
Appendix
Here we present additional details and experimental results. Section A gives the form of the generating
matrices for the Lie group and the corresponding transformations to which they give rise. In Section
B we provide details regarding the experimental setup and results in applying Augerino to image
segmentation. In Section C we give the full training details for the experiments of Sections 4 and 6.
In Section D we expand on the details of the color-space augmentation experiment given in Section
9 in the main text. Section E expands on the molecular property prediction experiments of Section
7, showing the learned augmentations and giving further details regarding the experimental setup.
Finally Section F explains how Augerino aids in finding solutions that generalize well through looking
at the effective dimensionality of the training solutions [30].

A Lie Group Generators

The six Lie group generating matrices for affine transformations in 2D are,

G1 =

"
0 0 1
0 0 0
0 0 0

#
, G2 =

"
0 0 0
0 0 1
0 0 0

#
, G3 =

"
0 �1 0
1 0 0
0 0 0

#
,

G4 =

"
1 0 0
0 1 0
0 0 0

#
, G5 =

"
1 0 0
0 �1 0
0 0 0

#
, G6 =

"
0 1 0
1 0 0
0 0 0

#
.

(10)

Applying the exponential map to these matrices produces affine matrices that can be used to transform
images. In order, these matrices correspond to translations in x, translations in y, rotations, scaling in
x, scaling in y, and shearing.

B Semantic Segmentation: Details

In Section 8, we apply Augerino to semantic segmentation on the rotCamVid dataset (see Figure 7).

To generate the rotCamVid dataset, we rotate all images in the CamVid by a random angle, analogously
to the rotMNIST dataset [23]. We note that rotCamVid only contains a single rotated copy of each
image, which is not the same as applying rotational augmentation during training. When computing
the training loss and test acccuracy, we ignore the padding pixels which appear due to rotating the
image.

For the segmentation experiment we used the simpler augmentation distribution covering rotations and
translations instead of the affine transformations (Section 3.2). We use a Gaussian parameterization
of the distribution:

t = (t1, t2, t3) ⇠ N (µ,⌃), A(t) =

cos(t1) � sin(t1) 2 · t2/(w + h)
sin(t1) cos(t1) 2 · t3/(w + h)

�
, (11)

where µ,⌃ are trainable parameters, and A(t) is the affine transformation matrix for the random
sample t; w and h are the width and height of the image.

Augerino achieves pixel-wise segmentation accuracy of 69.8% while the baseline model with standard
augmentation achieves 68.7%.

C Training Details

Network Training Hyperparameters We train the networks in Sections 4 and 6 for 200 epochs,
using an initial learning rate of 0.01 with a cosine learning rate schedule and a batch size of 128.

13

(a) Original Data (b) Augerino Sample (c) Augerino Sample (d) Augerino Sample

Figure 7: Augmentations learned by Augerino on the rotCamVid dataset. (a): original data from
rotCamVid; (b)-(d): three random samples of augmentations from the learned augerino distribution.
Augerino learns to be invariant to rotations but not translations.

(a) Original Data (b) Augerino Sample (c) Augerino Sample (d) Augerino Sample

Figure 8: Color-space augmentation distribution learned by Augerino. (a): original data from
STL-10; (b)-(d): three random samples of augmentations from the learned augerino distribution.
Augerino learns to be invariant to a broad range of color and contrast adjustments while matching the
performance of the baseline.

We use the cross entropy loss function for all classification tasks, and mean squared error for all
regression tasks except for QM9 where we use mean absolute error.

Train- and Test-Time Augmentations In Algorithm 1 we include a term ncopies that denotes the
number of sampled augmentations during training. We find that we can achieve strong performance
with Augerino, with minimally increased training time, by setting ncopies to 1 at train-time and then
applying multiple augmentations by increasing ncopies at test-time. Thus we train using a single
augmentation for each input, and then apply multiple augmentations at test-time to increase accuracy,
as seen in Table 1.

D Color-Space Augmentations: Details

In Section 9, we apply Augerino to learning color-space invariances on the STL-10 dataset. We
consider two transformations:

• Brightness adjustment by a value t transforms the intensity c in each channel additively:

c0 = max(min(c+ t, 255), 0). (12)

Positive t increases, and negative t decreases brightness.
• Contrast adjustment by a value t transforms the intensity c in each channel as follows3:

c0 = max

✓
min

✓
259 · (t+ 255)

255 · (259� t)
· (c� 128) + 128, 255

◆
, 0

◆
(13)

We apply brightness and contrast adjustments sequentially and independently from each other. We
learn the range of a uniform distribution over the values t in (12), (13). The learned data augmentation
strategy is visualized in Figure 8.

3https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/
image-processing-algorithms-part-5-contrast-adjustment/

14

https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/image-processing-algorithms-part-5-contrast-adjustment/
https://www.dfstudios.co.uk/articles/programming/image-programming-algorithms/image-processing-algorithms-part-5-contrast-adjustment/

Figure 9: Top: Test error and train loss as a function of perturbation lengths along random rays
from the SGD found training solution for models. Each curve represents a different ray. Bottom:
Test error and effective dimensionality for models trained on CIFAR-10. Results from 8 random
initializations are presented violin-plot style where width represents the kernel density estimate at the
corresponding y-value.

E QM9 Experiment

We reproduce the training details from Finzi et al. [14]. Affine transformations in 3d, there are 9
generators, 3 for translation, 3 for rotation, 2 for squeezing and 1 for scaling, a straightforward
extension of those listed in equation 10 to 3 dimensions. Like before, we parameterize the bounds on
the uniform distribution for each of these generators. We use a regularization strength of ⇥10�3.

F Width of Augerino Solutions

To help explain the increased generalization seen in using Augerino, we train 10 models on CIFAR-10
both with and without Augerino. In Figure 9 we present the test error of both types of models for
along with the corresponding effective dimensionalities and sensitivity to parameter perturbations
of the networks as a measure of the flatness of the optimum found through training. Maddox et al.
[30] shows that effective dimensionality can capture the flatness of optima in parameter space and is
strongly correlated to generalization, with lower effective dimensionality implying flatter optima and
better generalization. Overall we see that Augerino enables networks to find much flatter solutions in
the loss surface, corresponding to better compressions of the data and better generalization.

15

