the model capture remaining location-dependent
dynamics, we introduce the local biasbi . A challenge is that the model could ignore the covariates by
encoding all information intobi during training. This could hurt generalization as there would not
be any information-sharing on how static covariates affect the outputs across locations. Thus, we
introduce a regularization termL ls = � ls

P
i jbi j2 to encourage the model to leverage covariates and

c for information-sharing instead of relying onbi . WithoutL ls , we observe that the model would use
the local bias more than the encoded covariates, and suffers from poorer generalization.

5 End-to-end training

Algorithm 1 Pseudo-code for training the proposed model
Inputs: Forecasting horizon� , compartment observationsQi , H i , Ci , Vi , D i ; Ri from Ts until T ,
the number of �ne tuning iterationsF , loss coef�cients� R e and� ls .
Initialize trainable parameters� = f w i , c, bi g, and initial conditions for the compartmentsÊ [0],
Î (d) [0], Î (u ) [0], R̂(d) [0], R̂(u ) [0], Ĥ [0], Ĉ[0], V̂ [0], D̂ [0]
Split � day validationYi [T � � : T ] for all locationsi , whereY 2 f Q; H; C; V; D; R (d) g
while until convergencedo

Sample initial conditionsE i [0], I (d)
i [0], I (u )

i [0], R(d)
i [0], R(u )

i [0], H i [0], Ci [0], Vi [0], D i [0]
�  � � RMSProp(r � L (Ts; T � � � 1))
Update the optimal parameters:� opt = � if L f it [T � � : T ] is the current-best

Final �ne-tuning: �ne-tune with joint training and validation data:
�  � opt

for F iterationsdo
�  � � RMSProp(r � L (Ts; T))
Update the optimal parameters:� opt = � if L f it [T � � : T ] is the currently best

Output: Return� opt

Learning from partially-available observations: Fitting would have been easy with observations
for all compartments, however, we only have access to some. For instance,I (d) is not given in the
ground truth of US data but we instead have,Q, the total number of con�rmed cases, that we use
to superviseI (d) + R(d) + H + D. Note thatR(ud ) ; I (ud ) ; S; E are not given as well. Formally, we
assume availability of the observationsY [Ts : T ]4, for Y 2 f Q; H; C; V; D; R (d) g, and consider
forecasting the next� days,Ŷ [T + 1 : T + � ].
Fitting objective: There is no direct supervision for training encoders, while they should be learned
in an end-to-end way via the aforementioned partially-available observations. We propose the
following objective for range [Ts, Te]:

L f it [Ts :T ] =
X

Y 2f Q;H;C;V;D;R ( d ) g

� Y

T � �X

t = Ts

�X

i =1

I (Y [t + i ])
P

j I (Y [j ]) � Y [j ]
�q(t+ i� Ts; z) �L (Y [t+ i ]; Ŷ [t+ i ]):

(3)
I (�) 2 f 0; 1g indicates the availability of theY to allow the training to focus only on available
observations.L (; ) is the loss between the ground truth and the predicted values (e.g.,`2 or quantile
loss), and� Y are the importance weights to balance compartments due to its robustness (e.g.,D is
much more robust than others). Lastly,q(t; z) = exp( t � z) is a time-weighting function (whenz = 0 ,
there is no time weighting) to favor more recent observations withz as a hyperparameter.
Constraints and regularization: Given the limited dataset size, over�tting is a concern for high-
capacity encoders trained on insuf�cient data. In addition to limiting the model capacity with the
epidemiological inductive bias, we further apply regularization to improve generalization to unseen
future data. An effective regularization is constraining the effective reproduction numberRe as
derived in Eq.(1). There are rich literature in epidemiology onRe to give us good priors on the range
of the number should be. For a reproduction numberRe[t] at timet, we consider the regularization

L R e [Ts : T ] =
X T

t = Ts
exp ((Re[t] � R)+ ) ;

4We use the notationSi [Ts : T ] to denote all timesteps betweenTs (inclusive) andT (inclusive).
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whereR is a prespeci�edsoft upper bound. The regularization favors the model withRe in a
reasonable range in addition to good absolute forecasting numbers. In the experiment, we setR = 5
without further tuning. Last, ignoring the perturbation of a small local window, the trend of forecast
should usually be smooth. One commonly used smoothness constraint, is on the �rst-order difference.
We call it asvelocity, which is de�ned asvY [t] = ( Y [t] � Y [t � k])=k. The �rst-order constraint
encouragevY [t] � vY [t � 1], which causes linear forecasting, and cannot capture the rapid growing
cases. Instead, we relax the smoothness to be on the second order difference. We called it as
acceleration, which is de�ned asaY [t] = vY [t] � vY [t � 1]. The regularization is

L acc [Ts :T ] =
X

Y 2f Q;D g

TX

t = Ts +1

(aY [t] � aY [t � 1])2

The �nal objective function is

L (Ts; T) = L f it [Ts : T ]+ � ls � L ls + � R e � L R e [Ts : T ]+ � acc � L acc [Ts : T ]; (4)

whereL ls = � ls
P

i jbi j2 as discussed in Sec. 4.
Partial teacher forcing: The compartmental model presented in Sec. 3 produces the future prop-
agated values from the current timestep. During training, we have access to the observed values
for Y 2 f Q; H; C; V; D; R (d) g at every timestep, which we could condition the propagated values
on, commonly-known as teacher forcing [37] to mitigate error propagation. At inference time,
however, ground truth beyond the current timestept is unavailable, hence the predictions should
be conditioned on the future estimates. Using solely ground-truth to condition propagation would
create a train-test mismatch. In the same vein of past research to mix the ground truth and predicted
data to condition the projections on [38], we propose partial teacher forcing, simply conditioning
(1 � � I f Y [t]g)Y [t]+ � I f Y [t]g)Ŷ [t], whereI f Y [t]g 2 f 0; 1g indicates whether the ground truthY [t]
exists and� 2 [0; 1]. In the �rst stage of training, we use teacher forcing with� 2 [0; 1], which is a
hyperparameter. For �ne-tuning (please see below), we use� = 1 to unroll the last� steps to mimic
the real forecasting scenario.
Model �tting and selection: The training pseudo code is presented in Algorithm 1. We split the
observed data into training and validation with the last� timesteps to mimic the testing scenario. We
use the training data for optimization of the trainable degrees of freedom, collectively represented
as� , while the validation data is used for early stopping and model selection. Once the model is
selected, we �x the hyperparameters and run �ne-tuning on joint training and validation data, to
not waste valuable recent information by using it only for model selection. For optimization, we
use RMSProp as it is empirically observed to yield lower losses compared to other algorithms and
providing the best generalization performance.

6 Experiments

Ground truth data: We conduct all experiments on US COVID-19 data. The primary ground truth
data for the progression of the disease, forQ andD, are from [39] as used by several others, e.g.
[28]. They obtain the raw data from the state and county health departments. Because of the rapid
progression of the pandemic, past data has often been restated, or the data collection protocols have
been changed. Ground truth data for theH , C andV (see Fig. 1) are obtained from [40]. Note
that there are signi�cant restatements of the past observed counts in the data, so we use the reported
numbers on the prediction date for training (although later we know the restated past ground truth),
and the reported numbers� days after prediction date for evaluation, to be completely consistent with
other models for fair comparison.
Covariates: The progression of COVID-19 is in�uenced by a multitude of factors, including relevant
properties of the population, health, environmental, hospital resources, demographics and economet-
rics indicators. Time-varying factors such as population mobility, hospital resource usage and public
policy decisions can also be important. However, indiscriminately incorporating a data source may
have deleterious effects. Thus, we curate our data sources to limit them to one source in each category
of factors that may have predictive power at the corresponding transition. We use datasets from
public sources (please see Appendix for details). We apply forward- and backward-�lling imputation
(respectively) for time-varying covariates, and median imputation for static covariates. Then, all
covariates are normalized to be in [0, 1], considering statistics across all locations and time-steps.
Training: We implement Algorithm 1 in TensorFlow at state- and county-levels, using`2 loss
for point forecasts. We employ [41] for hyperparameter tuning (including all the loss coef�cients,
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learning rate, and initial conditions) with the objective of optimizing for the best validation loss,
with 400 trials and we useF = 300 �ne-tuning iterations. We choose the compartment weights
� D = � Q = 0 :1, � H = 0 :01 and� R ( d )

= � C = � V = 0 :001.5 At county granularity, we do not
have published data forC andV , so, we remove them along with their connected variables.
6.1 Results

Table 2:� -day average MAE for forecasting the number of deaths at state-level. Since benchmark
models from covid19-forecast-hub repository release forecasts at different dates and horizons, not all
models have predictions for all prediction dates/horizons (indicated by “—”).Bold indicates the best.

Pred. horizon � (days) Pred. date Ours CU LANL UT YYG
05/19/2020 35.8 71.4 45.3 43.7 46.5
05/26/2020 29.4 58.5 36.3 43.8 37.7
06/02/2020 32.8 86.1 33.5 35.1 26.5

14 06/09/2020 28.8 71.0 34.7 33.5 22.3
06/16/2020 31.4 79.6 50.8 48.9 32.1
06/23/2020 63.8 134.7 85.8 67.7 64.2
06/30/2020 46.5 152.1 48.6 34.1 35.1

Figure 3: Ground-truth vs. predicted 14-day death forecasts for 6 states: AR, DE, FL, NY, OH, and
WA on 06/09/2020.

State-level forecasts:Fig. 3 exempli�es the forecasting performance of our model on 4 states. We
compare our method to widely-used benchmarks for state-level prediction of the number of deaths
in each US state. Speci�cally, we report comparisons with Columbia University (CU) model [42],
the GrowthRate model from Los Alamos National Laboratory (LANL) [29], UT-Austin (UT) model
[43] and the YYG model [27]. CU is a metapopulation SEIR model with a selection mechanism
among the different generated scenarios for interventions. LANL is based on statistical-dynamical
growth modeling for the underlying numbers of susceptible and infected cases. UT makes predictions
assuming that social distancing patterns, as measured by anonymized mobile-phone GPS traces,
using a Bayesian multilevel negative binomial regression model. YYG is an SEIR model with
learnable parameters and accounts for reopenings. The parameters are �t using hyperparameter
optimization. Unlike ours, YYG uses �xed (time-invariant) rates as SEIR parameters and is limited
to modeling standard SEIR compartments. Note that, in contrast to usual benchmarks, these models
may change signi�cantly between forecast dates. Table 2 shows comparisons for different prediction
dates and forecasting horizons� . Our model is consistently accurate across phases of the pandemic
and outperforms all others except YYG by a large margin. YYG is merely optimized for the number
of deaths, whereas our model jointly predicts all the compartments while being explainable. Fig. 3
exempli�es our forecasting on different states, and shows our model can forecast well on different
scale of reported deaths.

5Our results are not highly sensitive to these.
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