
SOLOv2: Dynamic and Fast Instance Segmentation
Appendix

Xinlong Wang1 Rufeng Zhang2 Tao Kong3 Lei Li3 Chunhua Shen1

1 The University of Adelaide, Australia 2 Tongji University, China 3 ByteDance AI Lab

A Matrix NMS
The pseudo-code of Matrix NNS is shown in Figure 1. All the operations in Matrix NMS could be
implemented in one shot without recurrence. In our code base, Matrix NMS is 9× times faster than
traditional NMS and being more accurate. We show that Matrix NMS serves as a superior alternative
of traditional NMS both in accuracy and speed, and can be easily integrated into the state-of-the-art
detection/segmentation systems.

def matrix_nms(scores, masks, method=’gauss’, sigma=0.5):
scores: mask scores in descending order (N)
masks: binary masks (NxHxW)
method: ’linear’ or ’gauss’
sigma: std in gaussian method

reshape for computation: Nx(HW)
masks = masks.reshape(N, HxW)
pre−compute the IoU matrix: NxN
intersection = mm(masks, masks.T)
areas = masks.sum(dim=1).expand(N, N)
union = areas + areas.T − intersection
ious = (intersection / union).triu(diagonal=1)

max IoU for each: NxN
ious_cmax = ious.max(0)
ious_cmax = ious_cmax.expand(N, N).T
Matrix NMS, Eqn.(4): NxN
if method == ’gauss’: # gaussian

decay = exp(−(ious^2 − ious_cmax^2) / sigma)
else: # linear

decay = (1 − ious) / (1 − ious_cmax)
decay factor: N
decay = decay.min(dim=0)
return scores ∗ decay

Figure 1: Python code of Matrix NMS. mm: matrix multiplication; T: transpose; triu: upper triangular
part

B Unified Mask Feature Representation
The detailed implementation is illustrated in Figure B. For learning a unified and high-resolution mask
feature representation, we apply feature pyramid fusion inspired by the semantic segmentation in [1].
After repeated stages of 3 × 3 conv, group norm [2], ReLU and 2× bilinear upsampling, the FPN
features P2 to P5 are merged into a single output at 1/4 scale. The last layer after the element-wise
summation consists of 1 × 1 convolution, group norm and ReLU. It should be noted that we feed
normalized pixel coordinates to the deepest FPN level (at 1/32 scale), before the convolutions and
bilinear upsamplings. The provided accurate position information is important for enabling position
sensitivity and predicting instance-aware features. Compared with the separated alternative, the
unified mask feature representation is more effective and time efficient.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

coordconv

1/4 1/4

1/32

1/8

1/16

1/4

1/4

1/4
conv

𝐹

mask feature
(𝐻×𝑊×𝐸)

Figure 2: Unified mask feature branch. Each FPN level (left) is upsampled by convolutions and
bilinear upsampling until it reaches 1/4 scale (middle). In the deepest FPN level, we concatenate the x,
y coordinates and the original features to encode spatial information. After element-wise summation,
a 1× 1 convolution is attached to transform to designated output mask feature F ∈ RH×W×E .

C Visualization

We visualize what our SOLOv2 has learnt from two aspects: mask feature behavior and the final
outputs after being convolved by the dynamically learned convolution kernels.

We visualize the outputs of mask feature branch. We use a model which has 64 output channels (i.e.,
E = 64 for the last feature map prior to mask prediction) for easy visualization. Here we plot each of
the 64 channels (recall the channel spatial resolution is H ×W) as shown in Figure 3.

There are two main patterns. The first and the foremost, the mask features are position-aware. It
shows obvious behavior of scanning the objects in the image horizontally and vertically. The other
obvious pattern is that some feature maps are responsible for activating all the foreground objects,
e.g., the one in white boxes.

The final outputs are shown in Figure 5. Different objects are in different colors. Our method shows
promising results in diverse scenes. It is worth pointing out that the details at the boundaries are
segmented well, especially for large objects.

We also provide three videos for better visualization of our instance segmentation results. These
videos are generated from frame-by-frame inference, without any temporal processing. Though only
trained on MS COCO, our model generalizes well across various scenes.

Figure 3: Mask feature behavior. Each plotted subfigure corresponds to one of the 64 channels
of the last feature map prior to mask prediction. The mask features appear to be position-sensitive
(orange box), while a few mask features are position-agnostic and activated on all instances (white
box). Best viewed on screens.

2

D Bounding-box Object Detection

Although our instance segmentation solution removes the dependence of bounding box prediction,
we are able to produce the 4D object bounding box from each instance mask. In Table 1, we compare
the generated box detection performance with other object detection methods on COCO. All models
are trained on the train2017 subset and tested on test-dev.

As shown in Table 1, our detection results outperform most methods, especially for objects of large
scales, demonstrating the effectiveness of SOLOv2 in object box detection. Similar to instance
segmentation, we also plot the speed/accuracy trade-off curve for different methods in Figure 4. We
show our models with ResNet-101 and two light-weight versions described above. The plot reveals
that the bounding box performance of SOLOv2 beats most recent object detection methods in both
accuracy and speed. Here we emphasis that our results are directly generated from the off-the-shelf
instance mask, without any box based supervised training or engineering.

An observation from Figure 4 is as follows. If one does not care much about the cost difference
between mask annotation and bounding box annotation, it appears to us that there is no reason to use
box detectors for downstream applications, considering the fact that our SOLOv2 beats most modern
detectors in both accuracy and speed.

backbone AP AP50 AP75 APS APM APL

YOLOv3 [3] DarkNet53 33.0 57.9 34.4 18.3 35.4 41.9
SSD513 [4] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD513 [4] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1
RefineDet [5] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4

Faster R-CNN [6] Res-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
RetinaNet [7] Res-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
FoveaBox [8] Res-101-FPN 40.6 60.1 43.5 23.3 45.2 54.5

RPDet [9] Res-101-FPN 41.0 62.9 44.3 23.6 44.1 51.7
FCOS [10] Res-101-FPN 41.5 60.7 45.0 24.4 44.8 51.6

CenterNet [11] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8
SOLOv2 Res-50-FPN 40.4 59.8 42.8 20.5 44.2 53.9
SOLOv2 Res-101-FPN 42.6 61.2 45.6 22.3 46.7 56.3
SOLOv2 Res-DCN-101-FPN 44.9 63.8 48.2 23.1 48.9 61.2

Table 1: Object detection box AP (%) on the COCO test-dev. Although our bounding boxes are
directly generated from the predicted masks, the accuracy outperforms most state-of-the-art methods.
Speed-accuracy trade-off of typical methods is shown in Figure 4.

C
O

C
O

 B
ox

 A
P

25 50 100 125

30

35

40

Inference time (ms)
150

SOLOv2
FCOS
CenterNet
RetinaNet
YOLOv3
RefineDet

Figure 4: Speed-accuracy trade-off of bounding-box object detection on the COCO test-dev.

3

Figure 5: Visualization of instance segmentation results using the Res-101-FPN backbone. The
model is trained on the COCO train2017 dataset, achieving a mask AP of 39.7% on the COCO
test-dev.

4

References
[1] Alexander Kirillov, Ross Girshick, Kaiming He, and Piotr Dollár. Panoptic feature pyramid networks. In

Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2019.

[2] Yuxin Wu and Kaiming He. Group normalization. In Proc. Eur. Conf. Comp. Vis., 2018.

[3] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv:1804.02767, 2018.

[4] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In Proc. Eur. Conf. Comp. Vis., 2016.

[5] Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z Li. Single-shot refinement neural network
for object detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2018.

[6] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J. Belongie.
Feature pyramid networks for object detection. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2017.

[7] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proc. IEEE Int. Conf. Comp. Vis., 2017.

[8] Tao Kong, Fuchun Sun, Huaping Liu, Yuning Jiang, and Jianbo Shi. Foveabox: Beyond anchor-based
object detector. arXiv:1904.03797, 2019.

[9] Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point set representation for
object detection. In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[10] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. FCOS: Fully convolutional one-stage object detection.
In Proc. IEEE Int. Conf. Comp. Vis., 2019.

[11] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects as points. arXiv:1904.07850, 2019.

5

	Matrix NMS
	Unified Mask Feature Representation
	Visualization
	Bounding-box Object Detection

