A Pre-training Hyper-parameters

The pre-training hyper-parameters are reported in Table 7. For BERT,Argg, our model is initialized
by RoBERTa;,arcE to save computations, and also disable relative position embedding and whole
word mask to keep consistent with RoOBERTa setting. We also apply a smaller learning rate of Se-5
for continual training since it has been well optimized.

Hyper-parameter | Base | Large

Number of Layers 12 24
Hidden Size 768 1024
Filter Size 3072 | 4096
Attention heads 12 16
Dropout 0.1 0.1
Weight Decay 0.01 0.01
Learning Rate 6e-4 5e-5
Steps 500K | 100K

Table 7: Pre-training hyper-parameters for BERTpasg and BERT ArGE setting.

B Fine-tuning Hyper-parameters

The fine-tuning hyper-parameters are reported in Table 8.

Hyper-parameter | RACE SQuAD GLUE
Learning Rate 1.5e-5 3e-5 le-5,2e-5,3e-5
Batch Size 16 48 16, 32
Weight Decay 0.1 0.01 0.1
Epochs 5 4 10, 15
Learning Rate Decay | Linear Linear Linear
Warmup Ratio 0.06 0.06 0.06

Table 8: Fine-tuning hyper-parameters for RACE, SQuAD and GLUE.

C MPNet on Large Setting

We pre-train our MPNet on large setting with a initialization of ROBERTar, oArcE to save computation.
The results of MPNet on BERT ArgE setting are reported in Table 9. From Table 9, we observe
that our MPNet outperforms RoBERTa [7] by 0.5 points on average. Since it is only pre-trained
100K steps for a quick verification, which cannot fully demonstrate the advantages of our method.
Therefore, we are also preparing the large-level model of MPNet from scratch, and will update it
when it is done.

| MNLI QNLI QQP RTE SST MRPC CoLA STS | Avg
RoBERTa[7] | 90.2 94.7 922 86.6 964 90.9 68.0 924 | 839
MPNet | 90.5 949 922 88.0 96.7 91.4 69.1 924 | 894

Table 9: The results of MPNet on BERTT ArgE setting on GLUE development set.

D Effect of MNLI initialization

In our paper, we adopt MNLI-initialization for RTE, STS-B and MRPC to be consistent with the
fine-tuning setting of ROBERTa. To make a fair comparison, we also carry experiments on RTE,

12

Model | RTE STS-B MRPC | GLUE

MPNet 81.0 90.7 89.1 86.5
— MNLI-init | 79.8 90.7 88.7 86.3

Table 10: Results of RTE, STS-B and MRPC on the test set without MNLI-initialization. “- MNLI-
init” means disabling MNLI-initialization in MPNet. “GLUE” means the average score on all GLUE
tasks.

STS-B, and MRPC without MNLI-initialization to analyze the impact of MNLI-initialization. The
results are shown in Table 10. From Table 10, we observe that removing MNLI-initialization only
slightly hurts the performance on RTE and MRPC, but still outperforms ELECTRA on average score.

E Training Efficiency

To further demonstrate the effectiveness of our method, we also investigate the training efficiency of
our MPNet in relative to other advanced approaches. The comparisons are shown in Table 11. When
compared to XLNet/RoBERTa, we found our method can achieve better performance with fewer
computations.

Model | Train FLOPS | GLUE
BERT 6.4¢19 (0.06%) | 83.1
XLNet 1.3e21 (1.10x) 84.5

RoBERTa 1.1e21 (0.92x) | 86.4
MPNet-300K | 7.1e20 (0.60x) | 87.7
MPNet-500K | 1.2¢21 (1.00x) | 87.9

Table 11: Comparisons of training flops in different methods under BERTgagE setting. BERT is
trained on 16GB data and others are on 160GB data.

F More Ablation Studies

We further conduct more experiments to analyze the effect of whole word mask and relative positional
embedding in BERTpAsE setting. The results are reported in Table 12, which are also pre-trained on
the Wikipedia and BooksCorpus (16GB size) for 1M steps, with a batch size of 256 sentences and
each sentence with up to 512 tokens.

SQuAD v1.1 | SQuAD v2.0 GLUE
Model Setting EM F1 EM F1 MNLI SST-2
MPNet | 85.0 914 | 80.5 833 | 86.2 94.0
— whole word mask 84.0 905 | 799 825 85.6 93.8
— relative positional embedding | 84.0 903 | 79.5 82.2 85.3 93.6

Table 12: Ablation study of MPNet under BERTpagg setting on the dev set of SQuAD tasks (v1.1
and v2.0) and GLUE tasks (MNLI and SST-2).

G Training Speedup

We introduce the training tricks to speed up the training process by partitioning the attention matrix.
As shown in Figure 4, we divide the attention matrix (originally shown in Figure 2 in the main paper)
into 4 sub-matrices according to that the query and the key/value are from the non-predicted part
or the predicted part. More specifically, the query of matrix-{A,B} is from the non-predicted part,

13

the query of matrix-{C,D} is from the predicted part, the key/value of matrix-{A,C} is from the
non-predicted part, the key/value of matrix-{B,D} is from the predicted part. We find that matrix B
has no use for our model training. Therefore, we only consider matrix-{A, C, D} when computing
the content stream, which will save nearly 10% computations during the whole training process.

r

non-predicted

predicted

C %)

non-predicted predicted

Figure 4: The attention mask matrix for the content stream of MPNet. More details can refer to
Figure 2 in the main paper.

14

