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Abstract

Zap Q-learning is a recent class of reinforcement learning algorithms, motivated
primarily as a means to accelerate convergence. Stability theory has been absent
outside of two restrictive classes: the tabular setting, and optimal stopping. This
paper introduces a new framework for analysis of a more general class of recursive
algorithms known as stochastic approximation. Based on this general theory, it is
shown that Zap Q-learning is consistent under a non-degeneracy assumption, even
when the function approximation architecture is nonlinear. Zap Q-learning with
neural network function approximation emerges as a special case, and is tested
on examples from OpenAI Gym. Based on multiple experiments with a range of
neural network sizes, it is found that the new algorithms converge quickly and are
robust to choice of function approximation architecture.

1 Introduction

A primary goal of reinforcement learning (RL) is the creation of algorithms that are convergent,
converge at the fastest possible rate, and result in a policy for control that has near optimal perfor-
mance. This paper focuses on algorithm design to ensure stability of the algorithm, consistency, and
techniques to obtain qualitative insight on the rate of convergence. One framework for algorithm
design is the theory of stochastic approximation (SA). The main contribution of this work is a
new class of Q-learning algorithms that are convergent even for nonlinear function approximation
architectures, such as neural networks.

Consider a Markov decision process (MDP) model with state-input sequence {(Xn, Un) : n � 0},
and let {Q✓(x, u) : ✓ 2 Rd

} denote a family of approximations of the Q-function; the vector ✓ 2 Rd

might correspond to weights in a neural network. One popular formulation of Q-learning is defined
by the recursion,

✓n+1 = ✓n + ↵n+1Dn+1⇣n (1)
in which {↵n+1} is the non-negative step-size sequence, {Dn+1} is the scalar sequence of temporal
differences [recalled in eq. (19a)], and {⇣n} the eligibility vectors: a typical choice is

⇣n = r✓Q
✓(Xn, Un)

���
✓=✓n

(2)

The Q-learning algorithm of Watkins can be expressed as (1), with a linear function approximation
Q✓ = ✓| , and the basis functions  (x, u) being indicator functions of each state-input pair.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



The theory of Q-learning with function approximation has not caught up with the famous success
stories in applications. Consistency of the Q-learning algorithm in the tabular setting was established
in the seminal work of Watkins and Dayan [50]. Counter-examples soon followed: the recursion (1)
may fail to converge, even in the linear function approximation setting [3, 31]. Moreover, even when
convergence holds, Q-learning can be extremely slow [45, 18, 16].

The so-called ODE method of SA theory is typically regarded as a method of analysis for stochastic
recursions. We take the opposite view, regarding an ODE as a first step in algorithm design. This is
motivated in part by the recent work [42, 39] concerning the value of high-resolution approximations
of ODEs for applications in optimization, and the enormous insight gained from a careful inspection
of candidate ODEs.

The Q-learning algorithms considered in the present work are designed to solve a root-finding problem
of the form f(✓⇤) := E[⇣nDn+1]

��
✓=✓⇤ = 0. For ODE design, we let wt 2 Rd denote the state of the

ODE at time t, and seek a vector field ⌫ : Rd+1
! Rd to define the evolution:

d

dt
wt = ⌫(wt, t)

The vector field is designed so that wt ! ✓⇤ from each initial condition, and so that the ODE
solutions can be efficiently approximated using a discrete-time algorithm driven by observations.

One approach is to apply gradient descent to solve the non-convex optimization problem:

min
✓

J(✓) = min
✓

1
2f(✓)

|Mf(✓), with M > 0 (3)

which results in the ODE with time homogeneous vector field:
d

dt
wt = �[@✓f (wt)]

|Mf(wt) (4)

The GQ-learning algorithm of [31] can be regarded as a direct discrete-time translation of this ODE,
using M = E[⇣n⇣|n]

�1.

This approach is discussed in Nesterov’s monograph [34, Section 4.4.1] for general root finding
problems, who warns that it can lead to numerical instability: “...if our system of equations is linear,
then such a transformation squares the condition number of the problem”. He goes on to warn that it
can lead to a “squaring the number of iterations” to obtain the desired error bound.

The main results of the present paper are related to the Newton-Raphson flow, defined by another
time homogeneous vector field ⌫(w) = �[@✓f (w)]�1f(w):

d

dt
wt = Gtf(wt) , with Gt = �[@✓f (wt)]

�1 (5)

A change of variables leads to the linear dynamics, d

dt
f(wt) = �f(wt), with solution

f(wt) = f(w0) e
�t , t � 0 (6)

Thus, provided solutions to (5) are bounded, the algorithm is consistent in the sense that the limit
points of {wt} lie in the set of roots ⇥⇤ := {✓ : f(✓) = 0}.

In most applications it is not possible to determine a-priori if the matrix @✓f (✓) is full rank, which
motivates a regularized Newton-Raphson flow:

d

dt
wt = �["I +A(wt)

|A(wt)]
�1A(wt)

|f(wt) , A(wt) = @✓f (wt) (7)

It is shown in Prop. A.6 that (7) is stable, provided V = kfk2 is a coercive function on Rd; V serves
as a Lyapunov function for (7), giving

lim
t!1

f(wt) = 0 (8)

Hence the limit points of solutions lie in the set ⇥⇤.

Details of the algorithms and the contributions of this paper require additional background. Consider
the d-dimensional SA recursion of Robbins and Monro [38, 9]:

✓n+1 = ✓n + ↵n+1f(✓n,�n+1) (9)
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in which � is an irreducible Markov chain on a finite state space Z, {↵n} is a non-negative gain
sequence, and f : Rd

⇥Z ! Rd. It is assumed that � has a unique invariant probability mass function
(pmf) on Z. The algorithm is designed to approximate roots of the function f(✓) = E[f(✓,�n+1)]
(with expectation in steady-state). Under mild conditions, the SA recursion shares the same limit
points as the ODE d

dt
wt=f(wt) [30, 9, 6]. More recently it has been established that boundedness

of the stochastic recursion follows from a stability condition for the ODE [10, 9, 37] (prior to this
work, stability of the stochastic recursion required separate arguments [46]).

One approach to obtain a rate of convergence in SA is through the linearization:

En+1 = En + ↵n+1[A⇤En +�n+1] , E0 = ✓0 � ✓⇤ (10)

where A⇤ = @✓f (✓⇤) is called the linearization matrix. The sequence �n+1 := f(✓⇤,�n+1) is
assumed to admit a Central Limit Theorem (CLT) in the usual sense, with asymptotic covariance

⌃� =
1X

k=�1

E[�k�
|
0 ] (11)

where the expectations are in steady state. The approximation En ⇡ ✓̃n := ✓n � ✓⇤ holds under
additional stability assumptions on the stochastic recursion (9), which in particular leads to a CLT for
the scaled error

p
n✓̃n [30, 9, 6].

The asymptotic covariance ⌃✓ in the CLT has a simple form, subject to the eigenvalue test:

Re (�) < �
1
2 for each eigenvalue � of A⇤ (12)

Under this assumption, ⌃✓ is the unique solution of the Lyapunov equation,

[ 12I +A⇤]⌃✓ + ⌃✓[
1
2I +A⇤]

| + ⌃� = 0 (13)

For a fixed but arbitrary initial condition (�0, E0), denote ⌃n = E[EnE|
n
]. The following bounds

were obtained in [12] for the linear recursion (10):

(i) If (12) holds, then ⌃n = n�1⌃✓ +O(n�1��) for some � > 0.
(ii) If there exists an eigenvalue of A⇤ with ⇢ := �Re (�) < 1

2 , and associated eigenvector v
satisfying ⌃�v 6= 0, then the convergence rate of ⌃n to zero is no faster than n�2⇢.

Even though the recursion for Watkins’ Q-learning is of the form (1), with Dn+1 a non-linear
function of ✓n, techniques of [45] can be used to show that the estimates obtained using the non-linear
recursion couple with the estimates of a linear recursion of the form (10). The slow convergence
for Watkins’ algorithm can then be explained by the fact that we are in case (ii) for the linearized
recursion, whenever the discount factor satisfies � > 1

2 : for a standard step-size rule, the maximal
eigenvalue of A⇤ in Watkins’ Q-learning is � = �(1� �), and the condition ⌃�v 6= 0 holds under
very mild conditions on the MDP [16]. It follows that the mean square error converges to zero at rate
n�2(1��). For GQ-learning, it is shown in Appendix A.3 that the maximal eigenvalue is greater than
�(1� �)2, which is consistent with Nesterov’s warning.

The slow convergence can be remedied by scaling the step-size by a constant g > 1 (sufficiently large
so that the matrix 1

2I+gA⇤ is Hurwitz). For tabular Q-learning any value satisfying g > 1/[2(1��)]
will suffice, while for GQ-learning the scaling must be increased beyond 1/[2(1��)2]. Unfortunately,
this approach may lead to very high variance.

Contributions (i) A generalization of the Zap SA algorithm of [16] is proposed.
Zap SA Algorithm: Initialize ✓0 2 Rd, bA0 2 Rd⇥d, " > 0. Update for n � 0:
bAn+1 = bAn + �n+1

⇥
An+1(✓n)� bAn

⇤
, An+1(✓) := @✓f (✓,�n+1) (14a)

✓n+1 = ✓n + ↵n+1Gn+1f(✓n,�n+1), Gn+1 :=�["I + bA|
n+1

bAn+1]
�1 bA|

n+1 (14b)

The algorithm is designed so that it approximates the ODE (7), which requires ↵n = o(�n).

(ii) A special case of this new class of SA algorithms leads to a significant generalization of Zap
Q-learning, for which convergence theory is obtained even in a nonlinear function approximation
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setting. The reliability in neural network function approximation architectures is tested through
simulations.

(iii) The main technical contribution of this paper is an extension of SA theory to Zap Q-learning,
and as a byproduct also GQ-learning, by exploiting approximate convexity/concavity of the functions
f and f defined implicitly in (14).

Contribution (iii) resolves a significant challenge for both Zap Q-learning and GQ-learning: the
approximation in stochastic approximation. Standard theory does not apply because A(✓) := @✓f(✓)
is not continuous. An ODE approximation for GQ-learning is obtained in [31] through the assumption
that noise {�n} defined below (10) is martingale-difference. Assumption (Q3) of [16] is introduced
to obtain an ODE approximation without this restrictive assumption on noise. However, this implicit
assumption cannot be tested a-priori.

Literature review The observation that many RL algorithms can be cast as SA first appeared
in [46, 22]. Soon after, SA theory was applied to obtain stability theory for TD-learning with
linear function approximation under minimal assumptions [48]; the authors discussed challenges for
nonlinear approximation architectures.

In the case of Q-learning, ODE approximations are nonlinear and not understood outside of a few
special cases (notably tabular, and optimal stopping with linear function approximation). There are
many counterexamples showing that conditions on the function class are required in general, even in
a linear function approximation setting [4] (also see [47, 43, 19]). There has also been progress for
general linear function approximation: sufficient conditions for convergence of the basic Q-learning
algorithm (1) was obtained in [32], with finite-n bounds appearing recently in [13], and stability
of GQ-learning was established in [31] subject to assumptions slightly stronger than (A1)–(A3) in
the present paper. In particular, it is assumed in [31, Assumption L3] that @✓f (✓) is everywhere
nonsingular. In [23], the authors obtained regret bounds for Q-learning in an episodic setting, under a
linear MDP (linear dynamics and linear rewards) assumption, stronger than the assumptions imposed
here.

Stability theory for off-policy TD-learning faces similar challenges as Q-learning. A consistent
algorithm is introduced in [44] for linear function approximation, using the same ideas as in [31];
this theory is extended to non-linear function approximation in [8].

To the best of our knowledge, the ODE (5) was introduced in the economics literature, which led to
the comprehensive analysis by Smale [41] for smooth f . The term Newton-Raphson flow for (5) was
introduced in the deterministic control literature [40, 49]. The Zap SA algorithm was introduced at
the same time, and based on the same ODE [15].

The motivation of [15] was centered entirely on optimizing the asymptotic covariance of stochastic
approximation, and in particular Q-learning with tabular basis; see [30, 6] for history of convergence
rate theory in SA, and [29, 28] for application to actor-critic methods. While the motivation here
is stability, results in Section A.2 strongly suggest that the asymptotic covariance is approximately
optimal for the regularized Zap Q-learning algorithm introduced here; a “tightness argument” is
required to complete the proof.

The analysis in this paper can be cast in the general framework of stochastic approximation based
on differential inclusions (see [9, Chapter 5] and its references). This general framework guided the
research reported here. New in this paper is the proof of convergence of Zap Q-learning via an ODE
approximation, made possible by the special structure of the recursion.

2 Zap Q-learning with Nonlinear Function Approximation

Preliminaries We restrict to a discounted reward optimal control problem, with finite state space X,
finite input space U, reward function r : X⇥ U ! R, and discount factor � 2 (0, 1). The Q-function
is defined as the maximum over all possible input sequences {Un : n � 1} of the total discounted
reward:

Q⇤(x, u) := max
U

1X

n=0

�nE[r(Xn, Un) | X0 = x , U0 = u] , x 2 X, u 2 U (15)

Extensions to other criteria are straightforward (e.g., average cost or weighted shortest path).

4



Let Pu denote the state transition matrix when input u 2 U is taken. It is known that the Q-function
is the unique solution to the Bellman equation [7]:

Q⇤(x, u) = r(x, u) + �
X

x02X

Pu(x, x
0)Q⇤(x0) (16)

where Q(x) := maxu2U Q(x, u) for any function Q : X⇥ U ! R.

Consider a (possibly nonlinear) parameterized family of candidate approximations {Q✓ : ✓ 2

Rd
}, wherein Q✓ : X ⇥ U ! R for each ✓, and the associated family of policies �✓(x) 2

argmax
u
Q✓(x, u), x 2 X. To avoid ambiguities when the maximizer is not unique, we enumerate

all stationary policies as {�(i) : 1  i  `�}, and specify

�✓ := �() , where  := min{i : �(i)(x) 2 argmax
u

Q✓(x, u), for all x 2 X} (17)

The recursion (1) is designed to compute an approximate solution of (16), defined as the solution to
the root-finding problem:

f(✓⇤) = 0, with f(✓) := E
⇥�
r(Xn, Un) + �Q✓(Xn+1)�Q✓(Xn, Un)

�
⇣n
⇤

(18)

where the expectation is in steady state.

It is convenient to denote �n+1 := (Xn+1, Xn, Un+1, Un), with state space Z := X2
⇥ U2. It is

assumed throughout the paper that ⇣n = ⇣(✓n,�n) for a function ⇣ : Rd
⇥ Z ! Rd.

Algorithm The Zap SA algorithm (14) to solve (18) is obtained on specifying

D(✓n,�n+1) := r(Xn, Un) + �Q✓n(Xn+1)�Q✓n(Xn, Un) (19a)
f(✓n,�n+1) :=D(✓n,�n+1)⇣n (19b)

At points of differentiability, the derivative of f has a simple form:

A(✓) := @✓f(✓) = E[⇣n
�
�@✓Q

✓(Xn+1,�
✓(Xn+1))� @✓Q

✓(Xn, Un)
�
+D(✓,�n+1)@✓⇣n] (20)

The Zap SA algorithm for Q-learning is exactly as described in (14) with f defined in (19b), and
An+1(✓) defined to be the term inside the expectation (20):

An+1 = ⇣n[�@✓Q
✓n(Xn+1,�

✓n(Xn+1))� @✓Q
✓n(Xn, Un)] +D(✓n,�n+1)@✓⇣n (21a)

bAn+1 = bAn + �n+1

⇥
An+1 �

bAn

⇤
(21b)

Gn+1 = �["I + bA|
n+1

bAn+1]
�1 bA|

n+1 (21c)
✓n+1 = ✓n + ↵n+1Gn+1f(✓n,�n+1) (21d)

Recall that �✓n is uniquely determined by (17) in the definition of An+1.

The step-size sequences {↵n} and {�n} satisfy standard requirements for two-time-scale SA algo-
rithms [9]: �n/↵n ! 1 as n ! 1. For concreteness, in analysis we fix

↵n = 1/(n+ n0), �n = ↵⇢

n
, n � 1 , with n0 � 1 , ⇢ 2 (0.5, 1) (22)

The theory in this paper is focused on decreasing step-size mainly because theory of SA is more
mature in this context. For constant step-size, with ↵n ⌘ ↵, �n ⌘ �, with � = k↵ for fixed
k � 1, convergence of the algorithm can proceed by viewing the joint process (✓n, bAn,�n) as a
time-homogeneous Markov chain. Based on [10, Theorem 2.3] and [9, Chapter 9], it is conjectured
that there exists ↵̄ > 0 such that

lim
n!1

E[k✓n � ✓⇤k2] = O(↵) , ↵ 2 [0, ↵̄] . (23)

Unfortunately, the mixing time of the Markov chain will increase with decreasing ↵.
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Convergence Analysis Given that f in (19b) is non-smooth in ✓, analysis is cast in the theory
of generalized subgradients of non-smooth functions. Consider first the temporal difference term
D : Rd

⇥ Z ! R. For each z 2 Z, the set of generalized subgradients of D(✓, z) at ✓0 is a convex set
of row vectors, denoted by @✓D(✓0, z) [14, Chapter 10]. A vector # 2 @✓D(✓0, z) has the defining
property,

#v  lim
s#0

D(✓0 + sv, z)�D(✓0, z)

s
, v 2 Rd (24)

The limit exists because D(✓, z) is the pointwise maximum of smooth functions [14, Theorem 10.22].
The generalized subgradient of f(✓, z) exists under additional assumptions.

Recall that ⇣n = ⇣(✓n,�n) for each n. It is assumed henceforth that ⇣ is differentiable in ✓. In
the presentation here we impose the additional assumption that the vector-valued function ⇣ has
non-negative entries. We then obtain a version of the chain rule:

@✓f(✓0, z) = {⇣(✓0, z)#+D(✓0, z)@✓⇣(✓0, z) : # 2 @✓D(✓0, z)} (25)

We obtain in Lemma A.13 a similar representation for the set of generalized subgradients of f :

A(✓) :=
n
A 2 Rd⇥d : Av  lim

s#0

f(✓ + sv)� f(✓)

s
, v 2 Rd

o
(26)

Non-negativity is relaxed in the supplementary material, based on a signed decomposition of ⇣.

Assumptions:

(A1) The joint process (X,U) is an irreducible Markov chain with unique invariant pmf $.
(A2) Q and ⇣ are Lipschitz continuous and twice continuously differentiable in ✓; f(✓, z) is

Lipschitz continuous for each z 2 Z; kfk is coercive; A|f(✓) 6= 0 for ✓ 62 ⇥⇤, A 2 A(✓).

(A3) The set ⇥⇤ is a singleton, so that there is a unique ✓⇤ 2 Rd satisfying f(✓⇤) = 0.

Assumption A1 rules out ✏-greedy policies and other parameter-dependent choices. It is likely that
the theory can be extended using the general theory in [25, 9, Sections 6.2 and 6.3].

The second and third assumptions are first applied to the ODE (7): the coercive assumption in A2
implies boundedness of solutions, and this with A3 implies global asymptotic stability of (7).

It is also assumed throughout the paper that {✓n} is bounded. This assumption is made to simplify
the overall analysis and make the treatment of non-smooth f accessible. In Section A.1 of the
supplementary material, we provide additional sufficient conditions (which are easily satisfied for
linear function approximation) to verify the boundedness assumption. We believe that (A1)-(A3)
listed above suffice to establish boundedness of {✓n} via an extension of the Borkar-Meyn theorem
introduced in [10]. The following summarizes the main results of this paper:
Theorem 2.1. Let {✓n} be the parameter sequence obtained from the Zap Q-learning algorithm
(21), with some fixed " > 0. If this sequence is bounded, then

(i) If Assumptions A1–A2 hold, then limn!1 f(✓n) = 0 a.s..

(ii) If Assumptions A1–A3 hold, then limn!1 ✓n = ✓⇤ a.s..

ut

Convergence Rate Establishing a CLT for the scaled error sequence {
p
n✓̃n} requires a “tightness

bound” [9, Chapter 8, Lemma 5] and the following:

(A4) f(✓, z) is smooth in a neighborhood of ✓⇤ for z 2 Z, and A(✓⇤) = @✓f(✓⇤) is non-singular.

Tightness is used to justify an approximation of the algorithm with its linearization (10). The proof
of tightness is left to future work. In Section A.2 of the supplementary material we consider the
linearization, and show that the asymptotic covariance satisfies ⌃✓ = ⌃⇤

✓
+ "2⌃(2)

✓
+O("3), where

⌃✓ is the asymptotic covariance obtained for Zap Q-learning (21), ⌃⇤

✓
is the optimal covariance, and

⌃(2)
✓

is identified in Prop. A.3.
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Overview of Proof of Thm. 2.1 [complete proofs are found in the supplementary material]

The first step is analysis of the ODE (7) that {✓n} aims to approximate. It is shown in Prop. A.6 that
the ODE (7) admits at least one solution {wt : t � 0} from each initial condition; this is non-trivial,
since the right hand side is discontinuous. We then conclude under (A2) that limt!1 f(wt) = 0
for any solution. If in addition (A3) holds, then the ODE is globally asymptotically stable. These
conclusions are obtained through a uniform approximation based on a family of smooth vector fields.

Discontinuity of the ODE and the stochastic recursion presents a greater challenge when we turn to
establishing solidarity between the ODE and its stochastic counterpart. The main idea in this part
of the analysis is most easily described for a special case: a linear parameterization Q✓ =  |✓, and
non-negativity of ⇣n so that the chain rule (25) holds. We then obtain subgradients of the components
of f , which implies the following component-wise bounds:

f(✓n + v,�n+1) = max
u

�
r(Xn, Un) + [� (Xn+1, u)�  (Xn, Un)]

|(✓n + v)
 
⇣n

� f(✓n,�n+1) +An+1v , v 2 Rd

(27)

The update equation for bAn+1 in (21b) is used to obtain the averaged version of (27):

f(✓n + v) � f(✓n) + bAn+1v + o(1) , v 2 Rd , kvk  1 (28)

where o(1) ! 0 as n ! 1, uniformly in v. This implies that bAn+1 is close to the set of the
subgradients A(✓n), in the sense made precise in Prop. A.18.

The arguments are considerably more complex when Q✓ is non-linear, and the positivity assumption
on ⇣n is relaxed. In particular, without positivity, neither f nor f admit the generalized subgradients.
Fortunately, the techniques developed for the special case can be adapted to demonstrate that bAn+1v

approximates the directional derivative f
0

(✓n; v) for each v and all large n.

Once all of these technical results are established, we obtain solidarity between Zap algorithm (21)
and the ODE (7) in the sense that limn!1 f(✓n) = limt!1 f(wt) = 0, along with the other
conclusions of Thm. 2.1.

3 Numerical Results

The Zap Q-learning algorithm was tested on three examples from OpenAI gym: Mountain Car,
Acrobot, and Cartpole [1]. The approximation of Q✓ was obtained based on a neural network, so that
the parameter ✓ 2 Rd represents weights in the neural network. Rather than achieving the best score
for specific tasks, the objective of the experiments surveyed in this section was to investigate the
stability and consistency of the Zap Q-learning algorithm across different domains, and varying neural
network sizes. Common in each experiment: a feedforward neural network that is fully connected,
using the Leaky ReLU activation function.

The goal in each of the three examples is to collect as many rewards as possible before the state
reaches a terminal set denoted S ⇢ X. To avoid infinite values we introduce a deterministic upper
bound ⌧̄ � 1, and consider the bounded horizon ⌧ = min(⌧̄ , ⌧S) with ⌧S = min{n � 1 : Xn 2 S}.
The Q-function is denoted

Q⇤(x, u) := maxE[
⌧�1X

n=0

r(Xn, Un) | X0 = x , U0 = u] ,

which for ⌧̄ = 1 solves the Bellman equation

Q⇤(x, u) = r(x, u) + E[I{X1 /2 S}Q⇤(X1) | X0 = x, U0 = u] (29)

Following the roadmap outlined in Section 2, we seek an approximate solution to (29) based on a
root-finding problem analogous to (18): find ✓⇤ such that

f(✓⇤) = 0 , with f(✓) := E
⇥
⇣n
�
r(Xn, Un) + I{Xn+1 /2 S}Q✓(Xn+1)�Q✓(Xn, Un)

�⇤
(30)

where the distribution of X0 is given. The Zap-Q algorithm (21) is easily adapted to the modified
definition of f in (30).
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Figure 1: Average rewards for the three examples, shown by percentile.

The performance of the greedy policy �✓ induced by Q✓ is denoted

R(�✓) := E
h ⌧�1X

n=0

r(Xn,�
✓(Xn))

i
(31)

Specifics of the meta-parameters and the details of how (31) was estimated are contained in Sec-
tion A.6.

Two minor modifications of the algorithm were used in these experiments to reduce complexity:
1. Periodic gain update. An integer Nd > 1 was fixed, and the gain Gn appearing in (21d) was
updated only for integer multiples of Nd. In particular, the matrix inversion step was only performed
at these iterations. Letting N denote the total number of iterations, the overall complexity of running
this algorithm for N iterations is in the worst-case O(Nd3/Nd + Nd2) (see Section A.6 of the
supplementary material for further discussion on complexity). We observed that Nd = 50 worked
well for all experiments, and the performance was unchanged from Nd = 1.

2. Periodic eligibility update. The definition of the eligibility vector in (2) was modified to break
✓-dependency: ⇣n :=r✓Q✓i(n)(Xn, Un), with i(n) := (bn/N⇣ + 1c � 1)N⇣ , and N⇣ = 2000. We
then ignored the term D(✓n,�n+1)@✓⇣n when computing An+1 based on (21a). For comparison, we
performed experiments in which this term was included (increasing complexity considerably since
second derivatives are required [11]), and saw no improvement in performance.

Experiments were performed with both decreasing step-size (defined in (22)), and constant step-size.
We found that constant step-size implementations were more reliable for the Mountain car and
Acrobot examples, and the diminishing step-size gave better results for Cartpole. Figure 1 shows
results obtained for these choices. The size of neural networks indicated in the figure refers only to
hidden layers. To obtain the quantiles shown, each experiment was repeated 50 times, with parameters
randomly initialized by the Kaiming uniform method [20, 36]. The first column shows results from
the smallest network for which we obtained reliable results for the particular example.

4 Conclusions

Zap Q-learning is provably consistent with nonlinear function approximation, under very general
conditions. Theoretical questions remain, such as extension to more general exploration strategies,
and convergence properties for more general step-size rules. There are also architectural questions.
For example, the definition of the eligibility vector (2) is not sacred. Better overall performance, and
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simpler conditions for convergence may be achieved through alternatives (there are obvious choices
for deterministic control systems rather than MDPs).

Better algorithm design requires a better theory for function approximation in Q-learning. The
parameter estimates in both Zap Q-learning and the basic algorithm (1) are solutions to the root-
finding problem (18). How do we bound the Bellman error, or the absolute error |Q✓

⇤
�Q⇤

|? The
goal is to create a theory as complete as TD-learning with linear function approximation, for which
vector space concepts bring crisp answers [48, Theorem 1].

The matrix-inversion step in the algorithm may be a barrier to application of Zap-Q in some problems.
A simple approach to reduce complexity is described in the numerical results, and we expect to obtain
much more efficient implementations, perhaps by applying a distributed implementation [2], and
adapting techniques from stochastic optimization.

We are currently exploring the application of the techniques in this paper to analyze Deep Q-learning
[33], and application of Zap-SA to actor-critic methods.
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Broader Impact

This paper has focused on formulating Q-learning algorithms for which reliability is guaranteed by
design. It is hoped that it will inspire the creation of a larger tool kit for ODE algorithm design,
and methods to more efficiently translate the ODE to obtain better algorithms for reinforcement
learning, especially in other contexts such as actor-critic methods. Given the importance of stochastic
approximation in so many other fields, such as optimization, it is hoped that the impact will extend
far beyond reinforcement learning.
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