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Abstract

Recently, there has been a surge of interest in representation learning in hyperbolic
spaces, driven by their ability to represent hierarchical data with significantly fewer
dimensions than standard Euclidean spaces. However, the viability and benefits
of hyperbolic spaces for downstream machine learning tasks have received less
attention. In this paper, we present, to our knowledge, the first theoretical guarantees
for learning a classifier in hyperbolic rather than Euclidean space. Specifically, we
consider the problem of learning a large-margin classifier for data possessing a
hierarchical structure. Our first contribution is a hyperbolic perceptron algorithm,
which provably converges to a separating hyperplane. We then provide an algorithm
to efficiently learn a large-margin hyperplane, relying on the careful injection of
adversarial examples. Finally, we prove that for hierarchical data that embeds well
into hyperbolic space, the low embedding dimension ensures superior guarantees
when learning the classifier directly in hyperbolic space.

1 Introduction

Hyperbolic spaces have received sustained interest in recent years, owing to their ability to compactly
represent data possessing hierarchical structure (e.g., trees and graphs). In terms of representation
learning, hyperbolic spaces offer a provable advantage over Euclidean spaces for such data: objects
requiring an exponential number of dimensions in Euclidean space can be represented in a polynomial
number of dimensions in hyperbolic space [28]. This has motivated research into efficiently learning
a suitable hyperbolic embedding for large-scale datasets [22, 4, 31].

Despite this impressive representation power, little is known about the benefits of hyperbolic spaces for
downstream tasks. For example, suppose we wish to perform classification on data that is intrinsically
hierarchical. One may naïvely ignore this structure, and use a standard Euclidean embedding and
corresponding classifier (e.g., SVM). However, can we design classification algorithms that exploit the
structure of hyperbolic space, and offer provable benefits in terms of performance? This fundamental
question has received surprisingly limited attention. While some prior work has proposed specific
algorithms for learning classifiers in hyperbolic space [6, 21], these have been primarily empirical in
nature, and do not come equipped with theoretical guarantees on convergence and generalization.

In this paper, we take a first step towards addressing this question for the problem of learning a large-
margin classifier. We provide a series of algorithms to provably learn such classifiers in hyperbolic
space, and establish their superiority over the classifiers naïvely learned in Euclidean space. This
shows that by using a hyperbolic space that better reflects the intrinsic geometry of the data, one can
see gains in both representation size and performance. Specifically, our contributions are:
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(i) we provide a hyperbolic version of the classic perceptron algorithm and establish its convergence
for data that is separable with a margin (Theorem 3.1).

(ii) we establish how suitable injection of adversarial examples to gradient-based loss minimization
yields an algorithm which can efficiently learn a large-margin classifier (Theorem 4.3). We
further establish that simply performing gradient descent or using adversarial examples alone
does not suffice to efficiently yield such a classifier.

(iii) we compare the Euclidean and hyperbolic approaches for hierarchical data and analyze the
trade-off between low embedding dimensions and low distortion (dimension-distortion trade-
off ) when learning robust classifiers on embedded data. For hierarchical data that embeds well
into hyperbolic space, it suffices to use smaller embedding dimension while ensuring superior
guarantees when we learn a classifier in hyperbolic space.

Contribution (i) establishes that it is possible to design classification algorithms that exploit the
structure of hyperbolic space, while provably converging to some admissible (not necessarily large-
margin) separator. Contribution (ii) establishes that it is further possible to design classification
algorithms that provably converge to a large-margin separator, by suitably injecting adversarial
examples. Contribution (iii) shows that the adaptation of algorithms to the intrinsic geometry of the
data can enable efficient utilization of the embedding space without affecting the performance.

Related work. Our results can be seen as hyperbolic analogue of classic results for Euclidean spaces.
The large-margin learning problem is well studied in the Euclidean setting. Classic algorithms for
learning classifiers include the perceptron [25, 24, 12] and support vector machines [8]. Robust
margin-learning has been widely studied; notably by Lanckriet et al. [16], El Ghaoui et al. [10], Kim
et al. [15] and, recently, via adversarial approaches by Charles et al. [5], Ji and Telgarsky [14], Li
et al. [18] and Soudry et al. [30]. Adversarial learning has recently gained interest through efforts to
train more robust deep learning systems (see, e.g., [20, 11]).

Recently, the representation of (hierarchical) data in hyperbolic space has gained a surge of interest.
The literature focuses mostly on learning representations in the Poincare [22, 4, 31] and Lorentz [23]
models of hyperbolic space, as well as on analyzing representation trade-offs in hyperbolic embed-
dings [27, 32] . The body of work on performing downstream ML tasks in hyperbolic space is much
smaller and mostly without theoretical guarantees. Monath et al. [21] study hierarchical clustering in
hyperbolic space. Cho et al. [6] introduce a hyperbolic version of support vector machines for binary
classification in hyperbolic space, albeit without theoretical guarantees. Ganea et al. [13] introduce
a hyperbolic version of neural networks that shows empirical promise on downstream tasks, but
likewise without theoretical guarantees. To the best of our knowledge, neither robust large-margin
learning nor adversarial learning in hyperbolic spaces has been studied in the literature, including [6].
Furthermore, we are not aware of any theoretical analysis of dimension-distortion trade-offs in the
related literature.

2 Background and notation

Figure 1: Lorentz model
(geodesics in red).

We begin by reviewing some background material on hyperbolic spaces,
as well as embedding into and learning in these spaces.

2.1 Hyperbolic space

Hyperbolic spaces are smooth Riemannian manifolds M = Hd with
constant negative curvature κ and are as such locally Euclidean spaces.
There are several equivalent models of hyperbolic space, each highlighting
a different geometric aspect. In this work, we mostly consider the Lorentz
model (aka hyperboloid model), which we briefly introduce below, with
more details provided Appendix A (see [3] for a comprehensive overview).

For x,x′ ∈ Rd+1, let x ∗ x′ = x0x
′
0 −

∑d
i=1 xix

′
i denote their Minkowski product. The Lorentz

model is defined as Ld = {x ∈ Rd+1 : x∗x = 1}with distance measure dL(x,x′) = acosh(x∗x′).
Note that the distance dL(x,x′) corresponds to the length of the shortest line (geodesic) along the
manifold connecting x and x′ (cf. Fig. 1). We also point out that (L, dL) forms a metric space.

2.2 Embeddability of hierarchical data

A map φ : X1 → X2 between metric spaces (X1, d1) and (X2, d2) is called an embedding. The
multiplicative distortion of φ is defined to be the smallest constant cM ≥ 1 such that, ∀ x,x′ ∈ X1,
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d2

(
φ(x), φ(x′))

)
≤ d1(x,x′) ≤ cM · d2

(
φ(x), φ(x′)

)
. When cM = 1, φ is termed an isometric

embedding. Since hierarchical data is tree-like, we can use classic embeddability results for trees as
a reference point. Bourgain [2], Linial et al. [19] showed that an N -point metric X (i.e., |X | = N )
embeds into Euclidean space RO(log2N) with cM = O(logN). This bound is tight for trees in the
sense that embedding them in a Euclidean space (of any dimension) must have cm = Ω(logN) [19].
In contrast, Sarkar [28] showed that trees embed quasi-isometrically with cM = O(1 + ε) into
hyperbolic space Hd, even in the low-dimensional regime with the dimension as small as d = 2.

2.3 Classification in hyperbolic space

We consider classification problems of the following form: X ⊂ Ld denotes the feature space,
Y = {±1} the binary label space, andW ⊂ Rd+1 the model space. In the following, we denote the
training set as S ⊂ X × Y .

We begin by defining geodesic decision boundaries. Consider the Lorentz space Ld with ambient
space Rd+1. Then every geodesic decision boundary is a hyperplane in Rd intersecting Ld and Rd+1.
Further, consider the set of linear separators or decision functions of the form

H = {hw : w ∈ Rd+1,w ∗w < 0}, where hw(x) =

{
1, w ∗ x > 0

−1, otherwise.
(2.1)

Note that the requirement w ∗w < 0 in (2.1) ensures that the intersection of Ld and the decision
hyperplane hw is not empty. The geodesic decision boundary corresponding to the decision function
hw is then given by ∂Hw = {z ∈ Ld : w ∗ z = 0}. The distance of a point x ∈ Ld from the
decision boundary ∂Hw can be computed as d

(
x, ∂Hw

)
=
∣∣ asinh

(
w ∗ x/

√
−w ∗w

)∣∣ [6].

2.4 Large-margin classification in hyperbolic space

In this paper, we are interested in learning a large margin classifier in a hyperbolic space. Analogous
to the Euclidean setting, the natural notion of margin is the minimal distance to the decision boundary
over all training samples:

marginS(w) = inf
(x,y)∈S

yhw(x) · d(x, ∂Hw) = inf
(x,y)∈S

asinh
(
y(w ∗ x)/

√
−w ∗w

)
. (2.2)

For large-margin classifier learning, we aim to find hw∗ defined by w∗ = argmaxw∈C marginS(w),
where C = {w ∈ Rd+1 : w ∗w < 0} imposes a nonconvex constraint. This makes the problem
computationally intractable using classical methods, unlike its Euclidean counterpart.

3 Hyperbolic linear separator learning

The first step towards the goal of learning a large-margin classifier is to establish that we can provably
learn some separator. To this end, we present a hyperbolic version of the classic perceptron algorithm
and establish that it will converge on data that is separable with a margin.

3.1 The hyperbolic perceptron algorithm

The hyperbolic perceptron (cf. Alg. 1) learns a binary classifier w with respect to the Minkowski
product. This is implemented in the update rule vt ← wt + yx, similar to the Euclidean case. In
contrast to the Euclidean case, the hyperbolic perceptron requires an additional normalization step
wt+1 ← vt/

√
−vt ∗ vt. This ensures that wt+1 ∗wt+1 < 0; as a result wt+1 defines a meaningful

classifier, i.e., Ld ∩ ∂Hwt+1 6= ∅. For more details, see Appendix B.

While intuitive, it remains to establish that this algorithm converges, i.e., finds a solution which
correctly classifies all the training samples. To this end, consider the following notion of hyperbolic
linear separability with a margin: for X,X ′ ⊆ Ld, we say that X and X ′ are linearly separable
with (hyperbolic) margin γH , if there exists a w ∈ Rd+1 with

√
−w ∗w = 1 such that w ∗ x >

sinh(γH) ∀ x ∈ X and w ∗ x′ < −sinh(γH) ∀ x′ ∈ X ′. Assuming our training set is separable
with a margin, the hyperbolic perceptron has the following convergence guarantee:
Theorem 3.1. Assume that there is some w̄ ∈ Rd+1 with

√
−w̄ ∗ w̄ = 1 and w0 ∗ w̄ ≤ 0, and

some γH > 0, such that yj(w̄ ∗ xj) ≥ sinh(γH) for j = 1, . . . , |S|. Then, Alg. 1 converges in
O (1/sinh(γH)) steps and returns a solution with margin γH .
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Algorithm 1 Hyperbolic perceptron

1: Initialize w0 ∈ Rd+1.
2: for t = 0, 1, . . . , T − 1 do
3: for j = 1, . . . , n do
4: if sgn(xj ∗wt) 6= yj then
5: vt ← wt + yjxj
6: wt+1 ← vt/min{1,

√
−vt ∗ vt}

7: break
8: end if
9: end for

10: end for
11: Output: wT

Algorithm 2 Adversarial Training

1: Initialize w0 = 0, S ′ = ∅.
2: for t = 0, 1, . . . , T − 1 do
3: St ∼ S iid with |St| = m; S ′t ← ∅.
4: for i = 0, 1, . . . ,m do
5: x̃i ← argmaxdL(xi,z)≤α l(z, yi;wt)
6: end for
7: S ′t ← {(x̃i, yi)}mi=1

8: S ′ ← S ′ ∪ S ′t
9: wt+1 ← A(wt,S,S ′)

10: end for
11: Output: wT

The proof of Thm. 3.1 (provided in Appendix B) follows the standard proof of the Euclidean
perceptron and utilizes the Cauchy-Schwartz inequality for the Minkowski product. To verify that
Algorithm 1 always converges to a valid hyperplane, i.e., such that Ld ∩Hvt 6= ∅, which happens iff
vt ∗ vt < 0, consider the following argument:

vt ∗ vt = (wt + yjxj) ∗ (wt + yjxj) = wt ∗wt︸ ︷︷ ︸
(i)

≤−1

+2 yj(xj ∗wt)︸ ︷︷ ︸
(ii)
< 0

+ y2︸︷︷︸
=1

(xj ∗ xj︸ ︷︷ ︸
(iii)
= 1

) < 0 .

Here, (i) is a consequence of the normalization step in Algorithm 1 and (iii) follows as xj ∗ xj = 1,
since xj ∈ Ld. As for (ii), note that we perform the update vt ← wt + yjxj only when yj 6=
sign(xj ∗w) (cf. Algorithm 1).

Remark 3.2. Note that the perceptron algorithm in Euclidean space exhibits a O(1/γ2
E) convergence

rate [24], where γE denotes the Euclidean margin. When γE ∼ 0, the 1/sinh(γH) convergence rate
for hyperbolic spaces can be significantly faster than 1/γ2

E , indicating that exploiting the structure of
hyperbolic space can be beneficial.

3.2 The challenge of large-margin learning

Thm. 3.1 establishes that the hyperbolic perceptron converges to some linear separator. However, for
the purposes of generalization, one would ideally like to converge to a large-margin separator. As
with the classic Euclidean perceptron, no such guarantee is possible for the hyperbolic perceptron;
this motivates us to ask whether a suitable modification can rectify this.

Drawing inspiration from the Euclidean setting, a natural way to proceed is to consider the use of
margin losses, such as the logistic or hinge loss. Formally, let l : X × {±1} → R+ be a loss function:

l(x, y;w) = f(y · (w ∗ x)), (3.1)

where f : R → R+ is some convex, non-increasing function, e.g., the hinge loss. The empiri-
cal risk of the classifier parameterized by w on the training set S ⊂ X × {±1} is L(w;S) =∑

(x,y)∈S l(x, y;w)/|S|. Commonly, we learn a classifier by minimizing L(w;S) via gradient
descent with iterates

wt+1 ← wt − η
∑

(x,y)∈S
∇l(x, y;wt)/|S| , (3.2)

where η > 0 denotes the learning rate. Unfortunately, while this will yield a large-margin solution,
the following result demonstrates that the number of iterations required may be prohibitively large.
Theorem 3.3. Let ei ∈ Rd+1 be the i-th standard basis vector. Consider the training set S =
{(e1, 1), (−e1,−1)} and the initialization w0 = e2. Suppose {wt}t≥0 is a sequence of iterates in
(3.2). Then, the number of iterations needed to achieve margin γH is Ω(exp(γH)).

While this result is disheartening, fortunately, we now present a simple resolution: by suitably adding
adversarial examples, the gradient descent converges to a large-margin solution in polynomial time.

4 Hyperbolic large-margin separator learning via adversarial examples

Thm. 3.3 reveals that gradient descent on a margin loss is insufficient to efficiently obtain a large-
margin classifier. Adapting the approach proposed in [5] for the Euclidean setting, we show how to
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Space Perceptron Adversarial margin Adversarial ERM Adversarial GD

Euclidean (prior work) O
(

1
γ2
E

)
γE − α Ω (exp(d)) Ω

(
poly

(
1

γE−α

))
Hyperbolic (this paper) O

(
1

sinh(γH )

)
γH

cosh(α)
Ω (exp(d)) Ω

(
poly

(
cosh(α)
sinh(γH )

))
Table 1: Comparison between Euclidean and hyperbolic spaces for Perceptron (cf. Alg. 1) and
adversarial training (cf. Alg. 2). Recall that γE/H , α, and d denote the (Euclidean/ hyperbolic) margin
of the training data, the adversarial perturbation budget, and the underlying dimension, respectively.

alleviate this problem by enriching the training set with adversarial examples before updating the
classifier (cf. Alg. 2). In particular, we minimize a robust loss

min
w∈Rd+1

Lrob(w;S) :=
1

|S|
∑

(x,y)∈S

lrob(x, y;w) (4.1)

lrob(x, y;w) := max
z∈Ld:

dL(x,z)≤α

l(z, y;w) . (4.2)

The problem has a minimax structure, where the outer optimization minimizes the training error over
S . The inner optimization generates an adversarial example by perturbing a given input feature x on
the hyperbolic manifold. Note that the magnitude of the perturbation added to the original example
is bounded by α, which we refer to as the adversarial budget. In particular, we want to construct
a perturbation that maximizes the loss l, i.e., x̃ ← argmaxdL(x,z)≤α l(z, y;w). In this paper, we
restrict ourselves to only those adversarial examples that lead to misclassification with respect to the
current classifier, i.e., hw(x) 6= hw(x̃) (cf. Remark 4.2).

Adversarial example x̃ can be generated efficiently by reducing the problem to an (Euclidean) linear
program with a spherical constraint:

(CERT) max
z∈Rd

−w0z0 +

d∑
i=1

wizi s.t.

d∑
i=1

−xizi ≤ cosh(α)− x0z0, ‖z\0‖2 = z2
0 − 1 . (4.3)

Importantly, as detailed in Appendix C.2 and summarized next, (CERT) can be solved in closed-form.
Theorem 4.1. Given the input example (x, y), let x\0 = (x1, . . . , xd). We can efficiently compute
a solution to CERT or decide that no solution exists. If a solution exists, then based on a guess of
z0, the solution has the form x̃ =

(
z0,
√
z2

0 − 1
(
bαx̌ +

√
1− b2αx̌⊥

))
. Here, bα depends on the

adversarial budget α, and x̌⊥ is a unit vector orthogonal to x̌ = −x\0/‖x\0‖ along w.
Remark 4.2. Note that according to Thm. 4.1, it is possible that, for a particular guess of z0, we may
not be able to find an adversarial example x̃ that leads to a prediction that is inconsistent with x, i.e.,
hw(x) 6= hw(x̃). Thus, for some t, we may have |S ′t| < m in Alg. 2.

The minimization with respect to w in (4.1) can be performed by an iterative optimization procedure,
which generates a sequence of classifiers {wt}. We update the classifier wt according to an update
rule A, which accepts as input the current estimate of the weight vector, the original training set, and
an adversarial perturbation of the training set. The update rule produces as output a weight vector
which approximately minimizes the robust loss Lrob in (4.1).

We now establish that for a gradient based update rule, the above adversarial training procedure will
efficiently converge to a large-margin solution. Table 1 summarizes the results of this section and
compares with the corresponding results in the Euclidean setting [5].

4.1 Fast convergence via gradient-based update

Consider Alg. 2 with A(wt,S,S ′t) being a gradient-based update with learning rate ηt > 0:

wt+1 ← wt − ηt/|S ′t| ·
∑

(x̃,y)∈S′t
∇wt l(x̃, y;wt) ; wt+1 ← wt+1/

√
−wt+1 ∗wt+1 , (4.4)

where the normalization is performed to ensure that the update remains valid, i.e., Ld ∩ ∂Hw 6= ∅.
To compute the update, we need to compute gradients of the outer minimization problem, i.e.,∇w lrob

over S ′t (cf. (4.1)). However, this function is itself a maximization problem. We therefore compute
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the gradient at the maximizer of this inner maximization problem. Danskin’s Theorem [9, 1] ensures
that this gives a valid descent direction. Given the closed form expression for the adversarial example
x̃ as per Thm. 4.1, the gradient of the loss is

∇w l(x̃, y;w) = f ′(y(w ∗ x̃)) · ∇w y(w ∗ x̃) = f ′(y(w ∗ x̃)) · y ̂̃xT ,
where y ̂̃xT

= y(x̃0,−x̃1, . . . ,−x̃n)T. With Danskin’s theorem, ∇l(x̃, y;w) ∈ ∂lrob(x, y;w), so
we can compute the descent direction and perform the step in (4.4). We defer details to Appendix C.4.

4.1.1 Convergence analysis
We now establish that the above gradient-based update converges to a large-margin solution in
polynomial time. For this analysis, we need the following assumptions:

Assumption 1. 1. The training set S is linearly separable with margin at least γH , i.e., there exists
a w̄ ∈ Rd+1, such that y(w̄ ∗ x) ≥ sinh(γH) for all (x, y) ∈ S.

2. There exists constants Rx, Rw ≥ 0, such that (i) ‖x‖ ≤ Rx; (ii) all possible adversarial perturba-
tions remain within this constraint, i.e., ‖x̃‖ ≤ Rx; and (iii) ‖w‖ ≤ Rw. Let Rα := RxRw.

3. the function f(s), underlying the loss (cf. (3.1)), has the following properties: (i) f(s) > 0 ∀ s;
(ii) f ′(s) < 0 ∀ s; (iii) f is differentiable, and (iv) f is β-smooth.

In the rest of the section, we work with the following hyperbolic equivalent of the logistic regression
loss that fulfills Assumption 1:

l(x, y;w) = ln (1 + exp(− asinh (y(w ∗ x)/2Rα))) , (4.5)

where Rα is as defined in Assumption 1. Other loss functions as well as the derivation of the
hyperbolic logistic regression loss are discussed in Appendix C.1.

We first show that Alg. 2 with a gradient update is guaranteed to converge to a large-margin classifier.

Theorem 4.3. With constant step size and A being the GD update with an initialization w0 with
w0 ∗w0 < 0, limt→∞ L(wt;S ∪ S ′t) = 0.

The proof can be found in Appendix C.4. While this result guarantees convergence, it does not
guarantee efficiency (e.g., by showing a polynomial convergence rate). The following result shows
that Alg. 2 with a gradient based update obtains a max-margin classifier in polynomial time.

Theorem 4.4. For a fixed constant c ∈ (0, 1), let ηt = η := c · 2 sinh2(γH)
βσ2

max cosh2(α)R2
α

with σmax denoting

an upper bound on the maximum singular value of the data matrix
∑

x∈S′ xx
T , andA the GD update

as defined in (4.4). Then, Alg. 2 achieves the margin γH/cosh(α) in Ω
(
poly (cosh(α)/sinh(γH))

)
steps.

Below, we briefly sketch some of the proof ideas, but defer a detailed exposition to Appendix C.4
(cf. Thm. C.13 and C.14). To prove the gradient-based convergence result, we first analyze the
convergence of an “adversarial perceptron”, that resembles the adversarial GD in that it performs
updates of the form wt+1 ← wt + yx̃. We then extend the analysis to the adversarial GD, where the
convergence analysis builds on classical ideas from convex optimization.

The following auxiliary lemma relates the adversarial margin to the max-margin classifier.

Lemma 4.5. Let w̄ be the max-margin classifier of S with margin γH . At each iteration of Algorithm 2,
w̄ linearly separates S ∪ S ′ with margin at least γH

cosh(α) .

The result follows from geometric arguments, as discussed in Section C.3. With the help of this
lemma, we can show the following bound on the sample complexity of the adversarial perceptron:

Theorem 4.6. Assume that there is some w̄ ∈ Rd+1 with
√
−w̄ ∗ w̄ = 1 and w0 ∗ w̄ ≤ 0, and some

γH > 0, such that yj(w̄ ∗ xj) ≥ sinh(γH) for j = 1, . . . , |S|. Then, the adversarial perceptron

(with adversarial budget α) converges after O
(

cosh(α)
sinh(γH)

)
steps, at which it has margin of at least

γH
cosh(α) .

The technical proof can be found in Section C.3.
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4.2 On the necessity of combining gradient descent and adversarial training

We remark here that the enrichment of the training set with adversarial examples is critical for the
polynomial-time convergence. Recall first that by Thm. 3.3, without adversarial training, we can
construct a simple max-margin problem that cannot be solved in polynomial time. Interestingly,
merely using adversarial examples by themselves does not suffice for fast convergence either.

Consider Alg. 2 with an ERM as the update rule A(wt,S,S ′). In this case, the iterate wt+1 corre-
sponds to an ERM solution for S ∪ S ′, i.e.,

wt+1 ← argminw

∑
(x,y)∈S∪S′

l(x, y;w) . (4.6)

Let St = S, i.e., we utilize the full power of the adversarial training in each step. The following
result reveals that even under this optimistic setting, Alg. 2 may not converge to a solution with a
non-trivial margin in polynomial time:
Theorem 4.7. Suppose Alg. 2 (with an ERM update) outputs a linear separator of S ∪ S ′. In the
worst case, the number of iteration required to achieve a margin at least ε is Ω (exp(d)).

We note that a similar result in the Euclidean setting appears in [5]. We establish Thm. 4.7 by
extending the proof strategy of [5, Thm. 4] to hyperbolic spaces. In particular, given a spherical code
in Rd with T codewords and θ ∼ sinh(ε) cosh(α) minimum separation, we construct a training set S
and subsequently the adversarial examples {S ′t} such that there exists a sequence of ERM solutions
{wt}t≤T on S ∪ S ′ (cf. (4.6)) that has margin less than ε. Now the result in Thm. 4.7 follows by
utilizing a lower bound [7] on the size of the spherical code with T = Ω (exp(d)) codewords and
θ ∼ sinh(ε) cosh(α) minimum separation. The proof of Thm. 4.7 is in Appendix C.5.

5 Dimension-distortion trade-off

So far we have focused on classifying data that is given in either Euclidean spaces Rd or Lorentz space
Ld′ . Now, consider data (X , dX ) with similarity metric dX that was embedded into the respective
spaces. We assume access to maps φE : X → Rd and φH : X → Ld′+ that embed X into the
Euclidean space Rd and the upper sheet of the Lorentz space Ld′+ , respectively (cf. Remark A.1). Let
cE and cH denote the multiplicative distortion induced by φE and φH , respectively (cf. § 2.2). Upper
bounds on cE and cH can be estimated based on the structure of X and the embedding dimensions.

Figure 2: Margin as distance between support vectors. Left:
Euclidean. Right: Hyperbolic.

In this section, we address the natu-
ral question: How does the distortion
cE , cH impact our guarantees on the
margin? In the previous sections, we
noticed that some of the guarantees
scale with the dimension of the em-
bedding space. Therefore, we want
to analyze the trade-off between the
higher distortion resulting from work-
ing with smaller embedding dimen-
sions and the higher cost of training
robust models due to working with
larger embedding dimensions.

We often encounter data sets in ML applications that are intrinsically hierarchical. Theoretical results
on the embeddability of trees (cf. § 2.2) suggest that hyperbolic spaces are especially suitable to
represent hierarchical data. We therefore restrict our analysis to such data. Further, we make the
following assumptions on the underlying data X and the embedding maps, respectively.
Assumption 2. (1) Both φH(X ) and φE(X ) are linearly separable in the respective spaces, and (2)
X is hierarchical, i.e., has a partial order relation.
Assumption 3. The maps φH , φE preserve the partial order relation in X and the root is mapped
onto the origin of the embedding space.

Towards understanding the impact of the distortion of the embedding maps φH and φE on margin,
we relate the distance between the support vectors to the size of the margin. The distortion of these
distances via embedding then gives us the desired bounds on the margin.
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Figure 3: Performance of Adversarial GD. Left: Loss L(w) on the original data. Middle: α-
robust loss Lα(w). Right: Hyperbolic margin γH . We vary the adversarial budget α over
{0, 0.25, 0.5, 0.75, 1.0}. Note that α = 0 corresponds to the state of the art [6].

5.1 Euclidean case

In the Euclidean case, we relate the distance of the support vectors to the size of the margin via
triangle relations. Let x,y ∈ Rd denote support vectors, such that 〈x, w〉 > 0 and 〈y, w〉 < 0 and
margin(w) = ε. Note that we can rotate the decision boundary, such that the support vectors are not
unique. So, without loss of generality, assume that x1,x2 are equidistant from the decision boundary
and ‖w‖ = 1 (cf. Fig. 2(left)). In this setting, we show the following relation between the margin
with and without the influence of distortion:

Theorem 5.1. Let ε′ and ε denote the margin with and without distortion, respectively. If X is a tree
embedded into RO(log2 |X |), then ε′ = O

(
ε/log3 |X |

)
.

The proof of Thm. 5.1 follows from a simple side length-altitude relations in the Euclidean triangle
between support vectors (cf. Fig. 2(left)) and a simple application of Bourgain’s result on embedding
trees into Rd. For more details see Appendix D.1.

5.2 Hyperbolic case

As in the Euclidean case, we want to relate the margin to the pairwise distances of the support vectors.
Such a relation can be constructed both in the original and in the embedding space, which allows us
to study the influence of distortion on the margin in terms of cH . In the following, we will work with
the half-space model Pd′ (cf. Appendix A.1). However, since the theoretical guarantees in the rest
of the paper consider the Lorentz model Ld′+ , we have to map between the two spaces. We show in
Appendix D.2 that such a mapping exists and preserves the Minkowski product, following [6].

The hyperbolic embedding φH has two sources of distortion: (1) the multiplicative distortion of
pairwise distances, measured by the factor 1/cH ; and (2) the distortion of order relations, in most
embedding models captured by the alignment of ranks with the Euclidean norm. Under Assumption 3,
order relationships are preserved and the root is mapped to the origin. Therefore, for x ∈ X , the
distortion on the Euclidean norms is given as ‖φH(x)‖ = dE(φH(x), φH(0)) = dX (x, 0)/cH , i.e.,
the distortion on both pairwise distances and norms is given by a factor 1/cH .

In Pd′ , the decision hyperplane corresponds to a hypercircle Kw. We express its radius rw in terms
of the hyperbolic distance between a point on the decision boundary and one of the hypercircle’s
ideal points [6]. The support vectors x,y lie on hypercircles Kx and Ky , which correspond to the set
of points of hyperbolic distance ε (i.e., the margin) from the decision boundary. We again assume,
without loss of generality, that at least one support vector is not unique and let x1,x2 ∈ Kx and
y ∈ Ky (cf. Fig. 2(right)). We now show that the distortion introduced by φH has a negligible effect
on the margin.

Theorem 5.2. Let ε′ and ε denote the margin with and without distortion, respectively. If X is a tree
embedded into L2

+, then ε′ ≈ ε.
The technical proof relies on a construction that reduces the problem to Euclidean geometry via circle
inversion on the decision hypercircle. We defer all details to Appendix D.2.

6 Experiments

We now present empirical studies for hyperbolic linear separator learning to corroborate our theory. In
particular, we evaluate our proposed Adversarial GD algorithm (§4) on data that is linearly separable
in hyperbolic space and compare with the state of the art [6]. Furthermore, we analyze dimension-
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distortion trade-offs (§5). As in our theory, we train hyperbolic linear classifiers w whose prediction
on x is y = sgn(w ∗ x). Additional experimental results can be found in Appendix F.

We emphasise that our focus in this work is in theoretically understanding the benefits of hyperbolic
spaces for classification. The above experiments serve to illustrate our theoretical results, which as a
starting point were derived for linear models and separable data. While extensions to non-separable
data and non-linear models are of practical interest, a detailed study is left for future work.

Data. We use the ImageNet ILSVRC 2012 dataset [26] along with its label hierarchy from wordnet.
Hyperbolic embeddings in Lorentz space are obtained for the internal label nodes and leaf image
nodes using Sarkar’s construction [28]. For the first experiment, we verify the effectiveness of
adversarial learning by picking two classes (n09246464 and n07831146), which allows for a data set
that is linearly separable in hyperbolic space. In this set, there were 1,648 positive and 1,287 negative
examples. For the second experiment, to showcase better representational power of hyperbolic spaces
for hierarchical data, we pick two disjoint subtrees (n00021939 and n00015388) from the hierarchy.

Adversarial GD. In the following, we utilize the hyperbolic hinge loss (C.2), (see Appendix F for
other loss functions). To verify the effectiveness of adversarial training, we compute three quantities:
(i) loss on original data L(w), (ii) α-robust loss Lα(w), and (iii) the hyperbolic margin γ. We vary
the budget α over {0, 0.25, 0.5, 0.75, 1.0}, where α = 0 corresponds to the setup in [6]. For a given
budget, we obtain adversarial examples by solving the CERT problem (4.3), which is feasible for

z0 ∈ (x0 cosh(α) −∆, x0 cosh(α) + ∆), where ∆ =
√

(x2
0 − 1)(cosh2(α)− 1). We do a binary

search in this range for z0, solve CERT and check if we can obtain an adversarial example. We utilize
the adversarial examples we find, and ignore other data points. In all experiments, we use a constant
step-size ηt = 0.01 ∀t. The results are shown in Fig. 3. As α increases the problem becomes harder
to solve (higher training robust loss) but we achieve a better margin. Notably, we observe strong
performance gains over the training procedures without adversarial examples [6].

Dimensional efficiency. In this experiment, we illustrate the benefit of using hyperbolic space when
the underlying data is truly hierarchical. To be more favourable to Euclidean setting, we subsample
images from each subtree, such that in total we have 1000 vectors. We obtain Euclidean embeddings
following the setup and code from Nickel and Kiela [22]. The Euclidean embeddings in 16 dimensions
reach a mean rank (MR) ≤ 2, which indicates reasonable quality in preserving distance to few-hop
neighbors. We observe superior classification performance at much lower dimensions by leveraging
hyperbolic space (see Table 2 in Appendix F.3). In particular, our hyperbolic classifier achieves
zero test error on 8-dimensional embeddings, whereas Euclidean logistic regression struggles even
with 16-dimensional embeddings. This is consistent with our theoretical results (§5): Due to high
distortion, lower-dimensional Euclidean embeddings struggle to capture the global structure among
the data points that makes the data points easily separable.

7 Conclusion and future work
We studied the problem of learning robust classifiers with large margins in hyperbolic space. We
introduced and analyzed a hyperbolic perceptron algorithm. Moreover, we explored multiple adver-
sarial approaches to robust large-margin learning. The second part of the paper analyzed the role
of geometry in learning robust classifiers. We compared Euclidean and hyperbolic approaches with
respect to the intrinsic geometry of the data. For hierarchical data that embeds well into hyperbolic
space, the lower embedding dimension ensures superior guarantees when learning the classifier
in hyperbolic space. This result suggests that it can be highly beneficial to perform downstream
machine learning and optimization tasks in a space that naturally reflects the intrinsic geometry of the
data. Promising avenues for future research include (i) exploring the practicality of these results in
broader machine learning and data science applications; and (ii) studying other related methods in
non-Euclidean spaces, together with an evaluation of dimension-distortion trade-offs.
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A Hyperbolic Space

Hyperbolic spaces are smooth Riemannian manifoldsM = Hd and as such locally Euclidean spaces.
In the following we introduce basic notation for three popular models of hyperbolic spaces. For a
comprehensive overview see Bridson and Haefliger [3].

A.1 Models of hyperbolic spaces

Figure 4: Models of hyperbolic space: The Lorentz model Ld, the Poincare ball Bd, and the Poincare
half-plane Pd.

The Poincare ball defines a hyperbolic space within the Euclidean unit ball, i.e.

Bd = {x ∈ Rd : ‖x‖ < 1}

dB(x,x′) = acosh

(
1 + 2

‖x− x′‖2

(1− ‖x‖2)(1− ‖x′‖2)

)
.

Here, ‖·‖ is the usual Euclidean norm.

The closely related Poincare half-plane model is defined as

P2 = {x ∈ R2 : x1 > 0}

dP(x,x′) = acosh

(
1 +

(x′0 − x0)2 + (x′1 − x1)2

2x1x′1

)
.

Note that if x0 = x′0, the metric simplifies as

dP(x,x′) = dP((x0, x1), (x0, x
′
1)) =

∣∣∣ ln x′1
x1

∣∣∣ .
The model can be generalized to higher dimensions with

Pd = {(x0, . . . , xd−1) ∈ Rd | xd−1 > 0} ,

however, we will only use the two-dimensional model P2 here. We further define the hyperboloid as

Ld = {x ∈ Rd+1 : x ∗ x = 1}
dL(x,x′) = acosh(x ∗ x′) ,

where ∗ denotes the Minkowski product x ∗ x′ = x0x
′
0 −

∑d
i=1 xix

′
i.

Remark A.1. The Lorentz model

Ld = {x ∈ Rd+1 : x ∗ x = 1} .

is also called double-sheet model. We use this more general setting in sections 2-4. For simplicity, we
restrict ourselves to the upper sheet

Ld+ = {x ∈ Rd+1 : x ∗ x = 1, x0 > 0} ,

in section 5. All constructions of mappings between the different models of hyperbolic space can be
extended to the double-sheet Ld.
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A.2 Equivalence of different models of hyperbolic spaces

The Poincare ball Bd and the Lorentz model Ld+ are equivalent models of hyperbolic space. A
mapping is given by

πLB : Ld+ → Bd

x = (x0, . . . , xd) 7→
(

x1

1 + x0
, . . . ,

xd
1 + x0

)
.

We can further construct a mapping from Bd to Pd by inversion on a circle centered at (−1, 0, . . . , 0):

πBP : Bd → Pd

x = (x0, . . . , xd−1) 7→ (2x1, . . . , 2xd−1, 1− ‖x‖2)

1 + 2x0 + ‖x‖2
.

A.3 Embeddability

When analyzing the dimension-distortion trade-off, we make use of two key results on the embed-
dability (cf. §2.2) of trees into Euclidean and hyperbolic spaces. We state them below for reference.

Theorem A.2 ([2]). An N -point metric X (i.e., |X | = N ) embeds into Euclidean space RO(log2N)

with the distortion cM = O(logN).

This bound in Theorem A.2 is tight for trees in the sense that embedding them in a Euclidean space
(of any dimension) must incur the distortion cm = Ω(logN) [19].

Theorem A.3 ([28]). Tree metrics embed quasi-isometrically with cM = O(1 + ε) into Hd.

A.4 Spherical codes in hyperbolic space

Consider the unit sphere Sd−1 ⊆ Rd. A spherical code is a subset of Sd−1, such that any two distinct
elements x,x′ are separated by at least an angle θ, i.e. 〈x, x′〉 ≤ cos θ. We denote the size of the
largest code as A(d, θ).

A similar construction of such “spherical caps" can be obtained in Hd. Note that the induced geometry
of these caps is spherical, hence they inherit a spherical geometric structure. This allows in particular
the transfer of bounds on A(d, θ) to hyperbolic space [7]:

Theorem A.4 (Chabauty, Shannon, Wyner (see, e.g., [29])). A(d, θ) ≥ (1 + o(1))
√

2πd cos θ
sind−1 θ

.

B Hyperbolic Perceptron

In this section we analyze the convergence and generalization properties of the hyperbolic perceptron
(cf. Algorithm 1). Note that the update vt ← wt + yjxj in Algorithm 1 always leads to a valid
hyperplane, i.e., Ld ∩Hvt 6= ∅, which happens iff vt ∗ vt < 0. This can be verified as follows:

vt ∗ vt = (wt + yjxj) ∗ (wt + yjxj) = wt ∗wt︸ ︷︷ ︸
(i)

≤−1

+2 yj(xj ∗wt)︸ ︷︷ ︸
(ii)
< 0

+ y2︸︷︷︸
=1

(xj ∗ xj︸ ︷︷ ︸
(iii)
= 1

) < 0 ,

where (i) is a consequence of the normalization step in Algorithm 1 and (iii) follows as x ∗ x = 1,
since x ∈ Ld. As for (ii), note that we perform the update vt ← wt + yjxj only when yj 6=
sign(xj ∗w) (cf. Algorithm 1).

We now restate Theorem 3.1 and present a detailed proof of the result.

Theorem B.1 (Convergence hyperbolic Perceptron in Algorithm 1 (Theorem 3.1)). Assume that
there is some w̄ ∈ Rd+1 with

√
−w̄ ∗ w̄ = 1 and w0 ∗ w̄ ≤ 0, and some γH > 0, such that

yj(w̄ ∗ xj) ≥ sinh(γH) for j = 1, . . . , |S|. Then, Algorithm 1 converges in O
(

1
sinh(γH)

)
steps and

returns a solution with margin γH .
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Proof. Assume wlog w0 = (0, 1, 0, . . . , 0) ∈ Rd+1. Then w0 ∗ w0 = −1, i.e., Ld ∩ Hw0 6= ∅.
Hence, w0 is a valid initialization. Furthermore, assume that the tth error is made at the jth sample,
i.e. update vt ← wt + yjxj . For u ∈ Rd+1, let |u| =

√
−u ∗ u.

Now let us consider two cases:

• Case 1. In this case, we assume that the normalization is not performed in tth step, i.e.,

wt+1 = wt + yjxj .

Therefore,

wt+1 ∗ w̄ = (wt + yjxj) ∗ w̄ = wt ∗ w̄ + yj(xj ∗ w̄) ≥ wt ∗ w̄ + γ′H︸︷︷︸
:=sinh(γH)

. (B.1)

• Case 2. In this case, the normalization is performed in the tth step of Algorithm 1, i.e.,

wt+1 =
wt + yjxj
|wt + yjxj |

.

Thus,

wt+1 ∗ w̄ =
wt + yjxj
|wt + yjxj |

∗ w̄
(i)

≥ (wt + yjxj) ∗ w̄

≥ wt ∗ w̄ + yj(xj ∗ w̄)︸ ︷︷ ︸
≥γ′H

≥ wt ∗ w̄ + γ′H , (B.2)

where (i) follows as the normalization is performed only if |wt+yjxj | < 1 and numerator is positive
by induction.

By utilizing (B.1) and (B.2), we obtain the following telescoping sum
T−1∑
k=0

(−wk+1 + wk) ∗ w̄ ≤
T−1∑
k=0

−γ′H

⇒ −wT ∗ w̄ ≤ −w0 ∗ w̄ − Tγ′H . (B.3)

Recall that, for the Minkowski product, we have

cosh(](u,u′)) = − u ∗ u′
√
−u ∗ u

√
−u′ ∗ u′

=
−u ∗ u′

|u| |u′|
. (B.4)

By utilizing (B.4) with (u,u′) = (wT , w̄) and (u,u′) = (w0, w̄) in (B.3), we obtain that

|wT ||w̄| cosh(](wT , w̄)) ≤ |w0||w̄| cosh(](w0, w̄))− Tγ′H . (B.5)

Since, we have |w̄| = |w0| = 1, it follows from (B.5) that

|wT | cosh(](wT , w̄)) ≤ cosh(](w0, w̄))− Tγ′H . (B.6)

Further, using the facts that, due to normalization in Algorithm 1, |wT | ≥ 1 and cosh(·) ≥ 1, it
follows from (B.6) that

1 ≤ cosh(](w0, w̄))− Tγ′H
(ii)

≤ C − Tγ′H , (B.7)

where (ii) follows as ](wi, w̄) < π, since the orientation is fixed by the requirement that Ld∩Hwi 6=
∅; as a result, we can find an upper bound cosh(](w0, w̄)) < cosh(π) = C. Now, it follows from
(B.7) that

T ≤ C − 1

γ′H
, (B.8)

which completes the proof of the convergence guarantee. The margin is given by

marginS(w) = inf
(x,y)∈S

asinh

(
y(w ∗ x)√
−w ∗w

)
= asinh(γ′H) = asinh

(
sinh(γH)

)
= γH ,

which implies that a margin of γH is achieved in O
(

1
sinh(γH)

)
steps.
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C Adversarial Learning

C.1 Loss functions

For training the classifier, we consider the margin losses that have the following form

l(x, y;w) = f(y · (w ∗ x)), (C.1)

where f : R→ R+ is some convex, non-increasing function. Cho et al. [6] introduce the hinge loss in
the hyperbolic setting which is defined by the (hyperbolic) hinge function f(s) = max{0, asinh(1)−
asinh(s)}, i.e.,

l(x, y;w) = max{0, asinh(1)− asinh(y(w ∗ x))} . (C.2)

A significant shortcoming of this notion is its non-smoothness and non-convexity. Therefore, we
additionally consider a smoothed least squares loss:

l(xi, yi;w) =

{
1
2 (asinh(1)− asinh(yi(w ∗ xi))2

, yi(w ∗ xi) ≤ 1

0, else
, (C.3)

We present experimental results for both losses.

The majority of the paper employs a hyperbolic version of the logistic loss to introduce the logistic
regression problem in hyperbolic space. First, recall the logistic regression problem in the Euclidean
setting. Given an input x and a linear classifier defined by w, the prediction of the classifier is defined
as

p(y|x;w) = 1/
(
1 + exp(−y〈x, w〉)

)
(C.4)

Thus the log-loss takes the following form

l(x, y;w) = − log p(y|x;w) = log
(
1 + exp(−y〈x, w〉)

)
= log

(
1 + exp(−y‖w‖〈x, w̄〉)

)
= log

(
1 + exp(−y sgn(〈x, w̄〉)‖w‖d(x, ∂Hw̄))

)
(C.5)

where w̄ = w/‖w‖ and d(x, ∂Hw̄) is the distance of x from the decision boundary ∂Hw̄ := {z ∈
Rd+1 : 〈z, w̄〉 = 0}. Note that y sgn(〈x, w̄〉)d(x, ∂Hw̄)) denotes the Euclidean margin of the
(x, y) with respect to the decision boundary defined by w̄.

We can define a hyperbolic version of the logistic regression problem, where we replace the Euclidean
margin with the hyperbolic margin with respect to the linear classifier w. Recall that the hyperbolic
margin has the following form (cf.. (2.2)):

y sgn(x ∗w)d
(
x, ∂Hw

)
= y sgn(x ∗w)

∣∣∣∣asinh

(
w ∗ x√
−w ∗w

) ∣∣∣ = asinh

(
y(w ∗ x)√
−w ∗w

)
(C.6)

Therefore, by combining (C.5) and (C.6), the hyperbolic logistic regression problem with a linear
classifier corresponds to minimizing the following loss:

l(x, y;w) = ln

(
1 + exp

(
− asinh

(
y(w ∗ x)√
−w ∗w

)))
. (C.7)

Note that the hyperbolic logistic loss and the Euclidean logistic loss differ in the scaling factor ‖w‖.
In order to ensure that the hyperbolic logistic loss satisfies Assumption 1, we introduce additional
explicit scaling to obtain the following form of the loss.

l(x, y;w) = ln

(
1 + exp

(
− asinh

(
y(w ∗ x)

2R

)))
. (C.8)

The following result verifies that the loss in (C.8) indeed satisfies Assumption 1.
Lemma C.1. For valid inputs (x, y;w), the hyperbolic logistic loss in (C.8) fulfills Assumption 1.

Proof. The robust loss (Eq. 4.1) is evaluated over inputs (x, y;w) only if y(w ∗ x) < 0. A simple
calculation shows, that Assumption 1.3 holds iff |w∗x|Rα

≤ 1, where Rα is as given in Assumption 1.2.
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As a results, we want to show |w ∗ x| ≤ Rα for all allowable inputs (x, y;w). Recall that

w ∗ x = w0x0 −
d∑
i=1

wixi

w · x = w0x0 +

d∑
i=1

wixi .

We consider the following cases:

1. w0x0 > 0 and
∑d
i=1 wixi < 0: |w ∗ x| ≥ |w · x|;

2. w0x0 > 0 and
∑d
i=1 wixi > 0: |w · x| ≥ |w ∗ x|;

3. w0x0 < 0 and
∑d
i=1 wixi > 0: |w ∗ x| ≥ |w · x|;

4. w0x0 < 0 and
∑d
i=1 wixi < 0: |w · x| ≥ |w ∗ x|.

In case (2) and (4) we have

|w ∗ x| ≤ |w · x|
(i)

≤ ‖w‖ ‖x‖
(ii)

≤ RxRw = Rα ,

where (i) follows from the Cauchy-Schwartz inequality and (ii) follows from Assumption 1.2. In
case (1) and (3), we have

|w ∗ x| = |w · x̂|
(i)

≤ ‖w‖ ‖x̂‖
(ii)

≤ RxRw = Rα , (C.9)

where x̂ = (x0,−x1, . . . ,−xn) and (i) and (ii) again follow from the Cauchy-Schwartz inequality,
respectively. This completes the proof.

Remark C.2. A conceptually similar logistic loss is introduced in [17] for multinomial manifold.
Max-margin learning with the above hyperbolic hinge loss was studied in [6].

C.2 Generating adversarial examples (Certification problem)

Recall that to train a classifier with large margin, we enrich the training set with adversarial exam-
ples (cf. Algorithm 2). For a classifier w, an adversarial example x̃ for a given (x, y) is generated by
perturbing x in the hyperbolic space up to the maximum allowed perturbation budget α such that

x̃← argmax
z∈Ld

dL(x,z)≤α

l(z, y;w) .

For the underlying loss function (cf. Section C.1), due to the monotonicity of asinh, the above
problem can be equivalently expressed as

x̃← argmin
z∈Ld

dL(x,z)≤α

y · (w ∗ z) = argmax
z∈Ld

dL(x,z)≤α

−w′ ∗ z

= argmax
z∈Ld

dL(x,z)≤α

−w′0z0 +
∑
i

w′izi (C.10)

where w′ = −yw. Since w′, z ∈ Rd+1, we can rewrite (C.10) as a constraint optimization task in
the ambient Euclidean space:

max
z∈Rd+1

− w0z0 +
∑
i

wizi (C.11)

s.t. dL(x, z) ≤ α

z2
0 −

d∑
i=1

z2
i = 1 .
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Assuming that we guess z0 based on x0, the constraint z2
0 −

∑d
i=1 z

2
i = 1 confines the solution space

onto a d-dimensional sphere of radius r =
√
z2

0 − 1, which also implies that z0 ≥ 1. On the other
hand the constraint dL(x, z) ≤ α is equivalent to

dL(x, z) = acosh(x ∗ z) = acosh(x0z0 −
d∑
i=1

xizi) < α or
∑
i

−xizi ≤ cosh(α)− x0z0 .

Thus, the problem in (C.11) reduces to the following linear program with a spherical constraint.

(CERT) max
z\0∈Rd

− w0z0 +
∑
i

wizi (C.12)

s.t.

d∑
i=1

−xizi ≤ cosh(α)− x0z0

‖z\0‖2 = z2
0 − 1 ,

where z\0 = (z1, . . . , zd). We now present a proof of Theorem 4.1 which characterizes a solution of
the program in (C.12). For the sake of readability, we first restate the result from the main text:

Theorem C.3 (Theorem 4.1). Given the input example (x, y), let x\0 = (x1, . . . , xd). We
can efficiently compute a solution to (CERT) or decide that no solution exists. If a solution
exists, then based on a guess of z0 a maximizing adversarial example has the form x̃ =(
z0,
√
z2

0 − 1
(
bx̌ +

√
1− b2x̌⊥

))
. Here, b = (cosh(α)−x0z0)

(‖x\0‖
√
z20−1)

depends on the adversarial budget α,

and x̌⊥\0 is a unit vector orthogonal to x̌ = −x\0/‖x\0‖ along w.

Proof. First, note that (CERT) can be rewritten as

( ˇCERT) max 〈w̌, ž〉
s.t. 〈x̌, ž〉 ≤ b
‖ž‖ = 1 ,

where w̌ = w\0/‖w\0‖, x̌ = −x\0/‖x\0‖, and b = (cosh(α)− x0z0)/(‖x\0‖‖z\0‖). We further
set ž = z\0/‖z\0‖ so that the norm constraint confines the solution to the unit sphere to simplify the
derivation. We can later rescale the solution to have the norm

√
z2

0 − 1.

The solution of ˇCERT lies on the cone 〈x̌, ž〉 = b. We decompose w̌ along x̌ and its orthogonal
complement x̌⊥, i.e.

w̌ = ξx̌ + ζx̌⊥ .

with ζ ≥ 0 and ‖x̌⊥‖ = 1. Without loss of generality, such a decomposition always exists. Note that

〈w̌, ž∗〉 = ξ〈x̌, ž∗〉+ ζ〈x̌⊥, ž∗〉 = ξb+ ζ〈x̌⊥, ž∗〉 ,

where the second equality follows from 〈x̌, ž∗〉 = b. This implies that for the objective 〈w̌, ž〉 to be
maximized, ž∗ has to have all of its remaining mass along x̌⊥, i.e.,

ž∗ = bx̌ +
√

1− b2x̌⊥.

After rescaling to satisfy the original norm constraint in CERT, the maximizing adversarial example
(for a given z0) is given as

x̃ =

(
z0,
√
z2

0 − 1 · ž∗
)

=

(
z0,
√
z2

0 − 1
(
bx̌ +

√
1− b2x̌⊥

))
.
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C.3 Adversarial Perceptron

For the convergence analysis of the gradient-based update, we first need to analyze the convergence
of the adversarial perceptron. We first state the following lemma that relates the adversarial margin to
the max-margin classifier.
Lemma C.4. Let w̄ be the max-margin classifier of S with margin γH . At each iteration of Algo-
rithm 2, w̄ linearly separates S ∪ S ′ with margin at least γH

cosh(α) .

Remark C.5. Note that this “adversarial Perceptron" corresponds to a gradient update of the form
wt+1 ← wt + yx̃, which resembles the adversarial SGD.

Proof. The proof reduces the problem to Euclidean geometry in the Poincare half plane. We defer
the proof until Section E, since the respective geometric tools are introduced only in Section D.2.

With this result, we can show the following bound on the sample complexity of the adversarial
perceptron:
Theorem C.6. Assume that there is some w̄ ∈ Rd+1 with

√
−w̄ ∗ w̄ = 1 and w0 ∗ w̄ ≤ 0, and

some γH > 0, such that yj(w̄ ∗ xj) ≥ sinh(γH) for j = 1, . . . , |S|. Then, adversarial perceptron

(with adversarial budget α) converges after O
(

cosh(α)
sinh(γH)

)
steps, at which it has margin of at least

γH
cosh(α) .

Proof. Without loss of generality, we initialize the classifier as w0 = (0, 1, 0, . . . , 0). Furthermore,
assume that the tth error is made at the jth sample. For the ease of exposition, we assume that the
normalization step is not performed at this update. (The case with normalization after the update can
be handled as in the Proof of Theorem B.1.) Thus,

wt+1 ← wt + yjx̃i ,

which implies that

(wt+1 −wt) ∗ w̄ = (yjx̃j) ∗ w̄ = yj (x̃j ∗ w̄) ≥ γ′H
cosh(α)

,

where γ′H = sinh(γH) and the last inequality follows from Lemma C.4. By summing and telescoping,
we obtain that

t∑
k=0

(wk+1 −wk) ∗ w̄ ≥
t∑

k=0

γ′H
cosh(α)

⇒ (wt+1 −w0) ∗ w̄ ≥ tγ′H
cosh(α)

.

Now, by multiplying both sides by −1 and rewriting the Minkowski product gives us that

−wt+1 ∗ w̄ ≤ −w0 ∗ w̄ −
tγ′H

cosh(α)

≤ |w0|︸︷︷︸
=1

|w̄|︸︷︷︸
=1

cosh(](w0, w̄))︸ ︷︷ ︸
≤cosh(π)=:C

− tγ′H
cosh(α)

≤ C − tγ′H
cosh(α)

. (C.13)

Now, note that

1 ≤ cosh(](wt+1, w̄)) ≤ −wt+1 ∗ w̄
|wt+1|︸ ︷︷ ︸
≥1

|w̄|︸︷︷︸
=1

≤ −wt+1 ∗ w̄
(i)

≤ C − tγ′H
cosh(α)

,

where (i) utilizes (C.13). Now, solving for t gives us that

t ≤ (C − 1) · cosh(α)

γ′H
.

Further, it follows from (2.2) that an adversarial hyperbolic margin of γH
cosh(α) is then achieved after

O
(

cosh(α)
sinh(γH)

)
steps.
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C.4 Gradient-based update

Recall that, our objective in Algorithm 2 consists of an inner optimization (that computes the
adversarial example) and an outer optimization (that updates the classifier). In particular, we consider

min
w∈Rd+1

Lrob(w;S) :=
1

|S|
∑

(x,y)∈S

lrob(x, y;w) ,

where the robust loss is given by
lrob(x, y;w) := max

z∈Ld,dL(x,z)≤α
l(x, y;w) = l(x̃, y;w) ,

where x̃ ∈ argmaxz∈Ld,dL(x,z)≤α l(x, y;w).

Recall that, to compute the update, we need to compute gradients of the outer minimization problem,
i.e.,∇w lrob over S. However, the function lrob is itself a maximization problem (referred to as the
inner maximization problem above). Therefore, we compute the gradient at the maximizer of the
inner problem. Danskin’s theorem ensures that this gives a valid decent direction. For the sake of
completeness, we recall the Danskin’s theorem here.
Theorem C.7 ( Danskin [9], Bertsekas [1]). Suppose X is a non-empty compact topological space
and g : Rd ×X → R is a continuous function such that g(·, δ) is differentiable for every δ ∈ X . Let
δ∗w = argmaxδ∈X g(w, δ). Then, the function ψ(w) = maxδ∈X g(w, δ) is subdifferentiable and
the subdifferential is given by

∂ψ(w) = conv ({∇w g(w, δ)| δ ∈ δ∗w}) .

This approach has been previously used in Madry et al. [20] and Charles et al. [5]. Note that when we
find an adversarial example in Algorithm 2, we can write it in a closed form (cf. Theorem C.3). In
particular,

lrob(x, y;w) = max
dL(x,z)≤α

l(z, y;w) = l(x̃, y;w) with x̃ =

(
x̃0,
√
x̃2

0 − 1
(
b x̌ +

√
1− b2x̌⊥

))
.

Note that

∇w l(x̃, y;w) = f ′(y(w ∗ x̃)) · ∇w y(w ∗ x̃) = f ′(y(w ∗ x̃)) · y(̂x̃)
T
,

where we have used the fact that∇w y(w ∗ x̃) = y(̂x̃)
T

= y(x̃0,−x̃1, . . . ,−x̃n)T . From Danskin’s
theorem, we have∇wl(x̃, y;w) ∈ ∂ lrob(x, y;w). This enables us to compute the decent direction
and perform the update step with

∇ L(w;S ′) =
1

|S ′|
∑

(x̃,y)∈S′
∇ l(x̃, y;w) ∈ ∂Lrob(w;S) ,

Furthermore, we have
∇2

w l(x̃, y;w) = f ′′(y(w ∗ x̃))x̃x̃T ∈ ∂2lrob(x, y;w) , (C.14)
which enable the computation of the Hessian of L(w;S ′).

The convergence results in this section build on hyperbolic analogues of comparable Euclidean results
in [30, 14].

We first show a bound on the Hessian of the loss:
Lemma C.8.

∇2L(wt;S ′t) � βσ2
max · I ,

where σmax is an upper bound on the maximum singular value of the data matrix 1
|S′t|

∑
(x̃,y)∈S′t

x̃x̃T .

Proof.

∇2L(wt;S ′t) =
1

|S ′t|
∑

(x̃,y)∈S′t

∇2l(x̃, y;wt)
(i)
=

1

|S ′t|
∑

(x̃,y)∈S′t

f ′′(y(x̃ ∗wt))x̃x̃
T

(ii)

� β · 1

|S ′t|
∑

(x̃,y)∈S′t

x̃x̃T � βσ2
max · I ,

where (i) and (ii) follow from (C.14) and the assumption that f is β-smooth.
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With the help of Lemma C.8, we can show the following result (a restatement of Theorem 4.4), which
establishes that the gradient updates are guaranteed to converge to a large-margin classifier:
Theorem C.9 (Theorem 4.3). Let {wt} be the GD iterates

wt+1 ← wt −
η

|S ′t|
∑

(x̃,y)∈S′t

∇l(x̃, y;w)

wt+1 ←
wt+1√−wt+1 ∗wt+1

with constant step size η < 2
βσ2

max
and an initialization w0 with w0 ∗ w0 < 0. Then, we have

limt→∞ L(wt;S ∪ S ′t) = 0.

Proof. By Assumption 1.1 we can find a w̄ that linearly separates S. Then, we have

〈w̄, ∇L(w;S ′t)〉 = 〈w̄, 1

|S ′t|
∑

(x̃,y)∈S′t

f ′(y(x̃ ∗wt)) y ̂̃x〉
=

 1

|S ′t|
∑

(x,y)∈S′t

f ′(y(x̃ ∗wt))


︸ ︷︷ ︸

<0

y〈w̄, ̂̃x〉︸ ︷︷ ︸
=y(w̄∗x̃)<0

,

where the negativity of the first term follows from the assumptions on f (cf. Assumption 1.3)
and the upper bound on the second term from the separability assumption. This implies that
〈w̄, ∇L(w;S ′t)〉 6= 0 for any finite w. Therefore, there are no finite critical points w for which
∇L(w;S ′t) = 0. However, GD is guaranteed to converge to a critical point for smooth objectives
with an appropriate step size. Therefore, ‖wt‖ → ∞ and y(wt ∗ x) > 0 ∀ (x, y) ∈ S ∪ S ′t and
large enough t. Then, we have l(x, y;wt) → 0, for all (x, y) ∈ S ∪ S ′t. This further implies that
L(wt;S ∪ S ′t) = 1

|S∪S′t|
∑

(x,y)∈S∪S′t
l(x, y;wt)→ 0.

We further show that the enrichment of the training set with adversarial examples is critical for
polynomial-time convergence: Without adversarial training, we can construct a simple max-margin
problem, that cannot be solved in polynomial time.
Theorem C.10 (Theorem 3.3). Consider S = {(e1, 1), (−e1,−1)} ⊂ Rd+1 × {+1,−1} and a
typical initialization w0 = e2 ∈ Rd+1 (with the standard basis vectors e1, e2 ∈ Rd+1). Let {wt}t is
a sequence of classifiers generated by the GD updates (with fixed step size η)

wt+1 ← wt −
η

|S|
∑

(x,y)∈S

∇l(x, y;w)

wt+1 ←
wt+1√−wt+1 ∗wt+1

.

Then, the number of iterations needed to achieve margin γH is Ω(exp(γH)).

Proof. First, note that the initialization w0 is valid as w0 ∗w0 = −1 < 0. The gradient of the loss
can be computed as

∇l(xi, yi;wt) = f ′(yi(xi ∗wt))yix̂i

where

f ′(s) = −
exp

(
− asinh

(
s

2R

))
R
√

s2

4R2 + 1
(

exp
(
− asinh

(
s

2R

))
+ 1
)

is the derivative of the hyperbolic logistic regression loss (cf. (4.5)). Note that due to the structure of
S and w0, the GD update will produce the following iteration sequence

at+1 = at − f ′(at)

wt = (at,
√
a2
t + 1, 0, . . . , 0) ,
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where the first coordinate is determined through the GD update and the second through normalization
to ensure the validaty of the classifier, i.e., wt ∗wt < 0. In order to see this, note that wt ∗wt =

a2
t − (

√
a2
t + 1)2 = −1 < 0. We now want to show that

at ≤ sinh(ln(t+ 1)) .

For the induction, note that a0 = 0 = ln(1) = sinh(ln(1)). Assume, that at ≤ sinh(ln(t+ 1)). We
want to show

at+1 ≤ sinh(ln(t+ 2)) .

Note, that

at+1 = at︸︷︷︸
1©

+
exp

(
− asinh

(
at
2R

))
R

√
a2t

4R2 + 1
(

exp
(
− asinh

(
at
2R

))
+ 1
)

︸ ︷︷ ︸
2©

.

Since exp
(
− asinh

(
− at

2R

))
≤ exp

(
− asinh

(
− at

2R

))
+ 1 and R

√
a2t

4R2 + 1 ≥ 1, clearly 2© is
bounded by 1. Inserting this above and replacing 1© with the induction assumption, we have

at+1 ≤ sinh(ln(t+ 1)) + 1 .

Note that, by definition, sinh(z) = 1
2 (ex − e−x). Thus,

sinh(ln(t+ 1)) =
1

2
(t+ 1− (−(t+ 1))) = t+ 1 ,

which further implies that

at+1 = sinh(ln(t+ 1)) + 1 ≤ t+ 2 = sinh(ln(t+ 2)) . (C.15)

This finishes the induction proof. Assuming a margin of at least γH , we have

γH ≤ marginS(wt) = asinh

(
y(x ∗wt)√
−wt ∗wt

)
(i)
= asinh(at+1)

(ii)

≤ asinh(sinh(ln(t+ 2))) ≤ ln(t+ 2) ,

where (i) follows wt ∗wt = −1 after normalization and (ii) from the upper bound in (C.15). Now,
by solving for t, we obtain that t = Ω(exp(γH)).

Next, we quantify the convergence rate of adversarial training with GD updates (cf. (4.4)). We start
by presenting some auxiliary results.

Lemma C.11 (Smoothness bound). Let ηt =: η < 2 sinh2(γH)
βσ2

max cosh2(α)R2
α

be the fixed step size and w0 a
valid initialization, i.e. w0 ∗w0 < 0. Then, for the GD update (with fixed step size ηt =: η)

wt+1 ← wt − ηt ∇L(wt;S ′t)︸ ︷︷ ︸
∈∂Lrob(wt;St)

wt+1 ←
wt+1√−wt+1 ∗wt+1

.

we have

1. Lrob(wt+1;S) ≤ Lrob(wt;S)− η
(

sinh(γH)2

cosh2(α)R2
α
− βσ2

maxη
2

)
‖∇L(wt;S ′t)︸ ︷︷ ︸
∈∂Lrob(wt;St)

‖2;

2.
∑∞
k=0 ‖∇L(wk;S ′k)‖2 <∞; as a result, limt→∞ ‖∇L(wt);S ′t‖2 = 0.

Proof. In Algorithm 2 with gradient update rule, we have

wt+1 = wt − η∇L(wt;S ′t)

= wt −
η

|S ′t|
∑

(x̃,y)∈S′t

l(x̃, y;wt)

= wt −
η

|S ′t|
∑

(x̃,y)∈S′t

f ′(y(x̃ ∗wt))y ̂̃x .
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Now, consider the inner product 〈wt+1, w̄〉, where w̄ is the optimal classifier. With out loss of
generality, we assume ‖w̄‖ = 1.

〈wt+1, w̄〉 = 〈wt, w̄〉 −
η

|S ′|
∑

(x̃,y)∈S′
f ′(y(x̃ ∗wt))y〈̂̃x, w̄〉

(i)
= 〈wt, w̄〉 −

η

|S ′t|
∑

(x̃,y)∈S′t

f ′(y(x̃ ∗wt))y(x̃ ∗ w̄)

(ii)

≥ 〈wt, w̄〉 −
ηγ′H

|S ′t| cosh(α)

∑
(x̃,y)∈S′t

f ′(y(x̃ ∗wt)) ,

where (i) and (ii) follow from 〈̂̃x, w̄〉 = x̃∗w̄ and y(x̃∗w̄) ≥ γ′H
cosh(α) (cf. Lemma C.4), respectively.

We use the shorthand γ′H = sinh(γH). With the linearity of the inner product, we get

〈wt+1 −wt, w̄〉 ≥ −
ηγ′H

|S ′t| cosh(α)

∑
(x̃,y)∈S′t

f ′(y(x̃ ∗wt)) .

Since f ′ is negative (cf. Assumption 1.3), we can replace −f ′(y(x̃ ∗wt)) with |f ′(y(x̃ ∗wt))| to get

〈wt −wt+1, w̄〉 ≥
ηγ′H

|S ′t| cosh(α)

∑
(x̃,y)∈S′t

|f ′(y(x̃ ∗wt))|

(i)
=

ηγ′H
cosh(α)Rα

‖∇L(wt;S ′t)‖ , (C.16)

where (i) holds as follows: Recall, that ‖∇l(x̃, y;wt)‖ ≤ |f ′(y(x̃ ∗wt))|‖̂̃x‖. Thus,

‖∇L(wt;S ′t)‖ = ‖ 1

|S ′t|
∑

(x̃,y)∈S′t

l(x̃, y;wt)‖ ≤
1

|S ′t|
∑

(x̃,y)∈S′t

‖l(x̃, y;wt)‖

≤ 1

|S ′t|
∑

(x̃,y)∈S′t

|f ′(y(x̃ ∗wt))|‖ ˆ̃x‖ ≤
Rα
|S ′t|

∑
(x̃,y)∈S′t

|f ′(y(x̃ ∗wt))| .

This implies that

1

|S ′t|
∑

(x̃,y)∈S′t

|f ′(y(x̃ ∗wt))| =
1

Rα
‖∇L(wt;S ′t)‖ .

Applying Cauchy-Schwarz to the left hand side of (C.16) gives us that

‖wt −wt+1‖ ‖w̄‖ ≥ 〈wt −wt+1, w̄〉 ≥
ηγ′H

cosh(α)Rα
‖∇L(wt;S ′t)‖ . (C.17)

Now, using the fact that ‖w̄‖ = 1 in (C.17), we get

‖wt+1 −wt‖ ≥
ηγ′H

cosh(α)Rα
‖∇L(wt;S ′t)‖ . (C.18)

Now, consider the following Taylor approximation:

Lrob(wt+1;S) = Lrob(wt;S) + 〈∇L(wt;S ′t)︸ ︷︷ ︸
∈∂Lrob(wt;S)

, wt+1 −wt〉 +

(wt+1 −wt)
T ∇2L(v;S ′t)︸ ︷︷ ︸
∈∂2Lrob(v;S)

(wt+1 −wt)/2, (C.19)

where v ∈ conv(wt+1,wt). By utilizing Lemma C.8 in (C.19), we get that

Lrob(wt+1;S) ≤ Lrob(wt;S) + 〈∇L(wt;S ′t), wt+1 −wt〉+
βσ2

max

2
‖wt+1 −wt‖2 . (C.20)
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Recall the update rule

wt+1 = wt − η∇L(wt;S ′t) (C.21)

⇒ wt+1 −wt = −η∇L(wt;S ′t) . (C.22)

Inserting this in (C.20), we get

Lrob(wt+1;S) = Lrob(wt;S) + 〈−η−1(wt+1 −wt), wt+1 −wt〉+
βσ2

max

2
‖wt+1 −wt‖2

= Lrob(wt;S)− η−1‖wt+1 −wt‖2 +
βσ2

max

2
‖wt+1 −wt‖2 . (C.23)

By combining (C.18) and (C.23), we obtain that

Lrob(wt+1;S) ≤ Lrob(wt;S)− ηγ′2H
cosh2(α)R2

α

‖∇L(wt;S ′t)‖2 +
βσ2

max

2
‖wt+1 −wt‖2 . (C.24)

Again, utilizing (C.21), it follows from (C.24) that

Lrob(wt+1;S) ≤ Lrob(wt;S)− ηγ′2H
cosh2(α)R2

α

‖∇L(wt;S ′t)‖2 +
βσ2

maxη
2

2
‖∇L(wt;S ′t)‖2

(C.25)

= Lrob(wt;S)− η
(

γ′2H
cosh2(α)R2

α

− βσ2
maxη

2

)
‖∇L(wt;S ′t)‖2 . (C.26)

This establishes the first claim of Lemma C.11. Now, we can rewrite (C.25) to obtain the following.

Lrob(wt;S)− Lrob(wt+1;S)

η
(

γ′2H
cosh2(α)R2

α
− βσ2

maxη
2

) ≥ ‖∇L(wt;S ′t)‖2 .

Note that our assumption on the step size η ensures that the denominator in (C.25) is 6= 0.

Next, summing and telescoping gives us that

t∑
k=0

‖∇L(wk;S ′k)‖2 ≤
t∑

k=0

Lrob(wk;S)− Lrob(wk+1;S)

η
(

γ′2H
cosh2(α)R2

α
− βσ2

maxη
2

) =
Lrob(w0;S)− Lrob(wt+1;S)

η
(

γ′2H
cosh2(α)R2

α
− βσ2

maxη
2

) ,

where the right term is bounded, since Lrob(w0;S) <∞ and 0 ≤ Lrob(wt+1;S). This establishes
the second claim of Lemma C.11 as

∞∑
k=0

‖∇L(wk;S ′k)‖2 <∞ ⇒ lim
t→∞

‖∇L(wt;S ′t)‖2 = 0 .

Lemma C.12. With the assumptions of Lemma C.11, Lemma C.11.1 implies for all w ∈ Rd+1

2

t−1∑
k=0

ηk
(
Lrob(wk;S)− Lrob(w;S)

)
+

t−1∑
k=0

η2
k

η̄k

(
Lrob(wk+1;S)− Lrob(wk;S)

)
≤ ‖w0 −w‖2 − ‖wt −w‖2 ,

where η̄k = ηk

(
γ′2H

cosh(α)2R2
α
− βσ2

maxηk
4

)
.

Proof. First, note that the GD update

wt+1 = wt − ηt ∇L(wt;S ′t)︸ ︷︷ ︸
∈∂Lrob(wt;S)
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implies that

‖wt+1 −w‖2 = ‖wt −w‖2 − 2ηt〈∇L(wt;S ′t), wt −w〉+ η2
t ‖∇L(wt;S ′t)‖2 (C.27)

= ‖wt −w‖2 + 2ηt〈∇L(wt;S ′t), w −wt〉+ η2
t ‖∇L(wt;S ′t)‖2 . (C.28)

Note that the hyperbolic logistic regression loss f(z) in (4.5) is convex for z < 0. As a consequence,
lrob(x, y;w) is convex for any adversarial example with sgn(wt ∗ x) 6= sgn(wt ∗ x̃). This implies
that

lrob(x, y;w) ≥ lrob(x, y;wt) + 〈∂lrob(x, y;wt), w −wt〉 ,

for any w ∈ Rd+1 and any pair (x, y) for which an adversarial example exists.

Since the sum of convex function is convex, we further have

Lrob(w;S) ≥ Lrob(wt;S) + 〈∇L(wt;S ′t)︸ ︷︷ ︸
∈∂Lrob(wt;S)

, w −wt〉 . (C.29)

By combining (C.27) and (C.29), we obtain that

‖wt+1 −w‖2 ≤ ‖wt −w‖2 + 2ηt
(
Lrob(w;S)− Lrob(wt;S)

)
+ η2

t ‖∇L(wt;S ′t)‖2

(i)

≤ ‖wt −w‖2 + 2ηt
(
Lrob(w;S)− Lrob(wt;S)

)
+
η2
t

(
Lrob(wt;S)− Lrob(wt+1;S)

)
η̄t

,

where (i) follows from the first claim in Lemma C.11 and η̄t := ηt

(
γ′2H

cosh2(α)R2
α
− βσ2

maxηt
4

)
.

Next, summing and telescoping gives us that

t−1∑
k=0

‖wk+1 −w‖2 − ‖wk −w‖2 ≤
t−1∑
k=0

[
2ηk
(
Lrob(w;S)− Lrob(wk;S)

)
+

η2
k

η̄k

(
Lrob(wk;S)− Lrob(wk+1;S)

)]
or

‖wt −w‖2 − ‖w0 −w‖2 ≤ 2

t−1∑
k=0

ηk
(
Lrob(w;S)− Lrob(wk;S)

)
+

t−1∑
k=0

η2
k

η̄k

(
Lrob(wk;S)− Lrob(wk+1;S)

)
.

Now, multiplying both sides by −1 completes the proof as follow.

2

t−1∑
k=0

ηk
(
Lrob(wk;S)− Lrob(w;S)

)
+

t−1∑
k=0

η2
k

η̄k

(
Lrob(wk+1;S)− Lrob(wk;S)

)
≤ ‖w0 −w‖2 − ‖wt −w‖2 .

We are now in a position to present the desired convergence result.
Theorem C.13 (Convergence GD update, Algorithm 2). For a fixed constant c ∈ (0, 1), let the step
size ηt := η = c · 2 sinh2(γH)

βσ2
max cosh2(α)R2

α
and A be the GD update as defined in (4.4). Then, the iterates

{wt} in Algorithm 2 satisfy

Lrob(wt;S) = O

(
sinh2(ln(t))

t
·
(

sinh(γH)

cosh(α)

)−4
)
.
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Proof. Without loss of generality, assume that w0 = (0, ei) where ei ∈ Rd is a standard basis vector
whose i-th coordinate is 1. Note that this is a valid initialization, since w0 ∗w0 < 0; furthermore, we
have ‖w0‖ = 1. Let w∗ ∈ Rd+1 be a classifier that achieves the margin γH on S, i.e., ∀(x, y) ∈ S,

y(x ∗w∗) ≥ sinh(γH) ⇐⇒ asinh

(
y(w∗ ∗ x)√
−w∗ ∗w∗

)
≥ γH .

Without loss of generality, assume that ‖w∗‖ = 1. Let ut := 2Rα sinh(ln(t)) cosh(α)
sinh(γH) w∗; then ‖ut‖ =

2Rα sinh(ln(t)) cosh(α)
sinh(γH) . We have

Lrob(ut;S ′t) =
1

|S ′t|
∑

(x,y)∈S′t

lrob(x, y;ut) =
1

|S ′t|
∑

(x,y)∈S′t

f(y(x̃ ∗ ut))

(i)

≤ 1

|S ′t|
∑

(x̃,y)∈S′t

f
(
2Rα sinh(ln(t))

)
= f

(
2Rα sinh(ln(t))

)
(ii)

≤ ln (1 + exp (− ln(t)))
(iii)

≤ 1

t
, (C.30)

where (i) follows from

y(x̃ ∗ ut) =
2Rα sinh(ln(t)) cosh(α)

sinh(γH)
y(x̃ ∗w∗)︸ ︷︷ ︸
≥ sinh(γH )

cosh(α)

≥ 2Rα sinh(ln(t)) ,

(ii) from
√
−ut ∗ ut ≥ 1 and (iii) follows from the fact that ln(1 + x) ≤ x.

Now, consider

2η(t− 1)
(
Lrob(wt;S)− Lrob(ut;S)

) (i)
= 2

t−1∑
k=0

ηk
(
Lrob(wt;S)− Lrob(ut;S)

)
= 2

t−1∑
k=0

ηk
(
Lrob(wt;S)− Lrob(ut;S) + Lrob(wk;S)− Lrob(wk;S)

)
= 2

t−1∑
k=0

ηk
(
Lrob(wk;S)− Lrob(ut;S)) + 2

t−1∑
k=0

ηk
(
Lrob(wt;S)− Lrob(wk;S)

)
(ii)

≤ 2

t−1∑
k=0

ηk
(
Lrob(wk;S)− Lrob(ut;S)) +

t−1∑
k=0

ηk
(
Lrob(wk+1;S)− Lrob(wk;S)

)
≤ 2

t−1∑
k=0

ηk
(
Lrob(wk;S)− Lrob(ut;S)) +

t−1∑
k=0

η2
k

η̄k

(
Lrob(wk+1;S)− Lrob(wk;S)

)
(iii)

≤ ‖w0 − ut‖2 − ‖wt − ut‖2 ,
where (i) holds as we have a constant step-size, i.e., ηk = η and (ii) follows from the fact that

Lrob(wt;S) ≤ Lrob(wk+1;S) for 0 ≤ k ≤ t− 1.

The inequality in (iii) follows from Lemma C.12 with w = ut.

We can rewrite this as

Lrob(wt;S) ≤ Lrob(ut;S) +
‖w0 − ut‖2 − ‖wt − ut‖2

2
∑t−1
k=0 ηk

(i)

≤ 1

t
+
‖w0 − ut‖2

2(t− 1)η

(ii)

≤ 1

t
+

2‖w0‖2 + 2‖ut‖2

2(t− 1)η
=

1

t
+
‖w0‖2 + ‖ut‖2

(t− 1)η
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where (i) follows from (C.30) and (ii) follows from (a+ b)2 ≤ 2a2 + 2b2. Now, using the fact that
‖w0‖ = 1 and ‖ut‖ = 2Rα sinh(ln(t)) cosh(α)

sinh(γH) , we obtain that

Lrob(wt;S) ≤ 1

t
+

1 + 4R2
α (cosh(α)/sinh(γH))

2 · sinh2(ln(t))

(t− 1)η
. (C.31)

By substituting η = c · 2 sinh2(γH)
βσ2

max cosh2(α)R2
α

, we get

Lrob(wt;S) = O

(
sinh2(ln(t))

t
·
(

sinh(γH)

cosh(α)

)−4
)
.

Theorem C.14 (Iteration complexity). Consider Algorithm 2 with ηt := η = c · 2 sinh2(γH)
βσ2

max cosh2(α)R2
α

and A being the GD update. Then Algorithm 2 converges as Ω
(

poly
(

sinh(γH)
cosh(α)

))
.

Proof. Let % = ln(1+1/e)
ln(1+e) . We first argue that

Lrob(wt;S) ≤ % · ln
(

1 + exp

(
− γH

cosh(α)

))
(C.32)

implies that wt achieves margin γH/cosh(α) on S. To see this, note that

Lrob(wt;S) =
1

|S|
∑

(x,y)∈S

lrob(x, y;wt)

= max
(x,y)∈S

lrob(x, y;wt)︸ ︷︷ ︸
:=lmax

rob (S)

· 1

|S|
∑

(x,y)∈S

lrob(x, y;wt)

lmax
rob (S)

≥ lmax
rob ·

1

|S|
∑

(x,y)∈S

% = % · lmax
rob . (C.33)

The last inequality in (C.33) holds as, for each (x, y) ∈ S, we have

ln(1 + 1/e)
(i)

≤ ln

(
1 + exp

(
− asinh

(
y(x̃ ∗wt)

2Rα

)))
︸ ︷︷ ︸

=lrob(x,y;wt)

≤ max
(x,y)∈S

lrob(x, y;wt)
(ii)

≤ ln(1 + e),

where (i) and (ii) follows from Assumption 1.2. Thus, for each (x, y) ∈ S, we have

lrob(x, y;wt)

lmax
rob

≥ ln(1 + 1/e)

ln(1 + e)
= %. (C.34)

Now, by combining (C.32) and (C.33), we obtain that

lrob(x, y;wt) ≤ ln

(
1 + exp

(
− γH

cosh(α)

))
for any (x, y) ∈ S. Equivalently, for each (x, y) ∈ S,

lrob(x, y;wt) = ln

(
1 + exp

(
− asinh

(
y(x̃ ∗wt)

2Rα

)))
≤ ln

(
1 + exp

(
− γH

cosh(α)

))
. (C.35)

Thus, for each (x, y) ∈ S, we have

asinh

(
y(x̃ ∗wt)√
−wt ∗wt

)
(i)

≥ asinh

(
y(x̃ ∗wt)

2Rα

)
(ii)

≥ γH
cosh(α)

.
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where (i) from the definition of Rα (cf. Assumption 1) and (ii) from Eq. C.35. Thus, wt achieves
margin γH/cosh(α) on S.

Next, introduce the following constant:

Cq := inf{t ≥ 2 : 2 + ln(t)2 ≤ (t− 1)t−1/q} .
With this, for t ≥ Cq , we can rewrite the bound in (C.31) as follows:

Lrob(wt;S) ≤ 1

t︸︷︷︸
≤ 1

(t−1)η

+
1 + sinh(ln(t))2

(
sinh(γH)
cosh(α)

)−2

(t− 1)η
≤

2 + sinh(ln(t))2
(

sinh(γH)
cosh(α)

)−2

(t− 1)η

≤
2 + ln(t)2

(
sinh(γH)
cosh(α)

)−2

(t− 1)η
≤ (t− 1)t−1/q

η(t− 1)

(
sinh(γH)

cosh(α)

)−2

≤ t−1/q

η
(

sinh(γH)
cosh(α)

)2 .

Solving for t and plugging in the above bound on Lrob for which wt achieves the desire margin, as
well as η = c · 2 sinh2(γH)

βσ2
max cosh2(α)R2

α
, we get

t = max{Cq,Ω
(((

sinh(γH)4/ cosh(α)4
))−q)} ,

from which the claim follows directly.

C.5 Algorithm 2 with an ERM update

Consider the unit sphere Sd−1 ⊆ Rd. A spherical code with minimum separation θ is a subset of
Sd−1, such that any two distinct elements u,u′ in the subset are separated by at least an angle θ, i.e.
〈u, u′〉 ≤ cos θ. We denote the size of the largest such code as A(d, θ). A similar construction can
be made in hyperbolic space, which allows the transfer of bounds on A(d, θ) to hyperbolic space [7].

The following lemma shows that a spherical code with a suitable minimum separation θ enables a
simple pathological training set such that Algorithm 2 along with an ERM update rule cannot produce
a classifier with a desired margin in a small number of iteration. In particular, the lemma shows
that the number of iterations required to find the desire margin is lower-bounded by the size of the
underlying spherical code.
Lemma C.15. Consider S = {(x1, y1) =

(
(1, 0, . . . , 0), 1

)
, (x2, y2) =

(
(−1, 0, . . . , 0),−1

)
},

where x1,x2 ∈ Ld and y1, y2 the corresponding labels. For any ε < α, there is an admissible
sequence of classifiers {wt}1≤t≤T , with

T = A

d, arccos
(
ρ · sinh(ε) cosh(α)√

cosh2(α)− 1
√

1 + sinh2(ε)

)
Proof. First, note that x1 ∗ x1 = x2 ∗ x2 = 1, i.e., x1,x2 ∈ Ld as desired. Let ε′ = sinh(ε) and
ei ∈ Rd+1 denotes the standard basis vector that has its i-th coordinate equal to 1. Now, consider
classifiers of the form

wt =

(
ε′√

1 + ε′2 vt

)
where vt ∈ C

(
d, arccos

(
ρ · ε

′√1 + δ2

δ
√

1 + ε′2

))
∀ 1 ≤ t ≤ T , (C.36)

where ρ < 1; and C
(
d, arccos

(
ρ · ε

′√1+δ2

δ
√

1+ε′2

))
be the spherical code with the minimum separation

θ = arccos
(
ρ · ε

′√1+δ2

δ
√

1+ε′2

)
and size A

(
d, θ
)
. Since wt ∗ wt = (ε′)2 − 1 − (ε′)2 = −1, we have

wt ∗wt < 0 for all t. This guarantees that the intersections of the decision boundaries defined by
{wt}t and Ld are not empty. Moreover, {wt} is an admissible sequence of classifiers with margin
≤ ε. To see this, note that, for t = 1, . . . , T ,

wt ∗ x1 = ε′ > 0

wt ∗ x2 = −ε′ < 0 ,
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i.e., {wt} correctly classifies S. Furthermore, with −wt ∗wt = 1, we have

asinh

(
y1(wt ∗ x1)√
−wt ∗wt

)
= asinh

(
y2(wt ∗ x2)√
−wt ∗wt

)
= ε ,

which gives marginS(wt) = ε.

Now we perturb x1,x2 on Ld such that the magnitude of the perturbation is at most α, i.e., we
want to find x̃1, x̃2 ∈ Ld such that both dL(x1, x̃1) and dL(x2, x̃2) are at most α. For 1 ≤ t ≤ T ,
consider adversarial examples of the form

x̃1t =

(√
1 + δ2

δvt

)
and x̃2t = −

(√
1 + δ2

δvt

)
.

Note that x̃1t, x̃2t ∈ Ld as x̃1i ∗ x̃1t = x̃2t ∗ x̃2i = 1. Let us verify the two conditions that we
require the valid adversarial examples to satisfy:

• Adversarial budget. Note that we have

dL(x1, x̃1t) = dL(x2, x̃2t) = acosh(
√

1 + δ2) .

Thus, by choosing δ =
√

cosh2(α)− 1, we achieve the maximal permitted perturbation α.

• Inconsistent prediction for the current classifier, i.e., hwt(x̃1t/2t) 6= hw(x1/2). Note
that we have δ ≥ α > ε, which further implies that δ > ε ≥ ε′. In round t,

wt ∗ x̃1t = ε′
√

1 + δ2 − δ
√

1 + ε′2 < 0

wt ∗ x̃2t = −ε′
√

1 + δ2 + δ
√

1 + ε′2 > 0 ,

which is a consequence of the relation δ > ε′ as follows:

δ2 > ε′2 ⇒ δ2 + ε′2δ2 > ε′2 + ε′2δ2 ⇒ δ2(1 + ε′2) > ε′2(1 + δ2)

⇒ δ
√

1 + ε′2 > ε′
√

1 + δ2 .

Recall that, in each round of Algorithm 2 with an ERM update, we create adversarial examples and
add them to the training set, i.e., after round t we have

S<t = S ∪
t−1⋃
i=0

{(x̃1i, y1i), (x̃2i, y2i)} .

Now for each t and any i < t, we have

wt ∗ x̃1i = ε′
√

1 + δ2 − δ
√

1 + ε′2 · cos(θ) > 0

wt ∗ x̃2i = −ε′
√

1 + δ2 + δ
√

1 + ε′2 · cos(θ) < 0 ,

i.e., wt linearly separates S<t.
Therefore, {wt} in (C.36) form an admissible sequence of the classifiers, where wt linearly separates
St while achieving the margin of at most ε on the original dataset S. The length of the sequence is
bounded by the size of the spherical code C

(
d, ε′ cosh(α)

)
, which give us that

T = A

(
d, arccos

(
ρ · ε

′√1 + δ2

δ
√

1 + ε′2

))
= A

d, arccos
(
ρ · sinh(ε) cosh(α)√

cosh2(α)− 1
√

1 + sinh2(ε)

) .

The following result (a restatement of Theorem 4.7 from the main text) then follows by applying a
lower bound on the maximal size of spherical codes by Shannon.
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Theorem C.16 (Theorem 4.7). Suppose Algorithm 2 (with an ERM update) outputs a linear seperator
of S ∪ S ′. In the worst case, the number of iteration required to achieve the margin at least ε is
Ω (exp(d)).

Proof. The statement of the theorem follows from combining Lemma C.15 with Shannon’s lower
bound (Theorem A.4) on the maximal size of spherical codes, namely

T ≥ (1 + o(1))
√

2πd
cos(θ)

sind−1(θ)
.

We introduce the shorthand θ =: arccos
(
A
B

)
, where A = ρ sinh(ε) cosh(α) and B =√

cosh2(α)− 1
√

1 + sinh2(ε), as given by Lemma C.15. We then use two well-known trigonomet-
ric identities

cos(arccos z) = z and sin(arccos z) =
√

1− z2

to simplify the trignometric fraction in Shannon’s bound:

cos θ

sind−1 θ
=

A

B
(
1− A2

B2

) d−1
2

=
ABd−2

(B2 −A2)
d−1
2

.

For the denominator, note that

B2 −A2 = (cosh2(α)− 1)(1 + sinh2(ε))− ρ2 sinh2(ε) cosh2(α)

= (1− ρ2) sinh2(ε) cosh2(α) + cosh2(α)− 1− sinh2(ε)

(i)
' cosh2(α)− 1− sinh2(ε)

where (i) follows from the fact that we can choose ρ arbitrary close to 1. Putting everything together,
we have the lower bound

T ≥ (1 + o(1))
√

2d

ρ sinh(ε) cosh(α)

(√
cosh2(α)− 1

√
1 + sinh2(ε)

)d−2

(
cosh2(α)− 1− sinh2(ε)

) d−1
2

= Ω(exp d) ,

which is exponential in d.

D Dimension-distortion trade-off

D.1 Euclidean case

In the Euclidean case, we relate the distance of the support vectors and the size of margin via
side length - altitude relations. Let x,y ∈ Rd denote support vectors, such that 〈x, w〉 > 0 and
〈y, w〉 < 0 and margin(w) = ε. We can rotate the decision boundary, such that the support vectors
are not unique. Wlog, assume that x1,x2 are equidistant from the decision boundary and ‖w‖ = 1.
In this setting, we show the following relation:
Theorem D.1 (Thm. 5.1). ε′ ≥ ε

c3E
.

Proof. Let d1 = dX (φ−1
E (x1), φ−1

E (y)), d2 = dX (φ−1
E (x2), φ−1

E (y)) and d3 =

dX (φ−1
E (x1), φ−1

E (x2)) the distances between the support vectors in the original space. In the
Euclidean embedding space we have

d′1 = dE(x1,y) ≥ d1

cE

d′2 = dE(x2,y) ≥ d2

cE

d′3 = dE(x1,x2) ≥ d3

cE
.
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d′1, d
′
2, d
′
3 are the side lengths of a triangle, whose altitude is given by the margin: h = 2ε′. With

Heron’s equation we get

h = 2ε′ =
2

d′3

√
s′(s′ − d′1)(s′ − d′2)(s′ − d′3) ,

where s′ = 1
2 (d′1 + d′2 + d′3). In X we have s′ = 1

2cE
(d1 + d2 + d3) = s

cE
. Then we have with

respect to the actual distance relations

h = 2ε′ ≥ 2

cEd3

√
c−4
E s(s− d1)(s− d2)(s− d3) = 2

ε

c3E
,

which gives the claim.

D.2 Hyperbolic case

As in the Euclidean case, we want to relate the margin to the distance of the support vectors. Since
the distortion can be expressed in terms of the distances of support vector in the original and the
embedding space, this allows us to study the influence of distortion on the margin.

We will derive the relation in the half-space model (P2). However, since the theoretical guarantees
above consider the upper sheet of the Lorentz model (Ld′+ ), we have to map between the two spaces.

Assumption 4. We make the following assumptions on the underlying data X and the embedding
φH :

1. X is linearly separable;

2. X is hierarchical, i.e., has a partial order relation;

3. φH preserves the partial order relation and the root is mapped onto the origin of the
embedding space.

Under these assumptions, the hyperbolic embedding φH has two sources of distortion:

1. the (multiplicative) distortion of pairwise distances, measured by the factor 1
cH

;

2. the distortion of order relations, in most embedding models captured by the alignment of
ranks with the Euclidean norm.

Under Ass. 4, order relationships are preserved and the root is mapped to the origin. Therefore, the
distortion on the Euclidean norms is given as follows:

‖φH(x)‖ = dE(φH(x), φH(0)) =
dX (x, 0)

cH
,

i.e., the distortion on both pairwise distances and norms is given by a factor 1
cH

.

Note on notation: In the following, a bar over any symbol indicates the Euclidean expression.

D.2.1 Mapping from Ld′+ to P2

First, note that a transformation v 7→ Bv withB =

(
1 0
0 A

)
and an orthogonal matrixA is isometric,

i.e., it preserves the Minkowski product [6]:

(Bu) ∗ (Bv) = u0v0 − uT1:d′A
TAv1:d′ = u0v0 − uT1:d′v1:d′ = u ∗ v .

Setting the first column of A to w1:d′
‖w1:d′‖

we can isometrically transform the decision hyperplane

as ŵ = Bw = (ŵ0, ‖ŵ1:d′‖, 0, . . . , 0). Analogously, we can transform any point in Ld′+ . In the
following, we will use the shorthand λ = ŵ0

ŵ1
. We can then use the maps defined in section A.2 to

map x̂ = Bx ∈ L2
+ onto z ∈ P2, i.e. applying (πBP ◦ (πLB ◦B)) to any x ∈ L2

+ gives z ∈ P2.
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Remark D.2 (Effect of hyperbolic distortion on Euclidean distances in the Poincare half plane). Note
that the hyperbolic distance in the Poincare half plane can be written as follows:

dP((x0, x1), (y0, y1)) = 2 asinh

(
1

2

√
(x0 − y0)2 + (x1 − y1)2

x1y1

)

= 2 asinh

(
1

2

dE((x0, x1), (y0, y1))
√
x1y1

)
.

If cH denotes the hyperbolic distortion, we get

d′P =
dP
cH

= 2 asinh

(
1

2

d′E√
x1y1

)

⇒ 1

2

d′E√
x1y1

= sinh

2 asinh
(

1
2

dE√
x1y1

)
2cH

 &
1

2

dE
cH
√
x1y1

.

This suggests, that the effect of hyperbolic distortion on the Euclidean distances can be quantified by
a comparable factor, i.e. d′E & dE

cH
.

Lemma D.3 (Relation between h-margin and E-margin). Let γH be the margin of a hyperbolic
classifier w ∈ Rd′+1. Then the Euclidean margin γE of w is bounded as follows: γE ≥ sinh(γH).

Proof. We again write the hyperbolic distance in the Poincare half plane in terms of the Euclidean
distance of the ambient space:

dP((x0, x1), (y0, y1)) = 2 asinh

(
1

2

√
(x0 − y0)2 + (x1 − y1)2

x1y1

)

= 2 asinh

(
1

2

dE((x0, x1), (y0, y1))
√
x1y1

)
,

where y ∈ Hw is the point closest to the support vector x ∈ Ld′+ on the decision boundary. Therefore,
the hyperbolic margin is dP(x,y) = γH and the Euclidean margin is dE(x,y) = γE .

Since we mapped the feature space onto the Poincare half plane, y has the coordinates y =

(ỹ0, ỹ1, 0, . . . , 0) where ỹ0 = y0 and ỹ1 = w′Ty′

‖w′‖ . Similarly, x has the coordinates x =

(x̃0, x̃1, 0, . . . , 0). The transformation preserves the Minkowski product. Therefore we have

y ∗ y = y2
0 − y′2 = ŷ2

0 −
( w′Ty′

‖w′‖︸ ︷︷ ︸
=ŷ1

)2

= 1

and similarly x ∗ x = x̂2
0 − x̂2

1 = 1. This implies

1 ŷ1 =
√
ŷ2

0 − 1, x̂1 =
√
x̂2

0 − 1 ,

and further

2 x̂0, ŷ0 ≥ 1 .

We want to show that x̂1ŷ1 ≥ 1. For this, first, note that since y ∈ Hw and the hyperbolic margin is
γH , we have

0 = w ∗ y = w0y0 −w′Ty′

⇒ w′Ty′ = w0y0 .

This gives

y ∗ y = y2
0 −

w2
0y

2
0

‖w′‖2
= 1

⇒ 0 = y2
0 −

w2
0y

2
0

‖w′‖2
− 1 ,
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and therefore

3 y0 =
1√

1− w2
0

‖w′‖

.

Since the hyperbolic margin is γH , we further have

dP(x,y) = acosh(x ∗ y) ≥ γH ⇒ x ∗ y ≥ cosh(γH) ≥ 1 ,

and therefore

x0y0 − x1y1 ≥ 1

x0y0 −
√
x2

0 − 1
√
y2

0 − 1 ≥ 1

(x0y0 − 1)2 ≥ (x2
0 − 1)(y2

0 − 1)

x2
0y

2
0 − 2x0y0 + 1 ≥ x2

0y
2
0 − x2

0 − y2
0 + 1

⇒ 0 ≤ (x0 − y0)2 ,

which implies

4 x0 ≥ y0 .

This gives for x1y1 the following:

x1y1
1
=
√
x2

0 − 1
√
y2

0 − 1
4
≥ y2

0 − 1
3
=

1

1− w2
0

‖w′‖

− 1 =
w2

0

‖w′‖2 − w2
0

.

By assumption we have w∗w = w2
0−‖w′‖2 = −1, which gives for the denominator−w2

0+‖w′‖2 =
1. It remains to show that w2

0 ≥ 1.

For this last step, we want to show that mass concentrates on w0 as the classifier is updated, ensuring
w0 ≥ 1. By construction, we have initially w ∗w = −1. Wlog, assume that initially w0 ≥ 1. An
initialization of this form can always be found, e.g., by setting w = (a,

√
1 + a2, 0, . . . , 0) for some

a ≥ 0. If the ith update is negative (yixi0 < 0), then |w|∗ will initially decrease, but the normalization
step will scale away the effect on w0. However, if the ith update is non-negative (yixi0 ≥ 0), it will
increase w0. Over time, the positive updates concentrate the mass on w0. Since we initialized to
w0 ≥ 1, the condition will always stay valid. With the arguments above, this implies x1y1 ≥ 1.
Inserting the latter in the expression above, we get

dH = 2 asinh

(
1

2

dE√
x1y1

)
≤ 2 asinh

(
dE
2

)
⇒ dE ≥ 2 sinh

(
dH
2

)
≥ sinh(dH) .

D.2.2 Characterizing the margin

In P2 the decision hyperplane corresponding to ŵ = Bw corresponds to a hypercircle Kw.

One can show, that its radius is given by rw =
√

1−λ
1+λ [6], by computing the hyperbolic

distance between a point on the decision boundary and one of the hypercircle’s ideal points.
Further note, that the support vectors lie on hypercircles Kx and Ky, which correspond to the
set of points of hyperbolic distance ε (i.e., the margin) from the decision boundary. We again
assume wlog that at least one support vector is not unique and let x1, x2 ∈ Kx and y ∈ Ky (see Fig. 5).

Theorem D.4 (Thm. 5.2). ε′ ≈ ε.

Proof. Our proof consists of three steps:
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Figure 5: Support vectors on hypercircles Kx and Ky with decision hypercircle Kw.

Figure 6: Margin as distance between hypercircles Kx and Ky .

Step 1: Find Euclidean radii and centers of hypercircles. The hypercircles Kx,Ky correspond to
arcs of Euclidean circles K̄x, K̄y in the full plane that are related through circle inversion on the
decision circle K̄w (i.e., the Euclidean circle corresponding to Kw); see Fig. 5. We can construct a
"mirror point" y′ ∈ K̄x of y by circle inversion on K̄w. We have the following (Euclidean) distance
relations: The circle inversion gives

d̄(y′, c̄w) d̄(y, c̄w) = r2
w ,

where c̄w denotes the center of K̄w. Furthermore, we have (see Fig. 7)
d̄(y, c̄w) = d̄(y′, c̄w) + d̄(y, y′) .

Putting both together, we get an expression for the Euclidean distance of y and y′:

1 d̄(y, y′) = d̄(c̄w, y)− r̄2
w

d̄(c̄w, y)
.

Here, we have by construction c̄w = (0, a, 0, . . . , 0) with a free parameter a. Wlog, assume c̄w =
(0,−1, 0, . . . , 0). Next, consider the triangle ∆(x1, x2, y). We can express its altitude h in terms of
the side length d̄(x1, x2) =: d1, d̄(x1, y) =: d2 and d̄(x2, y) =: d3 via Heron’s formula:

h =
2

d1

√
s(s− d1)(s− d2)(s− d3) ,

where s = 1
2 (d1 + d2 + d3). Now, consider the triangle ∆(x1, x2, y

′). Due to the relation between y
and y′ in 1 , its altitude hx is related to h as

2 hx = h− d̄(y, y′) .
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Figure 7: Geometric construction for computing the center and radius of the hypercircle Kx.

With the side length - altitude relations given in ∆(x1, x2, y) and 2 , we can compute the length of
the other sides d̄(x1, y

′) and d̄(x2, y
′) as follows (with Pythagoras theorem):

d̄(x1, y
′) =

(
h2
x + d̄(x1, y)2 − h2

)1/2
d̄(x2, y

′) =
(
h2
x + d̄(x2, y)2 − h2

)1/2
.

With that, we can compute the radius of K̄x as follows: K̄x circumscribes ∆(x1, x2, y
′), therefore its

radius r̄x can be computed via Heron’s formula as

r̄x =
d̄(x1, y

′) + d̄(x2, y
′) + d̄(x1, x2)

4A

A =
√
s(s− d̄(x1, y′))(s− d̄(x2, y′))(s− d̄(x1, x2))

where s = 1
2 (d̄(x1, y

′) + d̄(x2, y
′) + d̄(x1, x2)). With an analog construction, we can compute the ra-

dius r̄y ofKy as function of d̄(x′1, x
′
2), d̄(x′1, y) and d̄(x′2, y) via relations in the triangle ∆(x′1, x

′
2, y).

Step 2: Express h-margin as distance between hypercircles. As shown in Fig. 6, the margin is
the hyperbolic distance from a point on Kx,Ky to Kw, corresponding to the length of a geodesic
connecting the point with the closest point on Kw. Let v ∈ Kx and u ∈ Kw the closest point on the
decision circle. From the geometry of the Poincare half plane we know that there exists a Möbius
transform θ ∈ Möb(P2) such that the images θ(u) = iµ and θ(v) = iν of u, v lie on the positive
imaginary axis. Since the hyperbolic distance is invariant under Möbius transforms, we get

d(u, v) = d(θ(u), θ(v)) = d(iµ, iν) =
∣∣∣ log

ν

µ

∣∣∣ .
Similarly, we can express the distance between between support vectors x ∈ Kx and y ∈ K, which
is twice the hyperbolic margin: Let θ(x) = iµx and θ(y) = iµy, where µx, µy are given by the
intersection points of Kx,Ky with the imaginary axis. Then

2ε = d(x, y) =
∣∣∣ log

µy
µx

∣∣∣ .
We can express µx, µy in terms of the centers and radii of Kx,Ky as follows (Fig. 6)

µx = c̄(2)
x + r̄x

µy = c̄(2)
y + r̄y ,
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where c(2) denotes the second coordinate of the point c ∈ Pm. Putting everything together, we get the
following expression for the margin:

3 ε =
1

2

∣∣∣ log
c̄
(2)
y + r̄y

c̄
(2)
x + r̄x

∣∣∣ .

Step 3: Evaluate Distortion. As discussed above (Prop. 5.1), the influence of distortion on the
altitude h in the triangle ∆(x1, x2, y) is given by the factor 1

cH
.

4 h′ =
h

cH
.

r̄x depends on pairwise distances between support vectors and h, which are distorted by a factor
1
cH

(by assumption on φH and 4 ). r̄x depends further on hx which in turn depends on d̄(cw, y).
The latter depends on the Euclidean norm of the support vector y, i.e., ‖y‖. With Ass. 4 the total
multiplicative distortion is then at most of a factor 1

cH
. We can derive an analogue result for r̄y. For

the center c̄x note the following:

c̄(2)
x =

1

2

[
(1− r̄2

w)x̃0 − (1 + r̄2
w)x̃1

]
,

where (x̃0, x̃1, 0, . . . , 0) = x̃ = (πBP ◦ (πLB ◦B)) and r̄w =
√

1−λ
1+λ . Rewriting

(1− r̄2
w)x̃0 =

2w̃0x̃0

w̃1 + w̃0

(1 + r̄2
w)x̃1 =

2w̃1x̃1

w̃1 + w̃0
,

we get

c̄(2)
x =

w̃T x̃

w̃0 + w̃1
.

Similarly, one can derive

c̄(2)
y =

w̃T ỹ

w̃0 + w̃1
,

for (ỹ0, ỹ1, 0, . . . , 0) = ỹ = (πBP ◦ (πLB ◦B)). Both are only affected by distortion of the form (2),
i.e. the multiplicative distortion is given by a factor 1

cH
. Inserting this into the margin expression ( 4 )

gives

ε′ =
1

2

∣∣∣ log
c′y + r′y
c′x + r′x

∣∣∣ & 1

2

∣∣∣ log

cy
cH

+
ry
cH

cHcx + cHrx

∣∣∣ =
1

2

∣∣∣ log

(
1

c2H

cy + ry
cx + rx

) ∣∣∣
=

1

2

∣∣∣ log
1

c2H︸ ︷︷ ︸
≈0

+ log
cy + ry
cx + rx

∣∣∣ †≈ 1

2

∣∣∣ log
cy + ry
cx + rx

∣∣∣ = ε ,

where (†) follows from cH = O(1 + ε) with ε > 0 small, by Thm. A.3.

E Adversarial perceptron

With the geometric tools introduced in Appendix D, we can now also proof Lemma C.4. We restate
the result from the main text:

Lemma E.1. (Adversarial perceptron, Lem. C.4) Let w̄ be the max-margin classifier of S with
margin γH . At each iteration of Alg. 2, w̄ linearly separates S ∪ S ′ with margin at least γH

cosh(α) .
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Proof. In the following, we again use the shorthand |u| =
√
±u ∗ u, with "+", if u is space-like

(i.e., u ∗u > 0) and "-", if u is time-like (i.e., u ∗u < 0). Since w̄ is "time-like" and x, x̃ space-like,
we have

1 |w̄ ∗ x| = |w̄| |x| cosh](w̄,x)

|w̄ ∗ x̃| = |w̄| |x̃| cosh](w̄, x̃) .

To prove the statement, we first transform the problem from the Lorentz model Ld to the Poincare half
plane P2 using the map (πBP ◦ (πLB ◦B)). Then the adversarial margin is given by the Euclidean
distance of the hypercircle Kx̃ through x̃ and the decision hypercircle Kw. First, note that we can
express this as the hyperbolic distance of the points (0, θ(x̃)) and (0, rw), where θ ∈ Möb(P2) is a
Möbius transform that maps x̃ to the imaginary axis. Importantly, any such θ leaves the Minkowski
product invariant. One can show [6] that

θ(x̃) = cx̃ +
√
c2x̃ + rw

where cx̃ = 1
2

(
(1− r2

w)x̃0 − (1 + r2
w)x̃1

)
is the Euclidean center of Kx̃. The hyperbolic distance is

then given by

2
∣∣∣ log

θ(x̃)

rw

∣∣∣ =
∣∣∣ log

(
cx̃
rw

+

√
c2x̃
r2
w

+ 1

)∣∣∣ =
∣∣∣ asinh

(
cx̃
rw

) ∣∣∣ .
Note, that

cx̃
rw

=
1

2

[(
1

rw
− rw

)
x̃0 −

(
1

rw
+ rw

)
x̃1

]
,

where
1

rw
− rw =

√
1 + λ

1− λ
−
√

1− λ
1 + λ

=
2λ√

1− λ2
=

2w0√
w2

1 − w2
0

1

rw
+ rw =

2√
1− λ2

=
2w1√
w2

1 − w2
0

.

This gives

3
∣∣∣ asinh

(
cx̃
rw

) ∣∣∣ =
∣∣∣ asinh

(
w0x̃0 − w1x̃0√

w2
1 − w2

0

)∣∣∣ =
∣∣∣ asinh

(
w ∗ x̃
|w|

) ∣∣∣ .
Using 2 , we can express the adversarial margin in terms of the margin and the distance between
features and adversarial samples as follows:

∣∣∣ asinh
(cx̃
w

) ∣∣∣ =
∣∣∣ asinh

cx̃cx cx
rw︸︷︷︸

≥sinh(γH)

∣∣∣ †≥ ∣∣∣ asinh
(cx̃
cx

sinh(γH)
)∣∣∣ ,

where (†) follows from the assumption that y(w ∗ x) ≥ sinh(γH) (with margin γH ). We further
show above that we can express the Euclidean centers as

cx =
w ∗ x
w0 + w1

, cx̃ =
w ∗ x̃
w0 + w1

.

Wlog, assume that w ∗ x > 0; then w ∗ x̃ < 0 and therefore

cx =
|w ∗ x|
w0 + w1

, cx̃ =
−|w ∗ x̃|
w0 + w1

.

Inserting 1 above in 3 , we get

asinh

(
−|w ∗ x̃|
|w ∗ x|

sinh(γH)

)
1
= asinh

(
−|w| |x̃| cosh(](w, x̃))

|w| |x| cosh(](w,x))
sinh(γH)

)
= asinh

(
−|x̃|
|x|

cosh(](w, x̃))

cosh(](w,x))
sinh(γH)

)
†
≥ asinh

(
−|x̃|
|x|

sinh(γH)

)
,
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where (†) follows from w being a better classifier for x than for x̃ by construction. Therefore, we
have ∣∣∣ asinh

(
−|w ∗ x̃|
|w ∗ x|

sinh(γH)

) ∣∣∣ ≥ asinh

(
|x̃|
|x|

sinh(γH)

)
.

Furthermore, note, that by construction we have dL(x, x̃) ≤ α and therefore:

acosh(x ∗ x̃) ≤ α ⇒ x ∗ x̃ ≤ cosh(α) .

Since x, x̃ are both space-like, we further have |x| |x̃| ≤ x ∗ x̃. In summary, this gives

4 |x| ≤ cosh(α)

|x̃|
.

Inserting 4 above, we get

asinh

(
|x̃|
|x|

sinh(γH)

) 4
≥ asinh

(
|x̃|2

cosh(α)
sinh(γH)

)
‡
= asinh

(
sinh(γH)

cosh(α)

)
,

where (‡) follows from |x̃|2 = x̃ ∗ x̃ = 1, since x̃ ∈ Lm. Finally, the claim follows from

asinh

(
sinh(γH)

cosh(α)

)
≥ γH

cosh(α)
.

F Additional Experimental Results

F.1 Hyperbolic perceptron

To validate the hyperbolic perceptron algorithm, we performed two simple classification experiments.
For the two-class data set (ImageNet n09246464 and n07831146), we observe that hyperbolic
perceptron can successfully classify the points into the two groups, i.e., it achieves zero test error. In
a second experiment, we try hyperbolic perceptron on a linearly non-separable dataset. The algorithm
was still able to classify reasonably well.

F.2 Adversarial Gradient decent

F.2.1 Choice of loss function

Following the large body of work on large-margin learning in Euclidean space, we tested our approach
with the classic hinge (Eq. C.2) and least squares losses (Eq. C.3). While both algorithms work well
in practise (see § 6 and Section F.2.2), they do not fulfill Ass. 1 on the whole domain. Therefore, our
theoretical guarantees are not valid for those loss functions.

We derive theoretical results for the hyperbolic logistic loss (Eq. C.8) instead, which fulfills Ass. 1.
Unfortunately, the hyperparameter Rα is difficult to determine in practice. We therefore decided to
omit validation experiments with the hyperbolic logistic loss.

For choosing an adversarial budget α in practice, note that Assumption 1(2) imposes a norm
constraint on the adversarial examples, relative to the maximal norm of the training points. Given the
constant Rx, one can estimate an upper bound on α. In addition, an upper bound on α depends on
how separable the data set is, i.e., the maximal possible margin. Within these constraints, the choice
of α is guided by a trade-off between better robustness and longer training time.

F.2.2 Adversarial GD via least squares loss

Using the same data set as described in § 6, we also try classification in hyperbolic space with
adversarial examples using the least squares losses (Eq. C.3). We use the same procedure to find
adversarial examples. The results are plotted in Figure 8 with similar conclusions.
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Figure 8: Performance of Adversarial GD using smoothed square loss (Eq. C.3). Left: Loss L(w)
on the original data. Middle: α-robust loss Lα(w). Right: Hyperbolic margin γH . We vary the
adversarial budget α over {0, 0.25, 0.5, 0.75}. The case α = 0 corresponds to the setup in [6].

F.3 Dimension-distortion trade-off

Euclidean embeddings computed using implementation in Nickel and Kiela [22] by Facebook
Research2.

d Euclidean Hyperbolic

4 0.54 0.51
8 0.53 1.00
16 0.68 1.00

Table 2: Classification performance (test error) in hyperbolic vs. Euclidean space of dimension d.

2https://github.com/facebookresearch/poincare-embeddings
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