Towards Neural Programming
Interfaces

Zachary Brown?*, Nathaniel Robinson', David Wingate'!, Nancy Fulda'

'Computer Science, Brigham Young University
2Electrical and Computer Engineering, Duke University

*Majority of work completed while at Brigham Young University

NeurlPS 2020




Motivation -

Pretrained Neural Network
e Strong domain model
e Many parameters <
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Motivation

Avoiding Undesirable Output

e Offensive speech
o Racial slurs
o Gender slurs
o Other
e Politically charged phrases
and topics

Encouraging Desirable Output

e Preferred phrases and topics
o E.g. ‘cat for a pet owner
o Favored political candidates
o Other
e Style preferences
o E.g. simple vs diverse
vocabulary
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e Domain agnostic
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functions’ which are hard to
capture in the original domain | Output Text (FP)-== @) |




Results

Avoiding Undesirable Output Encouraging Desirable Output
model name target in output target in
- : model name output
Public figure avoidance 54.2% TR : : =
atitiodified GPT-2 76.2% woNr;)llmtIucn(m - “cat” (random contexts from Wikipedia) e
Racial slur avoidance 0.5% E:,I;x,mcd GPT2 2?)'02/0
unmodified GPT-2 52.1%
Gender slur avoidance 10.3% model name avg word length num long words
unmodified GPT-2 90.2% short-NPI 2.90 3.440
long-NPI 4.10 14.013
offensive speech avoidance 58.0% unmodified GPT-2 3.82 9425
unmodified GPT-2 88.4%

References: [1], [2]
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