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8 Appendix A: Analysis of Section 3|

Matrix Sketching

Here we briefly discuss the matrix sketching that is broadly used in the context of randomized
linear algebra. For any matrix A € R™*¢ the sketched matrix Z € R**? is defined as ST A where
S € R™** is the sketching matrix (typically s < n). Based on the scope and basis of the application,
the sketched matrix is constructed by taking linear combination of the rows of matrix which is known
as random projection or by sampling and scaling a subset of the rows of the matrix which is known
as random sampling. The sketching is done to get a smaller representation of the original matrix to
reduce computational cost.

Here we consider a uniform row sampling scheme. The matrix Z is formed by sampling and scaling
rows of the matrix A. Each row of the matrix A is sampled with probability p = % and scaled by
multiplying with NG

1
sp °

P<Zi: % >:pa
\/SP

where z; is the i-th row matrix Z and a; is the j th row of the matrix A. Consequently the sketching
matrix S has one non-zero entry in each column.

We define the matrix A = [a],...,a,] € R¥" where a; = , [t} (wTx;)x;. So the exact

) n

Hessian in equation (2) is H; = %AtT A, + AI. Assume that S; is the set of features that are held by
the ith worker machine. So the local Hessian is

1 1
H;, = ; Z U (wx;)x;x;] + AL = gAZtAM + A,

JES:
where A;; € R*d and the row of the matrix A, ; is indexed by S;. Also we define B; =
[b1,...,b,] € R¥" where b; = ¢i(w'x;)x;. So the exact gradient in equation @) is g; =
%Btl + Aw; and the local gradient is

1 1
8it = 3 és E;(w:xi)xi + Awy = ;Bi7t1 + Awy,
? i

where B; ; is the matrix with column indexed by S;. If {S;}*, are the sketching matrices then the
local Hessian and gradient can be expressed as

1
H;, = A/S;S]A] + I gi: = —BS;S/1+ \w. )
n

With the help of sketching idea later we show that the local hessian and gradient are close to the exact
hessian and gradient.

The Quadratic function For the purpose of analysis we define an auxiliary quadratic function

1 1
6(p)=5p Hip—g/p=5p (A/A, +\)p—g[p. (10)
The optimal solution to the above function is
p* = argming(p) = H; 'g: = (A A + \I) gy,

which is also the optimal direction of the global Newton update. In this work we consider the local
and global (approximate ) Newton direction to be

. _ R
Pit = (ATS;S/ A +AI) 1gz’,t7 bt = m lei,t.

12
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respectively. And it can be easily verified that each local update p; ; is optimal solution to the
following quadratic function

A 1
$it(p) = 5pT(ATSiSZT A+)\)p—g/p. (11)

In our convergence analysis we show that value of the quadratic function in (T0) with value p; is
close to the optimal value.

Singular Value Decomposition (SVD) For any matrix A € R"*¢ with rank r, the singular value
decomposition is defined as A = UXV " where U,V are n x r and d x 7 column orthogonal
matrices respectively and X is a r x r diagonal matrix with diagonal entries {01, ...0,.}. f Aisa
symmetric positive semi-definite matrix then U = V.

8.1 Analysis

Lemma 1 (McDiarmid’s Inequality). Let X = X1, ..., X,, be m independent random variables
taking values from some set A, and assume that f : A™ — R satisfies the following condition
(bounded differences ):

sup  |f(@iy. oy iye oy mm) — fl@g, oo Eay e xm)| <o,

T1yeeyTm, T

Sforalli € {1,...,m}. Then for any ¢ > 0 we have

PU K Xo) ~ Bl (Ko X 2 00— ).
i=1"1

The property described in the following Lemma 2]is a very useful result for uniform row sampling
sketching matrix.

Lemma 2 (Lemma 8 [30]]). Let n,6 € (0,1) be a fixed parameter and r = rank(A;) and U €
R™" be the orthonormal bases of the matrix A,. Let {S;}", be sketching matrices and S =
\/% [S1,...Sm] € R"*™s_With probability 1 — ¢ the following holds

|UTS;S/U-1|,<n Vie[m] and |U'SSTU-I|,<

5

Lemma 3. Let S € R"*® be any uniform sampling sketching matrix, then for any matrix B =
[b1,...,b,] € R with probability 1 — § for any § > 0 we have,

1 1 1 1
||£BSST1 — EBlH <1+ \/21n(6))\/;mzax Ib:]l,
where 1 is all ones vector.

Proof. The vector B1 is the sum of column of the matrix B and BSSTl is the sum of uniformly
sampled and scaled column of the matrix B where the scaling factor is withp = = If (i1, . . . , 45)

f
1
is the set of sampled indices then BSST1 = Zke(ih__%) spbk'
Define the function f(iy,...,is) = [[1BSST1 — iB1|. Now consider a sampled set
(G157, ..., 1s) with only one item (column) replaced 'then the bounded difference is
= |f(21,...7ij,...7is) —f(ll,...7ij/,...,Zs)|
1,1 1 2
= |=ll—bi; = —bj,|[| < —max|[b;].
n sp 7 sp s i
Now we have the expectation
1
E[|-BSS"1 B1 — bi|? = - b;|?
(I~ I°] Z [Ibs]|” = maXII il

1 1 1
E[|SBSST1 - ~B1|] < \/>max Ib.
n n S i

13
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Using McDiarmid inequality (Lemma([I]) we have

1 1 1
P[|=BSsT1 - —-B1| > \[max [[bs]| +¢
n n s 1

2t2
S exXp | — E .

Equating the probability with § we have

2t2
eXP(*E) =0

s 1 2 1

Finally we have with probability 1 — ¢
1 1 1 1
—BSST1 - —B1| < (1+/2In(z)4/= |-
2ssT1—LBa) < 04 ) Lona

Remark 8. For m sketching matrix {S;}/ |, the bound in the Lemma|3|is

=1

1 T 1 m 1
— Q. — < i — .
”nBS%Sz 1 nBlH < (14 4/21In( 5 ))\/;m?x|b,,

with probability 1 — 0 for any § > 0 forall i € {1,2,... ,m}. In the case that each worker machine
holds data based on the uniform sketching matrix the local gradient is close to the exact gradient.
Thus the local second order update acts as a good approximate to the exact Netwon update.

Now we consider the update rule of GIANT [30] where the update is done in two rounds in each
iteration. In the first round each worker machine computes and send the local gradient and the
center machine computes the exact gradient g; in iteration ¢. Next the center machine broadcasts
the exact gradient and each worker machine computes the local Hessian and send p; ; = (Hi,t)_lgt
to the center machine and the center machine computes the approximate Newton direction p; =
% 2211 Pi,:- Now based on this we restate the following lemma (Lemma 6 [30]).

Lemma 4. Let {S;}", € R"** be sketching matrices based on Lemmal2] Let ¢ be defined in (I0)
and Py be the update. It holds that

min(bt(p) < ¢t(f)t> < (1 - C2> mind)t(p),
P P

Omax (ATA) 1

7 n’ <
Tz (ATA)FnA =

where ( = l/(ﬁ + - )andv =

1-n
Now we prove similar guarantee for the update according to COMRADE in Algorithm
Lemma 5. Let {S;}", € R"** be sketching matrices based on Lemmal2} Let ¢, be defined in (I0)
and Dy be defined in Algorithm[I[ 3 = 0)
mgmbt(p) < (b)) <+ (1-¢%) mgn@(P)a

2

where € = ﬁﬁ(l + 21n(%))\/gmaxi Ibil| and ¢ = v(J= + 75;) and v =

Tmax(ATA)
Omaz (AT A)FnA’

Proof. First consider the quadratic function (10
~ * 1 % ~ *\ (|2
Gu(pe) — 01(p) = 5IH (bi — P

< (I[H7 (b — D)2 + [H7 (B: — p*)II)2, (12)

Terml Term?2
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where p; = % 2111 (Hi’t)_lgt. First we bound the Term 2 of (]E[) using the quadratic function and
Lemmaf

1 1 1
5 HHf (Pr —pY)||)* < ¢ Hpr (Using Lemma 4])
= —Cu(p%). (13)
The step in equation (I3) is from the definition of the function ¢; and p*. It can be shown that

* L 2
¢(p") = — HHEP
Now we bound the Term 1 in (I2). By Lemma [2, we have (1 — n7)A] A; < A[S;S]A; <

(1 +n)A/] A;. Following we have (1 —n)H; < H,; < (1 + n)H,. Thus there exists matrix &;
satisfying

H/H 'H! =1+¢ and Tosg< N
t it T i an _m*&*m’
So we have,
1 1 1
e R e (1
Now we have
L ~ 11 & .
HHf(pt—pt) =’Hf > (Pt — Pis)
i=1
| AT 5
< E; H? (Pi — Pist)
1 m
== | - e
m7:1
1 & I . 1 1
~m Z Hy Hi,tlHtQ H, *(gi: —8t)
i=1
1 — 1.1 _1
< EZ H/H;/H; HHt *(8it — 8t)
i=1

sl_anHH (8 —8)|| (Using (@)

1
< i, (15)
1 -7 m Z” it — gt

Now we bound ||(g;,: — g:)|| using Lemmal3]

1
g~ g0l = 128871~ 131 < (1 o) L o).

Plugging it into equation (T3) we get,

1 N 1
HHtQ (pt _pt)H S 1 — ﬁ ZH it — gt
mzn t
1 1 m 1
< 1+4/2In(— \/7max b;||. 16
T Gy maxlbil. a6

Now collecting the terms of (T6) and (T3) and plugging them into (T2)) we have
$t(De) — de(P™) < € — (P (p")

= du(Dr) < €+ (1 - e (p"),
where € is as defined in (@).
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s95 Lemma 6. Let ¢ € (0,1),¢ be any fixed parameter. And p; satisfies ¢(pr) < € + (1 —
496 (?) ming, ¢¢(p). Under the Assumption|l(Hessian L-Lipschitz) and Ay = wy — W* satisfies

2

1-¢2

AL H A S LA ||| A + ATH A, + 26,

497 Proof. Wehave w1 = w;—DPy, Ay = wy—w*and Ay 1 = Wy —wW* Alsopy = Wy — Wy =
498 At — Ayyq. From the definition of ¢ we have,
. 1
ée(Pe) = i(At — A1) THy(Ar — Arr) — (Ar — A1) &1,
1 1
(1- Cz)qﬁt(mAt) = WA;HtAt - A/g:.

499 From the above two equation we have

ou(D1) — (1— C)on( - A)

(1-¢%)
~ AT HA LATH,A LAT ¢ A/H,A
= 5Bt A = 58 Hy t+1+§ t+1gt_m ¢ HeAg.
s00 From Lemma 5|the following holds
oe(Pr) <+ (1—¢?) mgngbt(p)
1
<4 (1—? —Ay).
> € +( <)¢t((1—g2) t)
501 So we have
1 2
iA;lHtAtH ~AH A+ A g — Q(f_cz)AthAt < €2 (17)

so2  Consider g; = g(wy)
s = ew) + ([ V2w 2w W)z ) (o~ w)

_ (/01 V2f(w* + 2(wy — w*))dz) A, (asg(w*) = 0).

503 Now we bound the following

IELA, — g(w) ] < A H [ 19w = 9 (0w = w

1
< || A / H [V2f(wi) — V2F(W* + 2(wy — W™))] H dz (By Jensen’s Inequality)
0

1
< || Al / (1—2)L||lws—w"||dz (by L-Lipschitz assumption)
0

L 2
= —[|A]|”.
“a
s04 Plugging it into we have
2
Al H A <24 (HiA —g) + a E Cg)AtTHtAt + 26
2
<28 LA — g + g ATHIA, + 26
2 ¢? T 2
S L ||At+1|| ||At|| + mAt HtAt + 2€”.
505 O
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Proof of Theorem ]

Proof. From the Lemma 6| with probability 1 — ¢

2
ALHA G S DA A + a E CQ)A:HtAt +2¢2
2 CQ 2
< LAl AL+ ({ =z Tmas (He) )| A +2¢%.
2
So we have,
Omax L 2 2¢
A < max A, —————||A + .
A {¢nm A g A} + s

9 Appendix B: Analysis of Section 4]

In this section we provide the theoretical analysis of the Byzantine robust method explained in
Sectiond]and prove the statistical guarantee. In any iteration ¢ the following holds

U] = (U O Me)| + |(U: 0 By)
M| = |Us " M)+ [(M N TD)].

Combining both we have
Ur| = M| = |(Me O T)| + [(Ue N Be)I

Lemma 7. Let {S;}", € R"** be sketching matrices based on Lemmal2] Let ¢ be defined in (I0)
and Py be defined in Algorlthml I} It holds that

mF}Il (,ZSt(p) S ¢t(pt) § €gyz + (1 - ngz)¢<p*)a

where €y, and (py. is defined in @) and (0)) respectively.

Proof. In the following analysis we omit the subscript *¢’. From the definition of the quadratic
function (I0) we know that

4(9) — 9(p%) = [ (b~ b

Now we consider

1 1 1
SIH= (6 —p")|?* = ;|H= pi —p")|°
; IR S
1 1 1 ~ * A * ~ *
:§||H2W(Z(pz‘—P)— Z (Pi—p") + Z (i —p"))|?
iEM i€(MNT) i€(UNB)
1 ) 1 R . 11 R .
< |m|* |M(Z(p p*)|[2 + 2||HE — ul > (Bi-p )||2+2HH2W > PP
ieEM e(MNT) ie(UNB)
Terml Term?2 Term3

Now we bound each term separately and use the result of the Lemma 5]to bound each term.

Termt = [HE (3 (b )

ieEM
l1—« 11
= (72’ IHz (> (b =P
) g
< (TP + GlEEp )

17



521

522

523

524
525

526

527

528

529

530

o M N o0
IM]| + 1777) V(\/m—'_ 177])'

Similarly the Term 2 can be bonded as it is a bound on good machines

11
Term?2 = 2||H5W Z (P — ")

where (u = v(

ie(MNT)
1 — 1 1
=2(7)2HH* > mi-p)IP
1— IMAOTI S
1l -« 1,
<2( )2[€2 + Cunr I HZP"||?],

1-p
_ n . _n 4
whete (unT = v(iem + 15) < v(opigm T 1)

For the Term 3 we know that 5 > « so all the untrimmed worker norm is bounded by a good machine
as at least one good machine gets trimmed.

11 . N
Term3=2||H%W S -’
1e(UNB)

<20, WG i X )P

ie(UNB)
|L{ﬂ8\ 2 1 N * 2
<2 max H T
< 20 P e S - p)
i€(UNB)
unBl, 1 12 e
<4 max H i
< (P e S (P 1)
ie(UNB)
|umB‘ 2 ~ 12 * (|2
< .
_4Umax(H)( |Z/[| ) %%{(sz” +||p H )
UnBl, . (|2 |2
< -
< 40 (B (20 (= 22+ 200 )

< (PP B s — )P 4 205 )
< ax(“TER@ + @+ )
SAn(5) @+ 2+ IHE ),

where (1 = v(n + %) =15, and k = %

Combining all the bounds on Term1 , Term2 and Term3 we have

1 1. « 1,
SIH=(b—p P < €fys + Goye HEZDH|1?,

=13 -« a ? 2
e (s(122) e (22 )
1-—
1-—

« 1—a\?
bez = 2( 6) CMF'WT+ (M)

Finally we have

where

18
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546

547

Lemma 8. Let (. € (0, 1), €y be any fixed parameter. And p, satisfies ¢,(ps) < efyz +(1-
ngz) ming, ¢4(p). Under the Assumption Hessian L-Lipschitz) and Ay = w; — wW* satisfies

C2 z
AL H A < L Aal|Ad? + T bng ATH A+ 265,
~ Sbyz
Proof. We choose ¢ = (py. and € = €, from the Lemma and follow the proof of Lemma@ to
obtain the desired bound. O
Proof of Theorem

Proof. We get the desired bound by developing from the result of the Lemma[§]and following the
proof of Theorem ] O

10 Appendix C:Analysis of Section

First we prove the following lemma that will be useful in our subsequent calculations. Consider
2
that Q(p) = 1557 ;e p Q(Pi)- And also we use the following notation (5 = v(— + 11,),

Nl

Omaz(ATA) <1

v= Omaz(ATA)+n\ —

Lemma 9. If Q(D;) is the local update direction and p* is the optimal solution to the quadratic
function ¢ then

|1t 2p:) - p*)H2 <14 (1= )€ + (GG + k(1= p)((1+¢D) ||Fp*

where H is the exact Hessian and

&1 = L+ (L= p))e,
Coomp. = (C5 + K(1 = p)((L+ (7).
e is defined in equation {@)) and

Proof.

<o|[utew )| +[Ee P | as)
Terml Term2
Following the proof of Lemma[5| we get
1. * 2 2 1% 2
B2 i —p7)| <+ [mEp| (19)

where e is as defined in (@).Now we consider the term

2 .2
< Omaz(H)(1 = p) [|Pi]l

< O ()1 = p) (IB: = "> + [P

|Et Qb)) — b

Omax 1. * 2 1 2
< (1-p) HHZ(pi—p)‘ +HH2p
1. NI 1 L2
—rt= ) ([0 o)

IA

ot p) (4 (14 )

2
) Using (19).

19



548 Now we use the above calculation and bound Term1

[mt0m) -0 < 5 3 [0 -5
i€B

2

<l p) (@4 14 ¢ et

2
) . (20)

549 We can bound the Term?2 directly using the proof of Lemma 5|

HH%(f)—p*) i Se“r(?;HHép* i @21
sso0  Now we use (20) and 1)) and plug them in (T8)
[t @) —p1)|[ < (4 51— )+ (¢ + 51— (1 4+ [Eibp?
551 Now we define
er =V ({1 +r(l—-p)e
Coomp.8 = (CB + (1 = p)(1+¢F)).
552 O

553 Now we have the robust update in iteration ¢ to be Q(p) = \714 > icu, Qi)

ss¢  Lemma 10. Let {S;}", € R™*® be sketching matrices based on Lemma E] Let ¢; be defined in
555 (I0) and Q(p4) be the update with Q being p-approximate compressor. It holds that

ngn ¢t (p) < ¢t(Q(f)t)) < 6Eorﬂp,byz + (1 - Cgomp,byz)¢t (p*)’

556 Where €compby= and G2, . is as defined in (7) and () respectively.

557 Proof. In the following analysis we omit the subscript "¢’. From the definition of the quadratic
558 function we know that

. N 1, 1 . N
$(Q(D)) — 6(p") = 5 [H?(Q(P) — p")[*.
559 ow we consider , 1 L1 )
S| (Q(D) — p*)I? = S I (o > Q(bi) —
5 [H=(Q(B) —p*)I* = 5| (Mg; (1) — ")l
1 11 . " R " R "
:gllHiw(Z(Q(py) p)— > (Qp)-p)+ > (QbB:)—p)I
iEM ie(MNT) i€(UNB)
11 N * 1 1 ~ *
_HHEW(Z(Q(M)—D )||2+2HH2W > Q) -p)I?
ieEM ie(MNT)
Terml Term?2
11 . "
+2HH5W > Q) - p))I*
ie(UNB)
Term3
se0 Now we bound each term separately and use the Lemmal9]
11 . N
Terml = IIwa(Z(Q(pi) -p9)I?
iEM
11—« 11
=( PIHz ——( > (2®:) —p)I
1-8 M| EXA;
1-— 1
< ()% + Compond D12,

1-p

20
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563
564
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566

567

568

569
570
571

where Ccomp wm = (G +r(1—p)((1 4 ¢}). Similarly the Term 2 can be bonded as it is a bound on
good machines

Term?2 = 2||H2 W‘ Z (Q(p:) — p)II?

e(MNT)
1 —« 1 1
=92 2 H* QIA)'L 7p* 2
(1_ )l MATI, §m( (P:) )l
11—« 1,
— 2(1 _ B)2[€% + Cczomp7MﬂT||H2p HQ}

For the Term 3 we know that 5 > « so all the untrimmed worker norm is bounded by a good machine
as at least one good machine gets trimmed.

1

Term3=2||H%W S Q) - )2
i€(UNB)
unnB 1 . *
< 20,0 BT Y (@) - PP
ie(UNB)
unsl, 1 g2
< 20maa H Q i) T
e T LRl
|Mﬁ8\ 2 1 ~ 2 * 12
<4 max H 4 +
< tome G gy 3 (1RG4 1Y
unnB
< 40 (B (LD (| 0B P + 1)
unnB
< 400 (B (1 0(6) — o + 2 )
unns 1
< an( P w1 Q) — )P + 2 H )
UunnB
<an(U P + @ )
SAn(7o )+ 2+ DIEE ).

Combining all the bounds on Term1 , Term2 and Term3 we have

1.1, N 1
§||H2(p - p )”2 < 6127yz + Cl?yz”HQp ”27

1—a)? «Q 2
2 _ 2
6cornp,byz_ (3(1_ﬁ> +4/€(1_B) >61

2 2 2
l1-«a o
2 2 2
comp,byz — 2 (1 — 6) Ccomp,MﬂT + <1 _ 6) comp, M +4k <1 _ ﬂ) (2 + comp, )

Finally we have

—
|
Q

omp,byz Cc20mp,byz¢(p*)
omp,byz + (1 - C?omp,byz)(b(p*)'

AN ON

O

Lemma 11. Let Coompby- € (0,1), €comppy= be any fixed parameter. And Q(p:) satisfies
d+(Q(pr)) < efyz + (1 - nyz) ming, ¢;(p). Under the Assumption || lHesszan L-Lipschitz) and
A, = wy — W satisfies

2

mp,b
ALLH A < L Aal[|Ad? + %ATHtAt + 2¢

comp,byz*
comp,byz

21



572 Proof. We choose ¢ = Ceomp,by> and € = €comp by from the Lemma and follow the proof of

573 Lemmal@lto obtain the desired bound.

574 Proof of Theorem 3
575 Proof. We get the desired bound by developing from the result of the Lemma [IT]and following the

576 proof of Theorem|I]

s77 11 Additional Experiment
In addition to the experimental results in Section [6} we provide some more experiments supporting
the robustness of the COMRADE in two different types of attacks : 1. ‘Gaussian attack’: where the

578
579
. . . 2 ‘ 5.
580 Byzantine workers add Gaussian Noise (N (i, 0?)) to the update and 2. ‘random label attack’: where
581 the Byzantine worker machines learns based on random labels instead of proper labels.
10 " 10
e e e - e m———
7 oA 7 o
0 4 ¥ 5 iy A
I 70 Iy ly 70 l//
i i il i
I It Zo il 3w i 3w i
g i g [ g it £ b
S . 4 g 5 g b gof |
< w0 m’, < R I < i
L] —+- 10% Byzantine w0 === 10% Byzantine 1 —=- 10% Byzantine o —=- 10% Byzantine
B i'( —+- 15% Byzantine —+- 15% Byzantine B ;’ —+- 15% Byzantine ,; -+~ 15% Byzantine
,-' —=- 20% Byzantine * A —=- 20% Byzantine 1" —«- 20% Byzantine o A - 20% Byzantine
! 0 5 10 15 20 25 £ 0 5 10 15 20 2 0 ¢ 0 5 10 15 20 25 0 0 s 10 15 20 2 EY
iterations iterations iterations iterations
¢ B ¢ 5 ¢ B ¢ 5
(a) wSa ‘Gauss (b) a9a ‘Gauss (c) w5a ‘random (d) a9a ‘random
10 gos 100
T e— e 2aanSR -
V4 o e pa ® Y. o
w i o ® 7 17
1 wl N 7 » i
! W i 1
gw ! Tl i gal i Zol ]
< ! Sf ] i g i
g i gsof i g it g i
< o / < il < 0 ,’] < i
i —=- 10% Byzantine w0 ‘V —=- 10% Byzantine I —=- 10% Byzantine o ,’,’ —=- 10% Byzantine
o ,}/ —+- 15% Byzantine I} —=- 15% Byzantine 2 /}’ —=- 15% Byzantine ]" -+~ 15% Byzantine
i“ —+- 20% Byzantine * / - 20% Byzantine 1 —+- 20% Byzantine * “1 -+ 20% Byzantine
! g s ) 3 5 ] ) 5 o1 ] 3 5 ) s L]
iterations iterations iterations
(g) w5a ‘random’ (h) a9a ‘random’

(e) w5a ‘Gauss’ (f) a9a ‘Gauss’
Figure 3: (First row) Accuracy of COMRADE with 10%, 15%, 20% Byzantine workers with ‘Gaus-
sian ’ attack for (a). w5a (b). a9a and ‘random label’ attack for (c). w5a (d).a9a. (Second row)
Accuracy of COMRADE with p-approximate compressor (Section[S) with 10%, 15%, 20% Byzan-
tine workers with ‘Gaussian * attack for (a). w5a (b). a9a and ‘random label’ attack for (c). w5a

(d).a%a.
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