Appendices

A Proof of Lemma 2

e 0'2

Figure 3: PGM representation for Lemma

Lemma Consider random variables X,Y,Y ,G and G with the conditional independences pre-
sented in the Bayesian network of Fig.|3| Also suppose that Py = Py and Pg i Pg Y

(a) If the marginal distribution Pg is o-subgaussian, then
[E[G - G]| < V20%I(X;Y). (A1)

(b) If Pg is o-subgaussian for all x € X, then

o?(I(X;Y) +1)

€2

Pr{ux(@—G)Ze}§4 s u€e{-1,1},e e R,. (A2)

Proof. For Part (a), a slight modification of proof of Lemma 1 in [21] is used. Based on the
Donsker—Varadhan variational representation of the relative entropy, for any two distributions 7 , p
on a common measurable space (£, F) we have

KL(7 || ) = sup {/ Fdr — log/ ede} (A3)
F Ua Q

where supremum is over all measurable functions F' : Q — R, such that e’ € L!(p). Consider the
distribution 7 = Pxyg = Pxy ® Pé(y andlet 4 = Pxya = Px ® Py ® Pé(y. Note that E[G]

and E[G] are calculated based on 7 and p, respectively. Define the function f(z,y, g) = g. For all
A € R, we have

KL(7 | ) > EM(X,Y,G)] —logE[eM(XY:9))
AE[G] — log E[e*4])

> AEC)-EG) -

where the final inequality is due to the o-subgaussian assumption on Pg

(A.4)

log E[eMNEEICD) < X262/2: VA eR.

The inequality (A.4) gives a nonnegative parabola in A. For the inequality to hold for all A, the
discriminant of this parabola must be nonpositive. This implies that

|E[G] — E[G]| < v/202KL(r || ). (A.5)

Now noting that

KL(7 | p) = KL(Pxy ® P& | Px @ Py @ P2Y) (A.6)
= KL(Pxy || Px ® Py) (A7)
I(X;Y) (A.8)

concludes the proof of Part (a).

To prove Part (b), first consider that u = 1, for u = —1 the proof follows similarly. Let us first restate
a lemma from [6].
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Lemma A.1 ([6]). Let m and u be distributions on a set 2 and let E C . Then,

KL(x || 1) + 1
™(E) < (o1 /u(E)

Proving Part (b) requires a stronger technique based on an auxiliary distribution. Let 7 be the
distribution presented in Fig.[3| i.e. @ = Pyyaye = Pxy ® PXY @ Py ® PZY. Consider
another distribution g which is similar to 7 except that the link between X and Y is severed, i.e.
= Pxiyiayic = Px@Py@PXY @ Py @ PAY . Note that again we have KL(7 || p) = I(X;Y).

Let H = G’ — ' and E be the event that H' > e. To find y(E), note that when X’ = 2’ is given,
G’ and G’ are independent random variables each having the same distributions as PZ. As this
distribution is assumed to be o-subgaussian, for an arbitrary =’ € X, we have

(A9)

E* [e,\(é’—G’—(E’/[é’—G’]))] _ g’ [ex(éuw'[@])mz' [ex(cuw/[c'})] <M. VAeR. (A.10)

This means that the conditional distribution Pfll/ is subgaussian with the variance proxy 202. Also

note that E*’ [G" — G'] = 0. Now, by using the well known fact that the tail of any subgaussian
distribution around its mean, is dominated by the Gaussian distribution with the same variance proxy,
we have

’ 62
Pr* {H' > e} < e 7. (A.11)
Since this is valid for all 2/, by taking expectation from both sides we have
! 62
WE)=Pr{H >¢} =Ex,[Pr* {H >¢}] <e ao?. (A.12)

Now that a bound on p(E) is found, Lemma can be used to control 7(E) = Pr{G — G > ¢}.
We have

KL(r | p) +1 _ 40?(I(X;Y) +1)

m(E) < < (A.13)
E) < oa (i /u(B)) &
O
B Proof of Lemma[3
Lemma 3] (Conditioning) Consider random variables XY, Z, H.
(a) Suppose there is a concave function b : R, — R which satisfies
Vz € Z;E*[H] < b(I*(X;Y)), (B.1)
then
E[H] < Ez[b(I”(X;Y)) (B.2)
< bI(X;Y]2)). (B.3)

(b) Suppose there is a function § : Ry x R — R which is concave on its first argument and satisfies
Vze Z,e e Ri;Pri[H > €] < 6(I*(X;Y),€),
then
Pr[H >¢] < 6(I(X;Y]Z),€). (B.4)
Proof. (a) Note that E[H| = Ez[EZ[H]]. Since inequality holds for all z € Z, by taking
expectation on Z from the random upper bound b(I%(X;Y)), the inequality is achieved.

Inequality (B.3) is a consequence of the concavity of b, the Jensen’s inequality, and the definition of
conditional mutual information.

(b) This part follows similarly by noting that for any event E we have E4[Pr? {E}] = Pr{E}. O
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Figure 4: PGM representation of processing technique.

C Proof of Theorem 4

Theorem[z_f] ([9D). If the random variables X,Y and Z form a Markov chain (in any order), then
I(X;Y|Z2) <I(X;Y). (C.1)
Proof. Suppose the conditional dependences of XY and Z satisfies a Markov chain V; — Vo — V3
where V; € {X,Y, Z} and (V;)?_, is a specific ordering of (X, Y, Z). The Markov property results
inVy L Va|Vo. If Vo = Z, I(X; Y|Z) = I(V4; V3|V2) = 0 has the smallest possible value and thus
(C.1) is satisfied. If Vo # Z either Vo = X or Vo = Y. Because of the symmetry between X and Y,
it is enough to consider either of these cases and the other follows similarly. Suppose Vo = X, i.e.

Z 1 Y|X. By chain rule of mutual information, the quantity 1(Y’; (X, Z)) can be decomposed in
two ways and we have

I(YV3(X,2)) =1(Y; 2) + 1(Y; X[Z) = I(Y; X) + I(Y; Z| X). (C2)

Since I(Y; Z| X)) = 0, we have
I(X;YZ2)=1(X;Y) - I(Y; Z). (C3)
Thus, is obtained according to the nonnegativity of 1(Y; Z). O

D Proof of Lemma/[3

Lemma (Processing) Consider random variables X,Y,Y ,G,G,V,V and T with the conditional
independences presented in the Bayesian network of Fig. ¥ Also suppose that Py = Py, P‘}// = P‘}//

TV _ pT,V
and Pz'" = Pg.
(a) If the marginal distribution Pg is o-subgaussian, then

|E[G — G]| < V202I(T;V). (D.1)

(b) IfPé is o-subgaussian for all t € T, we have

o2(I(T; V) +1)
2

Pr{ux(G—G)26}§4 ;oue{-1,1}. (D.2)

€

Proof. Note that V' IL (T, V') and marginal distributions Py and Py are the same, because Py = Py
and PY = PY The result easilly is obtained as the conditions of Lemmal are satisfied for random
variables T, V V,G and G. O

E A Unified View on Information-Theoretic Generalization Bounds

In this section results provided in Section[d.T]are proved and discussed. Recall that we assumed for all
w the loss function ¢(w, X) is o4-subgaussian. For binary classification with zero-one loss o, = 1/2.
We also defined L; = (W, S;), L = ¢(W,S}) ,R=1/n 37 Ljand R = 1/n 377, L.

Note that R’ is o7 / n -subgaussian since L;-s are independent. The object of interest is generalization
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Figure 5: Basic generalization.

gap of hypothesis w, which is the difference between the expected loss and the average loss on
training set

gen(w) = Exy [f(w, (X, Y))] - %Zﬁ(w, s,). E1)

j=1
We want to have bounds on gen(y, P,) = E[gen(w)] and Pr{gen(w) > ¢};¢ € R;.
E.1 Basic Generalization Bound

Considering the conditional independences presented in Fig.[5} using Lemma 2] directly results in

2 2
gen(u, Piy) = | E[R' - R]| </ ZL1(S5W), (E.2)

and
402(I(S; W) +1)

3 .

Pr{R —R>¢} < (E.3)

ne

In Section @ we saw that E[R’ — R] in the original formulation is equal to gen(y, P3,). But the
situation is different for Pr{gen(W) > ¢} because now the variance also matters. Next theorem
proves that for the large enough N this difference just introduces a constant factor to the bound.

Theorem E.1. If N > 6% we have

Pr{gen(W) > €} < 2Pr{R' — R > ¢/2}. (E4)
Proof. The result follows by a standard technique in proving generalization bound that intro-
duces an auxiliary ghost sample set (for example see Appendix A.1 of [I]]). Define e, (W) =
Exy[0(W,(X,Y))]. If Pr{e, (W) — R > €} = 0, the desired inequality holds. Assume
Pr{e,(W)— R > €} > 0, we have
Pr{R - R > g} > Pr{R'—R>e¢/2 and e,(W)—R> ¢}

= Pr{RuRzg | e,(W) =R > e} Pr{e, (W) —R> e}

Y

Pr{e,(W)— R < % | (W)= R > e} Pr{e, (W) — R > e}
> (1—e 2 ") Pr{e,(W) - R > ¢}. (E.5)

First inequality holds because taking intersection with another event, does not increase probability.
The second inequality is obtained since when e, (W) — R > eand e, (W) — R’ < § it is guaranteed
that " — R > §. In the final inequality, Hoeffding’s bound is used, which is possible because W is
independent of S”. O

Using Theorem [E.T| we have
3202(1(S; W) + 1)

) .

Pr{gen(W) > €} < e
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Figure 7: Conditioning on the super sample.

E.2 Conditioning on Sample Index

Considering Fig.[6] by conditioning on .J, and processing S — S; we have

gen(u, Py;) = E[L — L]
< [E[L - L]
< Eg[y/2071(S5; W)
= lz 2021(S;; W) (E.6)
nj:l
< 2021(S 7 W). (E.7)

Here it is assumed that W is independent of the order of samples in S and thus I(S;; W|J) =
I(S;;W). In Section we saw that E[L’ — L] is one of the equivalent ways to compute gen(u, P5,),
and no further corrections is needed.

E.3 Conditioning on the Super Sample

Considering Fig. [7, by conditioning on SV, S(?) we have

B A</

20?
7I(U,W|S(1),S(2)), (E.8)
n
and
402 (I(U; W|SM 52y + 1)
5 .

Pr {R —R> 6} < (E.9)

ne
Note that here we had to use another branch for random variables U, S and R to have the required
conditional independence. Moreover, we assumed that the input distribution p is continuous, thus
SM U S3) is a set of 2n distinct random variables. As a result, when S™") U S(2) is given, knowing
S is the same as knowing U and I(S; W|S(M Sy = [(U; W|SM, S(2)). Also note that the
discussion on Section 4.1l demonstrated that the distribution of R and R’ is the same as in Section[E.1l
Next theorem shows the relation between the obtained bounds and generalization error.

Theorem E.2. In the setting represented in Fig.[]} we have
gen(p, P3,) = 2E[R — R]. (E.10)
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Moreover, if zero-one loss is used and N > %, we have

(U; WS 53y 1
n(e/8)?

Proof. Define e, (W) = Exy[((W,(X,Y))] and Ca(w) = ﬁZ(%yi)es(l),s(z) LW, (i, y:))-
Note that e,y = 1(R+ R’). For expectation of generalization gap, we have

Pr{gen(W) > e} <4 x d (E.11)

gen(p, Piyy) = E[R —R]
= 2E[R - R], (E.12)

where final equality is due to the fact that R is an unbiased estimator for e (W) calculated using n
samples from fi.

For the tail bound we have

Pr{gen(W)>¢} < 2Pr{R' —R>¢/2}
= 2Pr{eymw) — R>¢€/4}
= 2Pr{egw) — R) + (R— R) > ¢/4}
< 2Pr{epw) — R>¢€/8} + Pr{R— R > ¢/8}
< 2 (2(2"(%)2 +Pr{R-R> 6/8}) (E.13)

First inequality is based on Theorem The next equality is based on the algebraic relation
epw) = %(R + R’). In second inequality we used union bound and the mathematical relation
A+B>c= (A>5) V(B> %). In third inequality, Hoeffding’s bound for sampling without
replacement is used. Now note that for zero-one loss oy = 1/2 and by using , we have

I(U;W[SM, 52 41

Pr{R—R>¢/8} < E.14
r{ >¢/8} < n(e/3)? (E.14)
On the other hand, when N > % we also have
2 1
2e27(5)” < ) E.15
N T (E-15)

This inequality can be verified for N = S—;‘. Which means that it is also valid for larger NV, because
Lh.s approaches zero with exponential rate while the r.h.s has slower rate of %

Finally, we have

(U;W|SM, 8§ 41

. _ I
2¢2M5)° L Pr{R— R>¢/8} <2x

n(e/8)2 , (E.16)
which concludes the proof. O
E.4 Conditioning on the Super Sample and Index
Considering Fig. @ by conditioning on .J, S, S() and processing S — S; we have
EL-L)| < Ejl/2021(Us;W|SW, SO (E.17)
< \/2051(UJ;W|S(1),S(2),J) (E.18)

Note that the same argument which was used in Theorem can be used for datasets with one
sample to show that gen(u, Piy,) = 2 E[L — L].
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Figure 8: Conditioning on the super sample and index.

F Proof of Theorem [6

Definition 1 (Separable process). The random process { X }ier is called separable if there is a

countable set Ty C T such that X; € lims—¢ X forall t € T a.s., where x € lim s x5 means
s€Top s€To

that there is a sequence (s, ) in Ty such that s,, — t and x5, — .

Theorem 6 Assume that X,y = {\/ngen(w)},ew is a separable subgaussian process on the
bounded metric space (W, d) and the learned hypothesis W is a deterministic function of Xyy.
Consider the sequence of functions (11;)72 o) where k1(W) is the largest integer that satisfies
2=kt~ > diam(W), and for all k > ky, T}, : W — W is a function satisfying d(w, I (w)) <
27F:Yw € W. Define Wy, = (W), we have

1 > .
gen(u,va)sﬁ(M > 2RI 9). (F.1)

k=k1(W)

Proof. This result is based on Theorem 11 of [3]]. Here it is restated using notations used in current
paper.

Theorem F.1. Assume that Xy = { Xy bwew is a separable subgaussian process on the bounded
metric space (W, d). Consider the sequence of functions (ILx)72 ;. where ki (W) is the largest
integer that satisfies 2~ OV)=1) > diam(W), and for all k > ky, Iy, : W — W is a function
satisfying d(w, I (w)) < 27%;Vw € W. Define Wy, = I1,(W) for k > ky and Wy, _1 = wy for
an arbitrary wg € YWW. We have

EXwl <3v2 3 275100t Wi Xo). (F2)
k=Ek1(W)

Theorem|F. I]is stated for a general random process. In Theorem|[6] we used Xy = {y/ngen(w) }wew.

Moreover, knowing .S, the values {y/ngen(w) },,cy are all deterministically calculated. Thus, by
data processing inequality I(Wy_1, Wy; Xyy) < I(Wg_1, Wy; S). Now the only remained part is
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to remove the dependence in Wi_1 without resorting to the nested partitioning. We have

32 Z 2_k\/I(V~Vk—17 Wi Xw)

E[Xw] <

k=Fk1

) i 2\ T Xow) + (W13 Xow W)
k=k1

< 3V2 i 2*k\/I(Wk;XW) + I(Wi_1; Xw) (F.3)
k=k1

< kzkj 2R\ T(Wi; Xyy) ka: 2R\ T(Wi_1; X)) (F4)

C WA 2 I ¢ S 2T o)
s kil

< kzIEQk\/W k;f k\/m)

< 6V2 i 2—k\/m. (F.5)
k=k1

Inequality @) is valid based on Theorembecause Wi L Wk\X w (which is a consequence
of the deterministic relation between W and Xy ). In (F4) we used the mathematical relation

Va+b < \Ja+vb;Va,b € Ry. In final inequality we used I(wo; Xyy) = 0, because wyg is a
deterministic value. O]

G Proof of theorem

Theorem[7} Suppose W has VC-dimension dy.e)(W) and {(w, x) #vy). Thereis a
universal constant C' such that the following bound holds on RU deﬁned m

C
RU(D) < Cd(vc)(W) 10g(5> (Gl)

Proof. Note that [° ®s® (Wi, S) < H(Wy), where H(W}) is the entropy of random variable W,
and is bounded by logarithm of number of possible values it takes. A possible mapping for producing
W is to use centers of a D-covering. Thus,

W g®

RSVS? (D) <log NOW, a5 | D), (G.2)

where N(W,dsms(g),D) is the covering number of (W, d) at the scale D. Recall that
a5 (w,w') = 2w — w'[| 12y~ Here fi is the empirical distribution of the superset and
1/2
1< 2
lw =l g2y = |~ > (wlay) —w'(z5))"| (G.3)
j=1

Now we use the following theorem which is based on [10].

Theorem G.1 (Dudley [10]). There is a universal constant C such that

C Cdpey(W)
sup NOV, |1l 2y D) < (D) vp<t1.
o

Using this theorem with inequality (G.2) completes the proof. O
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