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Abstract
We develop a distributed second order optimization algorithm that is1

communication-efficient as well as robust against Byzantine failures of the worker2

machines. We propose COMRADE (COMunication-efficient and Robust Approxi-3

mate Distributed nEwton), an iterative second order algorithm, where the worker4

machines communicate only once per iteration with the center machine. This is5

in sharp contrast with the state-of-the-art distributed second order algorithms like6

GIANT [30] and DINGO[6], where the worker machines send (functions of) local7

gradient and Hessian sequentially; thus ending up communicating twice with the8

center machine per iteration. Moreover, we show that the worker machines can9

further compress the local information before sending it to the center. In addition,10

we employ a simple norm based thresholding rule to filter-out the Byzantine worker11

machines. We establish the linear-quadratic rate of convergence of COMRADE12

and establish that the communication savings and Byzantine resilience result in13

only a small statistical error rate for arbitrary convex loss functions. To the best of14

our knowledge, this is the first work that addresses the issue of Byzantine resilience15

in second order distributed optimization. Furthermore, we validate our theoreti-16

cal results with extensive experiments on synthetic and benchmark LIBSVM [4]17

data-sets and demonstrate convergence guarantees.18

1 Introduction19

In modern data-intensive applications like image recognition, conversational AI and recommendation20

systems, the size of training datasets has grown in such proportions that distributed computing have21

become an integral part of machine learning. To this end, a fairly common distributed learning22

framework, namely data parallelism, distributes the (huge) data-sets over multiple worker machines23

to exploit the power of parallel computing. In many applications, such as Federated Learning24

[17], data is stored in users’ personal devices and judicious exploitation of the on-device machine25

intelligence can speed up computation. Usually, in a distributed learning framework, computation26

(such as processing, training) happens in the worker machines and the local results are communicated27

to a center machine (ex., a parameter server). The center machine updates the model parameters by28

properly aggregating the local results.29

Such distributed frameworks face the following two fundamental challenges: First, the parallelism30

gains are often bottle-necked by the heavy communication overheads between worker and the center31

machines. This issue is further exacerbated where large clusters of worker machines are used for32

modern deep learning applications using models with millions of parameters (NLP models, such as33

BERT [9], may have well over 100 million parameters). Furthermore, in Federated Learning, this34

uplink cost is tied to the user’s upload bandwidth. Second, the worker machines might be susceptible35

to errors owing to data crashes, software or hardware bugs, stalled computation or even malicious36

and co-ordinated attacks. This inherent unpredictable (and potentially adversarial) nature of worker37

machines is typically modeled as Byzantine failures. As shown in [18], Byzantine behavior a single38

worker machine can be fatal to the learning algorithm.39

Both these challenges, communication efficiency and Byzantine-robustness, have been addressed in a40

significant number of recent works, albeit mostly separately. For communication efficiency, several41

recent works [28, 27, 2, 13, 1, 31, 16] use quantization or sparsification schemes to compress the42
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message sent by the worker machines to the center machine. An alternative, and perhaps more natural43

way to reduce the communication cost (via reducing the number of iterations) is to use second order44

optimization algorithms; which are known to converge much faster than their first order counterparts.45

Indeed, a handful of algorithms has been developed using this philosophy, such as DANE [24],46

DISCO [34], GIANT [30] , DINGO [6], Newton-MR [23], INEXACT DANE and AIDE [22]. On47

the other hand, the problem of developing Byzantine-robust distributed algorithms has also been48

considered recently (see [26, 12, 5, 32, 33, 14, 3] ). However, all of these papers analyze different49

variations of the gradient descent, the standard first order optimization algorithm.50

In this work, we propose COMRADE, a distributed approximate Newton-type algorithm that com-51

municates less and is resilient to Byzantine workers. Specifically, we consider a distributed setup52

with m worker machines and one center machine. The goal is to minimize a regularized convex loss53

f : Rd → R, which is additive over the available data points. Furthermore, we assume that α fraction54

of the worker machines are Byzantine, where α ∈ [0, 1/2). We assume that Byzantine workers can55

send any arbitrary values to the center machine. In addition, they may completely know the learning56

algorithm and are allowed to collude with each other. To the best of our knowledge, this is the first57

paper that addresses the problem of Byzantine resilience in second order optimization.58

In our proposed algorithm, the worker machines communicate only once per iteration with the center59

machine. This is in sharp contrast with the state-of-the-art distributed second order algorithms (like60

GIANT [30], DINGO [6], Determinantal Averaging [8]), which sequentially estimates functions61

of local gradients and Hessians and communicate them with the center machine. In this way, they62

end up communicating twice per iteration with the center machine. We show that this sequential63

estimation is redundant. Instead, in COMRADE, the worker machines only send a d dimensional64

vector, the product of the inverse of local Hessian and the local gradient. Via sketching arguments,65

we show that the empirical mean of the product of local Hessian inverse and local gradient is close to66

the global Hessian inverse and gradient product, and thus just sending the above-mentioned product67

is sufficient to ensure convergence. Hence, in this way, we save O(d) bits of communication per68

iteration. Furthermore, in Section 5, we argue that, in order to cut down further communication, the69

worker machines can even compress the local Hessian inverse and gradient product. Specifically, we70

use a (generic) ρ-approximate compressor ([16]) for this, that encompasses sign-based compressors71

like QSGD [1] and topk sparsification [25].72

For Byzantine resilience, COMRADE employs a simple thresholding policy on the norms of the local73

Hessian inverse and local gradient product. Note that norm-based thresholding is computationally74

much simpler in comparison to existing co-ordinate wise median or trimmed mean ([32]) algorithms.75

Since the norm of the Hessian-inverse and gradient product determines the amount of movement for76

Newton-type algorithms, this norm corresponds to a natural metric for identifying and filtering out77

Byzantine workers.78

Our Contributions: We propose a communication efficient Newton-type algorithm that is robust79

to Byzantine worker machines. Our proposed algorithm, COMRADE takes as input the local Hessian80

inverse and gradient product (or a compressed version of it) from the worker machines, and performs81

a simple thresholding operation on the norm of the said vector to discard β > α fraction of workers82

having largest norm values. We prove the linear-quadratic rate of convergence of our proposed83

algorithm for strongly convex loss functions. In particular, suppose there are m worker machines,84

each containing s data points; and let ∆t = wt −w∗, where wt is the t-th iterate of COMRADE,85

and w∗ is the optimal model we want to estimate. In Theorem 2, we show that86

‖∆t+1‖ ≤ max{Ψ(1)
t ‖∆t‖,Ψ(2)

t ‖∆t‖2}+ (Ψ
(3)
t + α)

√
1

s
,

where {Ψ(i)
t }3i=1 are quantities dependent on several problem parameters. Notice that the above87

implies a quadratic rate of convergence when ‖∆t‖ ≥ Ψ
(1)
t /Ψ

(2)
t . Subsequently, when ‖∆t‖88

becomes sufficiently small, the above condition is violated and the convergence slows down to a89

linear rate. The error-floor, which is O(1/
√
s) comes from the Byzantine resilience subroutine in90

conjunction with the simultaneous estimation of Hessian and gradient. Furthermore, in Section 5,91

we consider worker machines compressing the local Hessian inverse and gradient product via a ρ-92

approximate compressor [16], and show that the (order-wise) rate of convergence remain unchanged,93

and the compression factor, ρ affects the constants only.94

We experimentally validate our proposed algorithm, COMRADE, with several benchmark data-sets.95

We consider several types of Byzantine attacks and observe that COMRADE is robust against96
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Byzantine worker machines, yielding better classification accuracy compared to the existing state-of-97

the-art second order algorithms.98

A major technical challenge of this paper is to approximate local gradient and Hessian simultaneously99

in the presence of Byzantine workers. We use sketching, similar to [30], along with the norm based100

Byzantine resilience technique. Using incoherence (defined shortly) of the local Hessian along with101

concentration results originating from uniform sampling, we obtain the simultaneous gradient and102

Hessian approximation. Furthermore, ensuring at least one non-Byzantine machine gets trimmed at103

every iteration of COMRADE, we control the influence of Byzantine workers.104

Related Work: Second order Optimization: Second order optimization has received a lot of105

attention in the recent years in the distributed setting owing to its attractive convergence speed.106

The fundamentals of second order optimization is laid out in [24], and an extension with better107

convergence rates is presented in [22]. Recently, in GIANT [30] algorithm, each worker machine108

computes an approximate Newton direction in each iteration and the center machine averages them109

to obtain a globally improved approximate Newton direction. Furthermore, DINGO [6] generalizes110

second order optimization beyond convex functions by extending the Newton-MR [23] algorithm in111

a distributed setting. Very recently, [8] proposes Determinantal averaging to correct the inversion112

bias of the second order optimization. A slightly different line of work ([29], [15], [21]) uses Hessian113

sketching to solve a large-scale distributed learning problems.114

Byzantine Robust Optimization: In the seminal work of [12], a generic framework of one shot115

median based robust learning has been proposed and analyzed in the distributed setting. The issue of116

Byzantine failure is tackled by grouping the servers in batches and computing the median of batched117

servers in [5] (the median of means algorithm). Later in [32, 33], co-ordinate wise median, trimmed118

mean and iterative filtering based algorithm have been proposed and optimal statistical error rate119

is obtained. Also, [20, 7] consider adversaries may steer convergence to bad local minimizers for120

non-convex optimization problems.121

Organization: In Section 3, we first analyze COMRADE with one round of communication per122

iteration. We assume α = 0, and focus on the communication efficiency aspect only. Subsequently,123

in Section 4, we make α 6= 0, thereby addressing communication efficiency and Byzantine resilience124

simultaneously. Further, in Section 5 we augment a compression scheme along with the setting of125

Section 4. Finally, in Section 6, we validate our theoretical findings with experiments. Proofs of all126

theoretical results can be found in the supplementary material.127

Notation: For a positive integer r, [r] denotes the set {1, 2, . . . , r}. For a vector v, we use ‖v‖ to128

denote the `2 norm unless otherwise specified. For a matrix X , we denote ‖X‖2 denotes the operator129

norm, σmax(X) and σmin(X) denote the maximum and minimum singular value. Throughout the130

paper, we use C,C1, c, c1 to denote positive universal constants, whose value changes with instances.131

2 Problem Formulation132

We begin with the standard statistical learning framework for empirical risk minimization, where the133

objective is to minimize the following loss function:134

f(w) =
1

n

n∑
j=1

`j(w
Txj) +

λ

2
‖w‖2, (1)

where, the loss functions `j : R→ R, j ∈ [n] are convex, twice differentiable and smooth. Moreover,135

x1,x2, . . . ,xn ∈ Rd denote the input feature vectors and y1, y2, . . . , yn ∈ R denote the correspond-136

ing responses. Furthermore, we assume that the function f is strongly convex, implying the existence137

of a unique minimizer of (1). We denote this minimizer by w∗. Note that the response {yj}nj=1 is138

captured by the corresponding loss function {`j}nj=1. Some examples of `j are139

logistic loss: `j(zj) = log(1− exp(−zjyj)), squared loss: `j(zj) =
1

2
(zj − yj)2

We consider the framework of distributed optimization with m worker machines, where the feature140

vectors and the loss functions (x1, `1), . . . , (xn, `n) are partitioned homogeneously among them.141

Furthermore, we assume that α fraction of the worker machines are Byzantine for some α < 1
2 . The142

Byzantine machines, by nature, may send any arbitrary values to the center machine. Moreover,143

they can even collude with each other and plan malicious attacks with complete information of the144

learning algorithm.145
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3 COMRADE Can Communicate Less146

We first present the Newton-type learning algorithm, namely COMRADE without any Byzantine147

workers, i.e., α = 0. It is formally given in Algorithm 1 (with β = 0). In each iteration of our148

algorithm, every worker machine computes the local Hessian and local gradient and sends the local149

second order update (which is the product of the inverse of the local Hessian and local gradient) to the150

center machine. The center machine aggregates the updates from the worker machines by averaging151

them and updates the model parameter w. Later the center machine broadcast the parameter w to all152

the worker machines.153

In any iteration t, a standard Newton algorithm requires the computation of exact Hessian (Ht) and154

gradient (gt) of the loss function which can be written as155

gt =
1

n

n∑
i=1

`′j(w
>
t xi)xi + λwt, Ht =

1

n

n∑
i=1

`
′′

j (w>t xi)xix
>
i + λI. (2)

In a distributed set up, the exact Hessian (Ht) and gradient (gt) can be computed in parallel in the156

following manner. In each iteration, the center machine ‘broadcasts’ the model parameter wt to the157

worker machines and each worker machine computes its own local gradient and Hessian. Then the158

center machine can compute the exact gradient and exact Hessian by averaging the the local gradient159

vectors and local Hessian matrices. But for each worker machine the per iteration communication160

complexity is O(d) for the gradient computation and O(d2) for the Hessian computation. Using161

Algorithm 1, we reduce the communication cost to only O(d) per iteration, which is the same as the162

first order methods.163

Each worker machine possess s samples drawn uniformly from {(x1, `1), (x2, `2), . . . , (xn, `n)}.164

By Si, we denote the indices of the samples held by worker machine i. At any iteration t, the worker165

machine computes the local Hessian Hi,t and local gradient gi,t as166

gi,t =
1

s

∑
i∈Si

`′j(w
>
t xi)xi + λwt, Hi,t =

1

s

∑
i∈Si

`
′′

j (w>t xi)xix
>
i + λI. (3)

It is evident from the uniform sampling that E[gi,t] = gt and E[Hi,t] = Ht. The update direction167

from the worker machine is defined as p̂i,t = (Hi,t)
−1gi,t. Each worker machine requires O(sd2)168

operations to compute the Hessian matrix Hi,t and O(d3) operations to invert the matrix. In practice,169

the computational cost can be reduced by employing conjugate gradient method. The center machine170

computes the parameter update direction p̂t = 1
m

∑m
i=1 p̂i,t.171

We show that given large enough sample in each worker machine (s is large) and with incoherent data172

points (the information is spread out and not concentrated to a small number of sample data points),173

the local Hessian Hi,t is close to the global Hessian Ht in spectral norm, and the local gradient gi,t174

is close to the global gradient gt. Subsequently, we prove that the empirical average of the local175

updates acts as a good proxy for the global Newton update and achieves good convergence guarantee.176

3.1 Theoretical Guarantee177

We define the matrix A>t = [a>1 , . . . ,a
>
n ] ∈ Rd×n where aj =

√
`′′j (w>xj) xj . So the exact178

Hessian in equation (2) is Ht = 1
nA>t At + λI. Also we define Bt = [b1, . . . ,bn] ∈ Rd×n where179

bi = `′i(w
Txi)xi. So the exact gradient in equation (2) is gt = 1

nBt1 + λwt180

Definition 1 (Coherence of a Matrix). Let A ∈ Rn×d be any matrix with U ∈ Rn×d being its181

orthonormal basis (the left singular vectors). The row coherence of the matrix A is defined as182

µ(A) = n
d maxi ‖ui‖2 ∈

[
1, nd

]
, where ui is the ith row of U.183

Remark 1. If the coherence of At is small, it can be shown that the Hessian matrix can be approxi-184

mated well via selecting a subset of rows. Note that this is a fairly common to use coherence condition185

as an approximation tool (see [10, 11, 19])186

In the following, we assume that the Hessian matrix is L-Lipschitz (see definition below), which is a187

standard assumption for the analysis of the second order method for general smooth loss function (as188

seen in [30],[8]).189

Assumption 1. The Hessian matrix of the loss function f is L-Lipschitz continuous i.e.190 ∥∥∇2f(w)−∇2f(w′)
∥∥
2
≤ L ‖w − w′‖.191
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Algorithm 1 COMmunication-efficient and Robust Approximate Distributed nEwton (COMRADE)

1: Input: Step size γ, parameter β ≥ 0
2: Initialize: Initial iterate w0 ∈ Rd
3: for t = 0, 1, . . . , T − 1 do
4: Central machine: broadcasts wt

for i ∈ [m] do in parallel
5: i-th worker machine:

• Non-Byzantine: Computes local gradient gi,t and local Hessian Hi,t; sends p̂i,t =
(Hi,t)

−1gi,t to the central machine,
• Byzantine: Generates ? (arbitrary), and sends it to the center machine

end for
6: Center Machine:

• Sort the worker machines in a non decreasing order according to norm of updates
{p̂i,t}mi=1 from the local machines

• Return the indices of the first 1− β fraction of machines as Ut,
• Approximate Newton Update direction : p̂t = 1

|Ut|
∑
i∈Ut p̂i,t

• Update model parameter: wt+1 = wt − γp̂t.
7: end for

In the following theorem, we provide the convergence rate of COMRADE (with α = β = 0) in the192

terms of ∆t = wt −w∗. Also, we define κt = σmax(Ht)/σmin(Ht) as the condition number of193

Ht, and hence κt ≥ 1.194

Theorem 1. Let µ ∈
[
1, nd

]
be the coherence of At . Suppose γ = 1 and s ≥ 3µd

η2 log md
δ for some195

η, δ ∈ (0, 1). Under Assumption 1 , with probability exceeding 1− δ, we obtain196

‖∆t+1‖ ≤ max{

√
κt(

ζ2

1− ζ2
)‖∆t‖,

L

σmin(Ht)
‖∆t‖2}+

2ε√
σmin(Ht)

,

where ζ = ν( η√
m

+ η2

1−η ), ν = σmax(A
>A)

σmax(A>A)+nλ
≤ 1, and197

ε =
1

1− η
1√

σmin(Ht)
(1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖. (4)

Remark 2. It is well known that a distributed Newton method has linear-quadratic convergence rate.198

In Theorem 1 the quadratic term comes from the standard analysis of Newton method. The linear199

term (which is small) arises owing to Hessian approximation. It gets smaller with better Hessian200

approximation (smaller η), and thus the above rate becomes quadratic one. The small error floor201

arises due to the gradient approximation in the worker machines, which is essential for the one round202

of communication per iteration. The error floor is ∝ 1√
s

where s is the number of samples in each203

worker machine. So for a sufficiently large s, the error floor becomes negligible.204

Remark 3. The sample size in each worker machine is dependent on the coherence of the matrix205

At and the dimension d of the problem. Theoretically, the analysis is feasible for the case of s ≥ d206

(since we work with H−1i,t ). However, when s < d, one can replace the inverse by a pseudo-inverse207

(modulo some changes in convergence rate).208

4 COMRADE Can Resist Byzantine Workers209

In this section, we analyze COMRADE with Byzantine workers. We assume that α(< 1/2) fraction210

of worker machines are Byzantine. We define the set of Byzantine worker machines by B and the set211

of the good (non-Byzantine) machines byM. COMRADE employs a ‘norm based thresholding’212

scheme on the local Hessian inverse and gradient product to tackle the Byzantine workers.213

In the t-th iteration, the center machine outputs a set Ut with |Ut| = (1− β)m, consisting the indices214

of the worker machines with smallest norm. Hence, we ‘trim’ the worker machines that may try215

to diverge the learning algorithm. We denote the set of trimmed machines as Tt. Moreover, we216

take β > α to ensure at least one good machine falls in Tt. This condition helps us to control the217
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Byzantine worker machines. Finally, the update is given by p̂t = 1
|Ut|

∑
i∈Ut p̂i,t. We define:218

ε2byz = [3(
1− α

1− β
)2 + 4κt(

α

1− β
)2]ε2, (5)

ζ2byz = 2(
1− α

1− β
)2(

ν

1− η
)2 + ν2(

1− α

1− β
)2(

η√
(1− α)m

+
η2

1− η
)2 + 4κt(

α

1− β
)2[2 + (

ν

1− η
)2]. (6)

ε is defined in (4), ν = σmax(A
TA)

σmax(ATA)+nλ
and κt is the condition number of the exact Hessian Ht.219

Theorem 2. Let µ ∈
[
1, nd

]
be the coherence of At . Suppose γ = 1 and s ≥ 3µd

η2 log md
δ for some220

η, δ ∈ (0, 1). For 0 ≤ α < β < 1/2 , under Assumption 1 , with probability exceeding 1 − δ,221

Algorithm 1 yields222

‖∆t+1‖ ≤ max{

√
κt(

ζ2byz
1− ζ2byz

)‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

2εbyz√
σmin(Ht)

,

where ζbyz and εbyz are defined in equations (5) and (6) respectively.223

The remarks of Section 3 is also applicable here. On top of that, we have the following remarks:224

Remark 4. Compared to the convergence rate of Theorem 1, the rate here remains order-wise same225

even with Byzantine robustness. The coefficient of the quadratic term remains unchanged but the226

linear rate and the error floor suffers a little bit (by a small constant factor).227

Remark 5. Note that for Theorem 2 to hold, we require α ∼ 1/
√
κt for all t. In cases where κt is228

large, this can impose a stricter condition on α. However, we conjecture that this dependence can229

be improved via applying a more intricate (and perhaps computation heavy) Byzantine resilience230

algorithm. In this work, we kept the Byzantine resilience scheme simple at the expense of this231

condition on α.232

5 COMRADE Can Communicate Even Less and Resist Byzantine Workers233

In Section 3 we analyze COMRADE with an additional feature. We let the worker machines further234

reduce the communication cost by applying a generic class of ρ-approximate compressor [16] on the235

parameter update of Algorithm 1. We first define the class of ρ-approximate compressor:236

Definition 2. An operator Q : Rd → Rd is defined as ρ-approximate compressor on a set S ⊂ Rd if,237

∀x ∈ S, ‖Q(x)− x‖2 ≤ (1− ρ) ‖x‖2, where ρ ∈ [0, 1] is the compression factor.238

The above definition can be extended for any randomized operator Q satisfying E(‖Q(x)− x‖2) ≤239

(1− ρ) ‖x‖2, for all ∀x ∈ S. The expectation is taken over the randomization of the operator. Notice240

that ρ = 1 implies that Q(x) = x (no compression). Examples of ρ-approximate compressor include241

QSGD [1], `1-QSGD [16], topk sparsification and randk [25].242

Worker machine i computes the product of local Hessian inverse inverse and local gradient and then243

apply ρ-approximate compressor to obtain Q(H−1i,t gi,t); and finally sends this compressed vector244

to the center. The Byzantine resilience subroutine remains the same–except, instead of sorting with245

respect to ‖H−1i,t gi,t‖, the center machine now sorts according to ‖Q(H−1i,t gi,t)‖. The center machine246

aggregates the compressed updates by averaging Q(p̂) = 1
|Ut|

∑
i∈Ut Q(p̂i,t), and take the next step247

as wt+1 = wt − γQ(p̂).248

Recall the definition of ε from (4). We also use the following notation : ζ2M = ν( η√
(1−α)m

+249

η2

1−η ), ζ1 = ν
1−η and ν = σmax(A

TA)
σmax(ATA)+nλ

. Furthermore, we define the following:250

ε2comp,byz = [3(
1− α

1− β
)2 + 4κt(

α

1− β
)2](1 + κ(1− ρ))ε2 (7)

ζ2comp,byz = 2(
1− α

1− β
)2(ζ21 + κt(1− ρ)((1 + ζ21 )) + (

1− α

1− β
)2(ζ2M + κt(1− ρ)((1 + ζ21 ))

+ 4κt(
α

1− β
)2(2 + (ζ21 + κt(1− ρ)((1 + ζ21 ))) (8)
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(a) w5a (b) a9a (c) Epsilon (d) covtype

(e) GIANT ‘flipped’ attack (f) GIANT ‘negative’ attack (g) Robust GIANT (h) Robust GIANT

Figure 1: (First row) Comparison of training accuracy between COMRADE(Algorithm 1) and
GIANT [30] with (a) w5a (b) a9a (c) Epsilon (d) Covtype dataset. (Second row) Training accuracy of
(e) GIANT for ‘flipped label’ and (f) ‘negative update’ attack; and comparison of Robust GIANT and
COMRADE with a9a dataset for (g) ‘flipped label’ and (h) ‘negative update’ attack.

Theorem 3. Let µ ∈
[
1, nd

]
be the coherence of At . Let γ = 1 and s ≥ 3µd

η2 log md
δ for some251

η, δ ∈ (0, 1). For 0 ≤ α < β < 1/2, under Assumption 1 and with Q being the ρ-approximate252

compressor, with probability exceeding 1− δ, we obtain253

‖∆t+1‖ ≤ max{

√
κt(

ζ2comp,byz
1− ζ2comp,byz

)‖∆t‖,
L

σmin(Ht)
‖∆t‖2}+

εcomp,byz√
σmin(Ht)

where εcomp,byz and ζcomp,byz are given in equations (7) and (8) respectively.254

Remark 6. With no compression (ρ = 1) we get back the convergence guarantee of Theorem 2.255

Remark 7. Note that even with compression, we retain the linear-quadratic rate of convergence of256

COMRADE. The constants are affected by a ρ-dependent term.257

6 Experimental Results258

In this section we validate our algorithm, COMRADE in Byzantine and non-Byzantine setup259

on synthetically generated and benchmark LIBSVM [4] data-set. The experiments focus260

on the standard logistic regression problem. The logistic regression objective is defined as261
1
n

∑n
i=1 log

(
1 + exp(−yix>i w)

)
+ λ

2n‖w‖
2, where w ∈ Rd is the parameter, {xi}ni=1 ∈ Rd262

are the feature data and {yi}ni=1 ∈ {0, 1} are the corresponding labels. We use ‘mpi4py’ package263

for distributed framework in a computing cluster1. We choose ‘a9a’ (d = 123, n ≈ 32K), ‘w5a’264

(d = 300, n ≈ 10k), ‘Epsilon’ (d = 2000, n = 0.4M) and ‘covtype.binary’ (d = 54, n ≈ 0.5M)265

classification datasets and partition the data in 20 different worker machines. In the experiments, we266

choose two types of Byzantine attacks : (1). ‘flipped label’-attack where (for binary classification)267

the Byzantine worker machines flip the labels of the data, thus making the model learn with wrong268

labels, and (2). ‘negative update attack’ where the Byzantine worker machines compute the local269

update (p̂i) and communicate −c× p̂i with c ∈ (0, 1) making the updates to be opposite of actual270

direction. We choose β = α+ 2
m .271

In Figure 1(first row) we compare COMRADE in non-Byzantine setup (α = β = 0) with the state-of272

the art algorithm GIANT [30]. It is evident from the plot that despite the fact that COMRADE273

requires less communication, the algorithm is able to achieve similar accuracy. Also, we show the274

1The cluster information is absent for anonymity.
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(a) w5a (b) a9a (c) Epsilon (d) covtype

(e) w5a (f) a9a (g) Epsilon (h) covtype

(i) w5a ‘flipped’ (j) w5q ‘negative’ (k) a9a ‘flipped’ (l) a9a ‘negative’

Figure 2: (First row) Accuracy of COMRADE with 10%, 15%, 20% Byzantine workers with ‘nega-
tive update’ attack for (a). w5a (b). a9a (c). covtype (d). Epsilon. (Second row) COMRADE accuracy
with 10%, 15%, 20% Byzantine workers with ‘flipped label’ attack for (e) w5a (f) a9a (g) covtype
(h) Epsilon. (Third row) Accuracy of COMRADE with ρ-approximate compressor (Section 5) with
10%, 15%, 20% Byzantine workers; (i) ‘flipped label’ attack for w5a (j) ‘negative update’ attack for
w5a. (k) ‘flipped label’ attack for a9a . (l) ‘negative update’ attack for a9a dataset.

ineffectiveness of GIANT in the presence of Byzantine attacks. In Figure 2((e),(f)) we show the275

accuracy for flipped label and negative update attacks. These plots are an indicator of the requirement276

of robustness in the learning algorithm. So we device ‘Robust GIANT’, which is GIANT algorithm277

with added ‘norm based thresholding’ for robustness. In particular, we trim the worker machines278

based on the local gradient norm in the first round of communication of GIANT. Subsequently, in the279

second round of communication, the non-trimmed worker machines send the updates (product of280

local Hessian inverse and the local gradient) to the center machine. We compare COMRADE with281

‘Robust GIANT’ in Figure 1((g),(h)) with 10% Byzantine worker machines for ‘a9a’ dataset. It is282

evident plot that COMRADE performs better than the ‘Robust GIANT’.283

Next we show the accuracy of COMRADE with different numbers of Byzantine worker machines.284

Here we choose c = 0.9. We show the accuracy for ’negetive update ’ attack in Figure 2(first row)285

and ’flipped label’ attack in Figure 2 (second row). Furthermore, we show that COMRADE works286

even when ρ-approximate compressor is applied to the updates. In Figure 2(Third row) we plot the287

tranning accuracies. For compression we apply the scheme known as QSGD [1]. Further experiments288

can be found in the supplementary material.289

7 Conclusion and Future Work290

In this paper, we address the issue of communication efficiency and Byzantine robustness via second291

order optimization and norm based thresholding respectively for strongly convex loss. Extending our292

setting to handle weakly convex and non-convex loss is of immediate interest. We would also like to293

exploit local averaging with second order optimization. Moreover, an import aspect, privacy, is not294

addressed in this work. We keep this as our future research direction.295
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Broader Impact296

The advent of computationally-intensive machine learning (ML) models has changed the technology297

landscape in the past decade. The most powerful learning models are also the most expensive to train.298

For example, OpenAI’s GPT-3 language model has 175 billion parameters and takes USD 12 million299

to train2! On top of that machine learning training has a costly environmental footprint: recent study300

shows that training a transformer with neural architecture search can have as much as five times301

CO2 emission of a standard car in its lifetime3. While the really expensive models are relatively302

rare, training of moderately large ML models is now ubiquitous over the data science industry and303

elsewhere. Most of the training of machine learning model today is performed in distributed platforms304

(such as Amazon’s EC2). Any savings in energy - in forms of computation or communication - in305

distributed optimization will have a large positive impact.306

This paper seeks to speed up distributed optimization algorithms by minimizing inter-server commu-307

nication and at the same time makes the optimization algorithms robust to adversarial failures. The308

protocols resulting from this paper are immediately implementable and can be adapted to any large309

scale distributed training of a machine learning model. Further, since our algorithms are robust to310

Byzantine failure, the training process becomes more reliable and fail-safe.311

In addition to that, we think the theoretical content of this paper is instructive and some elements312

can be included in the coursework of a graduate class of distributed optimization, to exemplify the313

trade-off between some fundamental quantities in distributed optimization.314
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8 Appendix A: Analysis of Section 3404

Matrix Sketching405

Here we briefly discuss the matrix sketching that is broadly used in the context of randomized406

linear algebra. For any matrix A ∈ Rn×d the sketched matrix Z ∈ Rs×d is defined as STA where407

S ∈ Rn×s is the sketching matrix (typically s < n). Based on the scope and basis of the application,408

the sketched matrix is constructed by taking linear combination of the rows of matrix which is known409

as random projection or by sampling and scaling a subset of the rows of the matrix which is known410

as random sampling. The sketching is done to get a smaller representation of the original matrix to411

reduce computational cost.412

Here we consider a uniform row sampling scheme. The matrix Z is formed by sampling and scaling413

rows of the matrix A. Each row of the matrix A is sampled with probability p = 1
n and scaled by414

multiplying with 1√
sp .415

P
(

zi =
aj√
sp

)
= p,

where zi is the i-th row matrix Z and aj is the j th row of the matrix A. Consequently the sketching416

matrix S has one non-zero entry in each column.417

We define the matrix A>t = [a>1 , . . . ,a
>
n ] ∈ Rd×n where aj =

√
`′′j (w>xj) xj . So the exact418

Hessian in equation (2) is Ht = 1
nA>t At + λI. Assume that Si is the set of features that are held by419

the ith worker machine. So the local Hessian is420

Hi,t =
1

s

∑
j∈Si

`′′j (w>xj)xjx
>
j + λI =

1

s
A>i,tAi,t + λI,

where Ai,t ∈ Rs×d and the row of the matrix Ai,t is indexed by Si. Also we define Bt =421

[b1, . . . ,bn] ∈ Rd×n where bi = `′i(w
>xi)xi. So the exact gradient in equation (2) is gt =422

1
nBt1 + λwt and the local gradient is423

gi,t =
1

s

∑
i∈Si

`′j(w
>
t xi)xi + λwt =

1

s
Bi,t1 + λwt,

where Bi,t is the matrix with column indexed by Si. If {Si}mi=1 are the sketching matrices then the424

local Hessian and gradient can be expressed as425

Hi,t = A>t SiS
>
i A>t + λI gi,t =

1

n
BSiS

>
i 1 + λw. (9)

With the help of sketching idea later we show that the local hessian and gradient are close to the exact426

hessian and gradient.427

The Quadratic function For the purpose of analysis we define an auxiliary quadratic function428

φ(p) =
1

2
p>Htp− g>t p =

1

2
p>(A>t At + λI)p− g>t p. (10)

The optimal solution to the above function is429

p∗ = arg minφ(p) = H−1t gt = (A>t At + λI)−1gt,

which is also the optimal direction of the global Newton update. In this work we consider the local430

and global (approximate ) Newton direction to be431

p̂i,t = (A>SiS
>
i A + λI)−1gi,t, p̂t =

1

m

m∑
i=1

p̂i,t.
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respectively. And it can be easily verified that each local update p̂i,t is optimal solution to the432

following quadratic function433

φ̂i,t(p) =
1

2
p>(A>SiS

>
i A + λI)p− g>i p. (11)

In our convergence analysis we show that value of the quadratic function in (10) with value p̂t is434

close to the optimal value.435

Singular Value Decomposition (SVD) For any matrix A ∈ Rn×d with rank r, the singular value436

decomposition is defined as A = UΣV> where U,V are n × r and d × r column orthogonal437

matrices respectively and Σ is a r × r diagonal matrix with diagonal entries {σ1, . . . σr}. If A is a438

symmetric positive semi-definite matrix then U = V.439

8.1 Analysis440

Lemma 1 (McDiarmid’s Inequality). Let X = X1, . . . , Xm be m independent random variables441

taking values from some set A, and assume that f : Am → R satisfies the following condition442

(bounded differences ):443

sup
x1,...,xm,x̂i

|f(xi, . . . , xi, . . . , xm)− f(xi, . . . , x̂i, . . . , xm)| ≤ ci,

for all i ∈ {1, . . . ,m}. Then for any ε > 0 we have444

P [f(X1, . . . , Xm)− E[f(X1, . . . , Xm)] ≥ ε] ≤ exp

(
− 2ε2∑m

i=1 c
2
i

)
.

The property described in the following Lemma 2 is a very useful result for uniform row sampling445

sketching matrix.446

Lemma 2 (Lemma 8 [30]). Let η, δ ∈ (0, 1) be a fixed parameter and r = rank(At) and U ∈447

Rn×r be the orthonormal bases of the matrix At. Let {Si}mi=1 be sketching matrices and S =448
1√
m

[S1, . . .Sm] ∈ Rn×ms. With probability 1− δ the following holds449 ∥∥U>SiS
>
i U− I

∥∥
2
≤ η ∀i ∈ [m] and

∥∥U>SS>U− I
∥∥
2
≤ η√

m
.

Lemma 3. Let S ∈ Rn×s be any uniform sampling sketching matrix, then for any matrix B =450

[b1, . . . ,bn] ∈ Rd×n with probability 1− δ for any δ > 0 we have,451

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

1

δ
))

√
1

s
max
i
‖bi‖,

where 1 is all ones vector.452

Proof. The vector B1 is the sum of column of the matrix B and BSS>1 is the sum of uniformly453

sampled and scaled column of the matrix B where the scaling factor is 1√
sp with p = 1

n . If (i1, . . . , is)454

is the set of sampled indices then BSS>1 =
∑
k∈(i1,...,is)

1
spbk.455

Define the function f(i1, . . . , is) = ‖ 1nBSS>1 − 1
nB1‖. Now consider a sampled set456

(i1, . . . , ij′ , . . . , is) with only one item (column) replaced then the bounded difference is457

∆ = |f(i1, . . . , ij , . . . , is)− f(i1, . . . , ij′ , . . . , is)|

= | 1
n
‖ 1

sp
bi′j −

1

sp
bij‖| ≤

2

s
max
i
‖bi‖.

Now we have the expectation458

E[‖ 1

n
BSS>1− 1

n
B1‖2] ≤ n

sn2

n∑
i=1

‖bi‖2 =
1

s
max
i
‖bi‖2

⇒ E[‖ 1

n
BSS>1− 1

n
B1‖] ≤

√
1

s
max
i
‖bi‖.
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Using McDiarmid inequality (Lemma 1) we have459

P [

∥∥∥∥∥ 1

n
BSS>1− 1

n
B1‖ ≥

√
1

s
max
i
‖bi‖+ t

]
≤ exp

(
− 2t2

s∆2

)
.

Equating the probability with δ we have460

exp(− 2t2

s∆2
) = δ

⇒t = ∆

√
s

2
ln(

1

δ
) = max

i
‖bi‖

√
2

s
ln(

1

δ
).

Finally we have with probability 1− δ461

‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

1

δ
))

√
1

s
max
i
‖bi‖.

462

Remark 8. For m sketching matrix {Si}mi=1, the bound in the Lemma 3 is463

‖ 1

n
BSiS

>
i 1− 1

n
B1‖ ≤ (1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖,

with probability 1− δ for any δ > 0 for all i ∈ {1, 2, . . . ,m}. In the case that each worker machine464

holds data based on the uniform sketching matrix the local gradient is close to the exact gradient.465

Thus the local second order update acts as a good approximate to the exact Netwon update.466

Now we consider the update rule of GIANT [30] where the update is done in two rounds in each467

iteration. In the first round each worker machine computes and send the local gradient and the468

center machine computes the exact gradient gt in iteration t. Next the center machine broadcasts469

the exact gradient and each worker machine computes the local Hessian and send p̃i,t = (Hi,t)
−1gt470

to the center machine and the center machine computes the approximate Newton direction p̃t =471
1
m

∑m
i=1 p̃i,t. Now based on this we restate the following lemma (Lemma 6 [30]).472

Lemma 4. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 2. Let φt be defined in (10)473

and p̃t be the update. It holds that474

min
p
φt(p) ≤ φt(p̃t) ≤ (1− ζ2) min

p
φt(p),

where ζ = ν( η√
m

+ η2

1−η ) and ν = σmax(A
>A)

σmax(A>A)+nλ
≤ 1.475

Now we prove similar guarantee for the update according to COMRADE in Algorithm 1.476

Lemma 5. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 2. Let φt be defined in (10)477

and p̂t be defined in Algorithm 1(β = 0)478

min
p
φt(p) ≤ φt(p̂t) ≤ ε2 + (1− ζ2) min

p
φt(p),

where ε = 1
1−η

1√
σmin(Ht)

(1 +
√

2 ln(mδ ))
√

1
s maxi ‖bi‖ and ζ = ν( η√

m
+ η2

1−η ) and ν =479

σmax(A
>A)

σmax(A>A)+nλ
.480

Proof. First consider the quadratic function (10)481

φt(p̂t)− φt(p∗) =
1

2
‖H

1
2
t (p̂t − p∗)‖2

≤ (‖H
1
2
t (p̂t − p̃t)‖2︸ ︷︷ ︸
Term1

+ ‖H
1
2
t (p̃t − p∗)‖)2︸ ︷︷ ︸

Term2

, (12)
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where p̃t = 1
m

∑m
i=1(Hi,t)

−1gt. First we bound the Term 2 of (12) using the quadratic function and482

Lemma 4483

1

2

∥∥∥H 1
2
t (p̃t − p∗)

∥∥∥)2 ≤ ζ2
∥∥∥H 1

2
t p∗

∥∥∥2 (Using Lemma 4 )

= −ζ2φt(p∗). (13)
The step in equation (13) is from the definition of the function φt and p∗. It can be shown that484

φt(p
∗) = −

∥∥∥H 1
2
t p∗

∥∥∥2 .
Now we bound the Term 1 in (12). By Lemma 2, we have (1 − η)A>t At � A>t SiS

>
i At �485

(1 + η)A>t At. Following we have (1 − η)Ht � Hi,t � (1 + η)Ht. Thus there exists matrix ξi486

satisfying487

H
1
2
t H−1i,t H

1
2
t = I + ξi and − η

1 + η
� ξi �

η

1− η
,

So we have,488 ∥∥∥H 1
2
t H−1i,t H

1
2
t

∥∥∥ ≤ 1 +
η

1− η
=

1

1− η
. (14)

Now we have489 ∥∥∥H 1
2
t (p̂t − p̃t)

∥∥∥ =

∥∥∥∥∥H 1
2
t

1

m

m∑
i=1

(p̂i,t − p̃i,t)

∥∥∥∥∥
≤ 1

m

m∑
i=1

∥∥∥H 1
2
t (p̂i,t − p̃i,t)

∥∥∥
=

1

m

m∑
i=1

∥∥∥H 1
2
t H−1i,t (gi,t − gt)

∥∥∥
=

1

m

m∑
i=1

∥∥∥H 1
2
t H−1i,t H

1
2
t H
− 1

2
t (gi,t − gt)

∥∥∥
≤ 1

m

m∑
i=1

∥∥∥H 1
2
t H−1i,t H

1
2
t

∥∥∥∥∥∥H− 1
2

t (gi,t − gt)
∥∥∥

≤ 1

1− η
1

m

m∑
i=1

∥∥∥H− 1
2

t (gi,t − gt)
∥∥∥ ( Using (14))

≤ 1

1− η
1√

σmin(Ht)

1

m

m∑
i=1

‖(gi,t − gt)‖ . (15)

Now we bound ‖(gi,t − gt)‖ using Lemma 3,490

‖(gi,t − gt)‖ = ‖ 1

n
BSS>1− 1

n
B1‖ ≤ (1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖.

Plugging it into equation (15) we get,491 ∥∥∥H 1
2
t (p̂t − p̃t)

∥∥∥ ≤ 1

1− η
1√

σmin(Ht)

1

m

m∑
i=1

‖(gi,t − gt)‖

≤ 1

1− η
1√

σmin(Ht)
(1 +

√
2 ln(

m

δ
))

√
1

s
max
i
‖bi‖. (16)

Now collecting the terms of (16) and (13) and plugging them into (12) we have492

φt(p̂t)− φt(p∗) ≤ ε2 − ζ2φt(p∗)
⇒ φt(p̂t) ≤ ε2 + (1− ζ2)φt(p

∗),

where ε is as defined in (4).493

494
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Lemma 6. Let ζ ∈ (0, 1), ε be any fixed parameter. And p̂t satisfies φt(p̂t) ≤ ε2 + (1 −495

ζ2) minp φt(p). Under the Assumption 1(Hessian L-Lipschitz) and ∆t = wt −w∗ satisfies496

∆>t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +
ζ2

1− ζ2
∆>t Ht∆t + 2ε2.

Proof. We have wt+1 = wt−p̂t,∆t = wt−w∗ and ∆t+1 = wt+1−w∗. Also p̂t = wt−wt+1 =497

∆t −∆t+1. From the definition of φ we have,498

φt(p̂t) =
1

2
(∆t −∆t+1)>Ht(∆t −∆t+1)− (∆t −∆t+1)) gt,

(1− ζ2)φt(
1

(1− ζ2)
∆t) =

1

2(1− ζ2)
∆>t Ht∆t −∆>t gt.

From the above two equation we have499

φt(p̂t)− (1− ζ2)φt(
1

(1− ζ2)
∆t)

=
1

2
∆>t+1Ht∆t+1 −

1

2
∆>t Ht∆t+1 +

1

2
∆>t+1gt −

ζ2

2(1− ζ2)
∆>t Ht∆t.

From Lemma 5 the following holds500

φt(p̂t) ≤ ε2 + (1− ζ2) min
p
φt(p)

≤ ε2 + (1− ζ2)φt(
1

(1− ζ2)
∆t).

So we have501

1

2
∆>t+1Ht∆t+1 −∆>t Ht∆t+1 + ∆>t+1gt −

ζ2

2(1− ζ2)
∆>t Ht∆t ≤ ε2. (17)

Consider gt = g(wt)502

g(wt) = g(w∗) +

(∫ 1

0

∇2f(w∗ + z(wt −w∗))dz

)
(wt −w∗)

=

(∫ 1

0

∇2f(w∗ + z(wt −w∗))dz

)
∆t (as g(w∗) = 0).

Now we bound the following503

‖Ht∆t − g(wt)‖ ≤ ‖∆t‖
∥∥∥∥∫ 1

0

[∇2f(wt)−∇2f(w∗ + z(wt −w∗))]dz

∥∥∥∥
≤ ‖∆t‖

∫ 1

0

∥∥[∇2f(wt)−∇2f(w∗ + z(wt −w∗))]
∥∥ dz (By Jensen’s Inequality)

≤ ‖∆t‖
∫ 1

0

(1− z)L ‖wt −w∗‖ dz (by L-Lipschitz assumption)

=
L

2
‖∆t‖2 .

Plugging it into (17) we have504

∆>t+1Ht∆t+1 ≤ 2∆>t+1 (Ht∆t − gt) +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ 2 ‖∆t+1‖ ‖Ht∆t − gt‖+
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ L ‖∆t+1‖ ‖∆t‖2 +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2.

505
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Proof of Theorem 1506

Proof. From the Lemma 6 with probability 1− δ507

∆>t+1Ht∆t+1 ≤ L ‖∆t+1‖ ‖∆t‖2 +
ζ2

(1− ζ2)
∆>t Ht∆t + 2ε2

≤ L‖∆t+1‖‖∆t‖2 + (
ζ2

1− ζ2
σmax(Ht))‖∆t‖2 + 2ε2.

So we have,508

‖∆t+1‖ ≤ max{

√
σmax(Ht)

σmin(Ht)
(

ζ2

1− ζ2
)‖∆t‖,

L

σmin(Ht)
‖∆t‖2}+

2ε√
σmin(Ht)

.

509

9 Appendix B: Analysis of Section 4510

In this section we provide the theoretical analysis of the Byzantine robust method explained in511

Section 4 and prove the statistical guarantee. In any iteration t the following holds512

|Ut| = |(Ut ∩Mt)|+ |(Ut ∩ Bt)|
|Mt| = |(Ut ∩Mt)|+ |(Mt ∩ Tt)|.

Combining both we have513

|Ut| = |Mt| − |(Mt ∩ Tt)|+ |(Ut ∩ Bt)|.

Lemma 7. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 2. Let φt be defined in (10)514

and p̂t be defined in Algorithm 1. It holds that515

min
p
φt(p) ≤ φt(p̂t) ≤ ε2byz + (1− ζ2byz)φ(p∗),

where εbyz and ζbyz is defined in (5) and (6) respectively.516

Proof. In the following analysis we omit the subscript ’t’. From the definition of the quadratic517

function (10) we know that518

φ(p̂)− φ(p∗) =
1

2
‖H 1

2 (p̂− p∗)‖2.

Now we consider519

1

2
‖H 1

2 (p̂− p∗)‖2 =
1

2
‖H 1

2 (
1

|U|
∑
i∈U

p̂i − p∗)‖2

=
1

2
‖H 1

2
1

|U|
(
∑
i∈M

(p̂i − p∗)−
∑

i∈(M∩T )

(p̂i − p∗) +
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ ‖H 1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)‖2︸ ︷︷ ︸
Term1

+ 2‖H 1
2

1

|U|
∑

i∈(M∩T )

(p̂i − p∗)‖2

︸ ︷︷ ︸
Term2

+ 2‖H 1
2

1

|U|
∑

i∈(U∩B)

(p̂i − p∗))‖2

︸ ︷︷ ︸
Term3

.

Now we bound each term separately and use the result of the Lemma 5 to bound each term.520

Term1 = ‖H 1
2

1

|U|
(
∑
i∈M

(p̂i − p∗)‖2

= (
1− α
1− β

)2‖H 1
2

1

|M|
(
∑
i∈M

(p̂i − p∗)‖2

≤ (
1− α
1− β

)2[ε2 + ζ2M‖H
1
2 p∗‖2],

17



where ζM = ν( η√
|M|

+ η2

1−η ) = ν( η√
(1−α)m

+ η2

1−η ).521

Similarly the Term 2 can be bonded as it is a bound on good machines522

Term2 = 2‖H 1
2

1

|U|
∑

i∈(M∩T )

(p̂i − p∗)‖2

= 2(
1− α
1− β

)2‖H 1
2

1

|M ∩ T |
∑

i∈(M∩T )

(p̂i − p∗)‖2

≤ 2(
1− α
1− β

)2[ε2 + ζ2M∩T ‖H
1
2 p∗‖2],

where ζM∩T = ν( η√
|M∩T |

+ η2

1−η ) ≤ ν( η√
(1−β)m

+ η2

1−η ).523

For the Term 3 we know that β > α so all the untrimmed worker norm is bounded by a good machine524

as at least one good machine gets trimmed.525

Term3 = 2‖H 1
2

1

|U|
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2‖ 1

|U ∩ B|
∑

i∈(U∩B)

(p̂i − p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2
1

|U ∩ B|
∑

i∈(U∩B)

‖(p̂i − p∗))‖2

≤ 4σmax(H)(
|U ∩ B|
|U|

)2
1

|U ∩ B|
∑

i∈(U∩B)

(‖p̂i‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖p̂i‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖p̂i − p∗‖2 + 2‖p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2 max
i∈M

(‖H 1
2 (p̂i − p∗)‖2 + 2‖H 1

2 p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2(ε2 + (2 + ζ21 )‖H 1
2 p∗‖2)

≤ 4κ(
α

1− β
)2(ε2 + (2 + ζ21 )‖H 1

2 p∗‖2),

where ζ1 = ν(η + η2

1−η ) = ν
1−η and κ = σmax(H)

σmin(H) .526

Combining all the bounds on Term1 , Term2 and Term3 we have527

1

2
‖H 1

2 (p̂− p∗)‖2 ≤ ε2byz + ζ2byz‖H
1
2 p∗‖2,

where528

ε2byz =

(
3

(
1− α
1− β

)2

+ 4κ

(
α

1− β

)2
)
ε2,

ζ2byz = 2

(
1− α
1− β

)2

ζ2M∩T +

(
1− α
1− β

)2

ζ2M + 4κ

(
α

1− β

)2

(2 + ζ21 ).

Finally we have529

φ(p̂)− φ(p∗) ≤ ε2byz − ζ2byzφ(p∗)

⇒ φ(p̂) ≤ ε2byz + (1− ζ2byz)φ(p∗).

530
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Lemma 8. Let ζbyz ∈ (0, 1), εbyz be any fixed parameter. And p̂t satisfies φt(p̂t) ≤ ε2byz + (1 −531

ζ2byz) minp φt(p). Under the Assumption 1(Hessian L-Lipschitz) and ∆t = wt −w∗ satisfies532

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

ζ2byz
1− ζ2byz

∆T
t Ht∆t + 2ε2byz.

Proof. We choose ζ = ζbyz and ε = εbyz from the Lemma 7 and follow the proof of Lemma 6 to533

obtain the desired bound.534

Proof of Theorem 2535

Proof. We get the desired bound by developing from the result of the Lemma 8 and following the536

proof of Theorem 1537

10 Appendix C:Analysis of Section 5538

First we prove the following lemma that will be useful in our subsequent calculations. Consider539

that Q(p̂) = 1
|B|
∑
i∈B Q(p̂i). And also we use the following notation ζB = ν( η√

|B|
+ η2

1−η ),540

ν = σmax(A
>A)

σmax(A>A)+nλ
≤ 1.541

Lemma 9. If Q(p̂i) is the local update direction and p∗ is the optimal solution to the quadratic542

function φ then543 ∥∥∥H 1
2 (Q(p̂i)− p∗)

∥∥∥2 ≤ 1 + κ(1− ρ))ε2 + (ζ2B + κ(1− ρ)((1 + ζ21 ))
∥∥∥H 1

2 p∗
∥∥∥2 ,

where H is the exact Hessian and544

ε1 =
√

(1 + κ(1− ρ))ε,

ζ2comp,B = (ζ2B + κ(1− ρ)((1 + ζ21 )).

ε is defined in equation (4) and545

Proof. ∥∥∥H 1
2 (Q(p̂)− p∗)

∥∥∥2 =
∥∥∥H 1

2 (Q(p̂)− p̂ + p̂− p∗)
∥∥∥2

≤ 2

∥∥∥H 1
2 (Q(p̂)− p̂)

∥∥∥2︸ ︷︷ ︸
Term1

+
∥∥∥H 1

2 (p̂− p∗)
∥∥∥2︸ ︷︷ ︸

Term2

 . (18)

Following the proof of Lemma 5 we get546 ∥∥∥H 1
2 (p̂i − p∗)

∥∥∥2 ≤ ε2 + ζ1

∥∥∥H 1
2 p∗

∥∥∥2 , (19)

where ε is as defined in (4).Now we consider the term547 ∥∥∥H 1
2 (Q(p̂i)− p̂i

∥∥∥2 ≤ σmax(H)(1− ρ) ‖p̂i‖2

≤ σmax(H)(1− ρ)
(
‖p̂i − p∗‖2 + ‖p∗‖2

)
≤ σmax
σmin

(1− ρ)

(∥∥∥H 1
2 (p̂i − p∗)

∥∥∥2 +
∥∥∥H 1

2 p∗
∥∥∥2)

= κ(1− ρ)

(∥∥∥H 1
2 (p̂i − p∗)

∥∥∥2 +
∥∥∥H 1

2 p∗
∥∥∥2)

≤ κ(1− ρ)

(
ε2 + (1 + ζ21 )

∥∥∥H 1
2 p∗

∥∥∥2) Using (19).
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Now we use the above calculation and bound Term1548 ∥∥∥H 1
2 (Q(p̂)− p̂)

∥∥∥2 ≤ 1

|B|
∑
i∈B

∥∥∥H 1
2 (Q(p̂i)− p̂i

∥∥∥2
≤ κ(1− ρ)

(
ε2 + (1 + ζ21 )

∥∥∥H 1
2 p∗

∥∥∥2) . (20)

We can bound the Term2 directly using the proof of Lemma 5549 ∥∥∥H 1
2 (p̂− p∗)

∥∥∥2 ≤ ε2 + ζ2B

∥∥∥H 1
2 p∗

∥∥∥2 . (21)

Now we use (20) and (21) and plug them in (18)550 ∥∥∥H 1
2 (Q(p̂)− p∗)

∥∥∥2 ≤ (1 + κ(1− ρ))ε2 + (ζ2B + κ(1− ρ)((1 + ζ21 ))
∥∥∥H 1

2 p∗
∥∥∥2 .

Now we define551

ε1 =
√

(1 + κ(1− ρ))ε

ζ2comp,B = (ζ2B + κ(1− ρ)((1 + ζ21 )).

552

Now we have the robust update in iteration t to be Q(p̂) = 1
|Ut|

∑
i∈Ut Q(p̂i,t).553

Lemma 10. Let {Si}mi=1 ∈ Rn×s be sketching matrices based on Lemma 2. Let φt be defined in554

(10) and Q(p̂t) be the update with Q being ρ-approximate compressor. It holds that555

min
p
φt(p) ≤ φt(Q(p̂t)) ≤ ε2comp,byz + (1− ζ2comp,byz)φt(p∗),

where εcomp,byz and ζ2comp,byz is as defined in (7) and (8) respectively.556

Proof. In the following analysis we omit the subscript ’t’. From the definition of the quadratic557

function (10) we know that558

φ(Q(p̂))− φ(p∗) =
1

2
‖H 1

2 (Q(p̂)− p∗)‖2.

Now we consider559 1

2
‖H 1

2 (Q(p̂)− p∗)‖2 =
1

2
‖H 1

2 (
1

|U|
∑
i∈U
Q(p̂i)− p∗)‖2

=
1

2
‖H 1

2
1

|U|
(
∑
i∈M

(Q(p̂i)− p∗)−
∑

i∈(M∩T )

(Q(p̂i)− p∗) +
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

≤ ‖H 1
2

1

|U|
(
∑
i∈M

(Q(p̂i)− p∗)‖2︸ ︷︷ ︸
Term1

+ 2‖H 1
2

1

|U|
∑

i∈(M∩T )

(Q(p̂i)− p∗)‖2

︸ ︷︷ ︸
Term2

+ 2‖H 1
2

1

|U|
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

︸ ︷︷ ︸
Term3

.

Now we bound each term separately and use the Lemma 9560

Term1 = ‖H 1
2

1

|U|
(
∑
i∈M

(Q(p̂i)− p∗)‖2

= (
1− α
1− β

)2‖H 1
2

1

|M|
(
∑
i∈M

(Q(p̂i)− p∗)‖2

≤ (
1− α
1− β

)2[ε21 + ζ2comp,M‖H
1
2 p∗‖2],
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where ζ2comp,M = (ζ2M + κ(1− ρ)((1 + ζ21 ). Similarly the Term 2 can be bonded as it is a bound on561

good machines562

Term2 = 2‖H 1
2

1

|U|
∑

i∈(M∩T )

(Q(p̂i)− p∗)‖2

= 2(
1− α
1− β

)2‖H 1
2

1

|M ∩ T |
∑

i∈(M∩T )

(Q(p̂i)− p∗)‖2

≤ 2(
1− α
1− β

)2[ε21 + ζ2comp,M∩T ‖H
1
2 p∗‖2].

For the Term 3 we know that β > α so all the untrimmed worker norm is bounded by a good machine563

as at least one good machine gets trimmed.564

Term3 = 2‖H 1
2

1

|U|
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2‖ 1

|U ∩ B|
∑

i∈(U∩B)

(Q(p̂i)− p∗))‖2

≤ 2σmax(H)(
|U ∩ B|
|U|

)2
1

|U ∩ B|
∑

i∈(U∩B)

‖(Q(p̂i)− p∗))‖2

≤ 4σmax(H)(
|U ∩ B|
|U|

)2
1

|U ∩ B|
∑

i∈(U∩B)

(‖Q(p̂i)‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖Q(p̂i)‖2 + ‖p∗‖2)

≤ 4σmax(H)(
|U ∩ B|
|U|

)2 max
i∈M

(‖Q(p̂i)− p∗‖2 + 2‖p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2 max
i∈M

(‖H 1
2 (Q(p̂i)− p∗)‖2 + 2‖H 1

2 p∗‖2)

≤ 4κ(
|U ∩ B|
|U|

)2(ε21 + (2 + ζ21 )‖H 1
2 p∗‖2)

≤ 4κ(
α

1− β
)2(ε21 + (2 + ζ21 )‖H 1

2 p∗‖2).

Combining all the bounds on Term1 , Term2 and Term3 we have565

1

2
‖H 1

2 (p̂− p∗)‖2 ≤ ε2byz + ζ2byz‖H
1
2 p∗‖2,

where566

ε2comp,byz =

(
3

(
1− α
1− β

)2

+ 4κ

(
α

1− β

)2
)
ε21

ζ2comp,byz = 2

(
1− α
1− β

)2

ζ2comp,M∩T +

(
1− α
1− β

)2

ζ2comp,M + 4κ

(
α

1− β

)2

(2 + ζ2comp,1).

Finally we have567

φ(p̂)− φ(p∗) ≤ ε2comp,byz − ζ2comp,byzφ(p∗)

⇒ φ(p̂) ≤ ε2comp,byz + (1− ζ2comp,byz)φ(p∗).

568

Lemma 11. Let ζcomp,byz ∈ (0, 1), εcomp,byz be any fixed parameter. And Q(p̂t) satisfies569

φt(Q(p̂t)) ≤ ε2byz + (1 − ζ2byz) minp φt(p). Under the Assumption 1(Hessian L-Lipschitz) and570

∆t = wt −w∗ satisfies571

∆T
t+1Ht∆t+1 ≤ L‖∆t+1‖‖∆t‖2 +

ζ2comp,byz
1− ζ2comp,byz

∆T
t Ht∆t + 2ε2comp,byz.
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Proof. We choose ζ = ζcomp,byz and ε = εcomp,byz from the Lemma 10 and follow the proof of572

Lemma 6 to obtain the desired bound.573

Proof of Theorem 3574

Proof. We get the desired bound by developing from the result of the Lemma 11 and following the575

proof of Theorem 1576

11 Additional Experiment577

In addition to the experimental results in Section 6, we provide some more experiments supporting578

the robustness of the COMRADE in two different types of attacks : 1. ‘Gaussian attack’: where the579

Byzantine workers add Gaussian Noise (N (µ, σ2)) to the update and 2. ‘random label attack’: where580

the Byzantine worker machines learns based on random labels instead of proper labels.581

(a) w5a ‘Gauss’ (b) a9a ‘Gauss’ (c) w5a ‘random’ (d) a9a ‘random’

(e) w5a ‘Gauss’ (f) a9a ‘Gauss’ (g) w5a ‘random’ (h) a9a ‘random’

Figure 3: (First row) Accuracy of COMRADE with 10%, 15%, 20% Byzantine workers with ‘Gaus-
sian ’ attack for (a). w5a (b). a9a and ‘random label’ attack for (c). w5a (d).a9a. (Second row)
Accuracy of COMRADE with ρ-approximate compressor (Section 5) with 10%, 15%, 20% Byzan-
tine workers with ‘Gaussian ’ attack for (a). w5a (b). a9a and ‘random label’ attack for (c). w5a
(d).a9a.
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