
Appendices

A Proof of Lemma 2
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Figure 3: PGM representation for Lemma 2.

Lemma 2. Consider random variables X,Y, Ȳ , G and Ḡ with the conditional independences pre-
sented in the Bayesian network of Fig. 3. Also suppose that PȲ = PY and PX,Ȳ

Ḡ
= PX,YG .

(a) If the marginal distribution PḠ is σ-subgaussian, then∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(X;Y ). (A.1)

(b) If P x
Ḡ

is σ-subgaussian for all x ∈ X , then

Pr
{
u× (Ḡ−G) ≥ ε

}
≤ 4σ2(I(X;Y ) + 1)

ε2
; u ∈ {−1, 1} , ε ∈ R+. (A.2)

Proof. For Part (a), a slight modification of proof of Lemma 1 in [21] is used. Based on the
Donsker–Varadhan variational representation of the relative entropy, for any two distributions π , ρ
on a common measurable space (Ω,F) we have

KL(π ‖ µ) = sup
F

{∫
Ω

Fdπ − log

∫
Ω

eF dρ

}
(A.3)

where supremum is over all measurable functions F : Ω→ R, such that eF ∈ L1(ρ). Consider the
distribution π = PXYG = PXY ⊗ PXYG and let µ = PXȲ Ḡ = PX ⊗ PY ⊗ PXYG . Note that E[G]
and E[Ḡ] are calculated based on π and µ, respectively. Define the function f(x, y, g) = g. For all
λ ∈ R, we have

KL(π ‖ µ) ≥ E[λf(X,Y,G)]− logE[eλf(X,Ȳ ,Ḡ)]

= λ(E[G]− logE[eλḠ])

≥ λ(E[G]− E[Ḡ])− λ2σ2

2
, (A.4)

where the final inequality is due to the σ-subgaussian assumption on PḠ

logE[eλ(G−E[G])] ≤ λ2σ2/2; ∀λ ∈ R.

The inequality (A.4) gives a nonnegative parabola in λ. For the inequality to hold for all λ, the
discriminant of this parabola must be nonpositive. This implies that∣∣E[Ḡ]− E[G]

∣∣ ≤√2σ2KL(π ‖ µ). (A.5)

Now noting that

KL(π ‖ µ) = KL(PXY ⊗ PXYG ‖ PX ⊗ PY ⊗ PXYG ) (A.6)
= KL(PXY ‖ PX ⊗ PY ) (A.7)
= I(X;Y ) (A.8)

concludes the proof of Part (a).

To prove Part (b), first consider that u = 1, for u = −1 the proof follows similarly. Let us first restate
a lemma from [6].
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Lemma A.1 ([6]). Let π and µ be distributions on a set Ω and let E ⊆ Ω. Then,

π(E) ≤ KL(π ‖ µ) + 1

log(1/µ(E))
. (A.9)

Proving Part (b) requires a stronger technique based on an auxiliary distribution. Let π be the
distribution presented in Fig. 3, i.e. π = PXYGȲ Ḡ = PXY ⊗ PXYG ⊗ PY ⊗ PXYG . Consider
another distribution µ which is similar to π except that the link between X and Y is severed, i.e.
µ = PX′Y ′G′Ȳ ′Ḡ′ = PX⊗PY ⊗PXYG ⊗PY ⊗PXYG . Note that again we have KL(π ‖ µ) = I(X;Y ).

Let H ′ = Ḡ′ −G′ and E be the event that H ′ ≥ ε. To find µ(E), note that when X ′ = x′ is given,
G′ and Ḡ′ are independent random variables each having the same distributions as P x

Ḡ
. As this

distribution is assumed to be σ-subgaussian, for an arbitrary x′ ∈ X , we have

Ex
′
[eλ(Ḡ′−G′−(Ex

′
[Ḡ′−G′]))] = Ex

′
[eλ(Ḡ′−Ex

′
[Ḡ′])]Ex

′
[eλ(G′−Ex

′
[G′])] ≤ eλ

2σ2

;∀λ ∈ R. (A.10)

This means that the conditional distribution P x
′

H′ is subgaussian with the variance proxy 2σ2. Also
note that Ex

′
[Ḡ′ − G′] = 0. Now, by using the well known fact that the tail of any subgaussian

distribution around its mean, is dominated by the Gaussian distribution with the same variance proxy,
we have

Prx
′
{H ′ ≥ ε} ≤ e−

ε2

4σ2 . (A.11)
Since this is valid for all x′, by taking expectation from both sides we have

µ(E) = Pr{H ′ ≥ ε} = EX′ [PrX
′
{H ′ ≥ ε}] ≤ e−

ε2

4σ2 . (A.12)

Now that a bound on µ(E) is found, Lemma A.1 can be used to control π(E) = Pr{Ḡ−G ≥ ε}.
We have

π(E) ≤ KL(π ‖ µ) + 1

log(1/µ(E))
≤ 4σ2(I(X;Y ) + 1)

ε2
. (A.13)

B Proof of Lemma 3

Lemma 3. (Conditioning) Consider random variables X,Y, Z,H .

(a) Suppose there is a concave function b : R+ → R which satisfies

∀z ∈ Z;Ez[H] ≤ b(Iz(X;Y )), (B.1)

then

E[H] ≤ EZ [b(IZ(X;Y ))] (B.2)
≤ b(I(X;Y |Z))]. (B.3)

(b) Suppose there is a function δ : R+ × R→ R which is concave on its first argument and satisfies

∀z ∈ Z, ε ∈ R+; Prz[H ≥ ε] ≤ δ(Iz(X;Y ), ε),

then

Pr[H ≥ ε] ≤ δ(I(X;Y |Z), ε). (B.4)

Proof. (a) Note that E[H] = EZ [EZ [H]]. Since inequality (B.1) holds for all z ∈ Z , by taking
expectation on Z from the random upper bound b(IZ(X;Y )), the inequality (B.2) is achieved.
Inequality (B.3) is a consequence of the concavity of b, the Jensen’s inequality, and the definition of
conditional mutual information.

(b) This part follows similarly by noting that for any event E we have EZ [PrZ {E}] = Pr {E} .
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Figure 4: PGM representation of processing technique.

C Proof of Theorem 4

Theorem 4 ([9]). If the random variables X,Y and Z form a Markov chain (in any order), then

I(X;Y |Z) ≤ I(X;Y ). (C.1)

Proof. Suppose the conditional dependences of X ,Y and Z satisfies a Markov chain V1 − V2 − V3

where Vi ∈ {X,Y, Z} and (Vi)
3
i=1 is a specific ordering of (X,Y, Z). The Markov property results

in V1 ⊥⊥ V3|V2. If V2 = Z, I(X;Y |Z) = I(V1;V3|V2) = 0 has the smallest possible value and thus
(C.1) is satisfied. If V2 6= Z either V2 = X or V2 = Y . Because of the symmetry between X and Y ,
it is enough to consider either of these cases and the other follows similarly. Suppose V2 = X , i.e.
Z ⊥⊥ Y |X . By chain rule of mutual information, the quantity I(Y ; (X,Z)) can be decomposed in
two ways and we have

I(Y ; (X,Z)) = I(Y ;Z) + I(Y ;X|Z) = I(Y ;X) + I(Y ;Z|X). (C.2)

Since I(Y ;Z|X) = 0, we have

I(X;Y |Z) = I(X;Y )− I(Y ;Z). (C.3)

Thus, (C.1) is obtained according to the nonnegativity of I(Y ;Z).

D Proof of Lemma 5

Lemma 5. (Processing) Consider random variables X,Y, Ȳ , G, Ḡ, V, V̄ and T with the conditional
independences presented in the Bayesian network of Fig. 4. Also suppose that PȲ = PY , PYV = P Ȳ

V̄

and PT,V̄
Ḡ

= PT,VG .

(a) If the marginal distribution PḠ is σ-subgaussian, then∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(T ;V ). (D.1)

(b) If P t
Ḡ

is σ-subgaussian for all t ∈ T , we have

Pr
{
u× (Ḡ−G) ≥ ε

}
≤ 4σ2(I(T ;V ) + 1)

ε2
; u ∈ {−1, 1} . (D.2)

Proof. Note that V̄ ⊥⊥ (T, V ) and marginal distributions PV and PV̄ are the same, because PY = PȲ
and PYV = P Ȳ

V̄
. The result easilly is obtained as the conditions of Lemma 2 are satisfied for random

variables T, V, V̄ , G and Ḡ.

E A Unified View on Information-Theoretic Generalization Bounds

In this section results provided in Section 4.1 are proved and discussed. Recall that we assumed for all
w the loss function `(w,X) is σ`-subgaussian. For binary classification with zero-one loss σ` = 1/2.
We also defined Lj = `(W,Sj) , L′j = `(W,S′j) , R = 1/n

∑n
j=1 Lj and R′ = 1/n

∑n
j=1 L

′
j .

Note that R′ is σ2
`

/
n -subgaussian since L′js are independent. The object of interest is generalization

14



𝑆

𝑅

𝑆#

𝑅#

𝑊

𝜎&' 𝑛⁄

Figure 5: Basic generalization.

gap of hypothesis w, which is the difference between the expected loss and the average loss on
training set

gen(w) = EXY [`(w, (X,Y ))]− 1

n

n∑
j=1

`(w, Sj). (E.1)

We want to have bounds on gen(µ, PSW ) , E[gen(w)] and Pr{gen(w) ≥ ε}; ε ∈ R+.

E.1 Basic Generalization Bound

Considering the conditional independences presented in Fig. 5, using Lemma 2 directly results in

gen(µ, PSW ) = |E[R′ −R]| ≤
√

2σ2
`

n
I(S;W ), (E.2)

and

Pr {R′ −R ≥ ε} ≤ 4σ2
` (I(S;W ) + 1)

nε2
. (E.3)

In Section 4.1, we saw that E[R′ −R] in the original formulation is equal to gen(µ, PSW ). But the
situation is different for Pr{gen(W ) ≥ ε} because now the variance also matters. Next theorem
proves that for the large enough N this difference just introduces a constant factor to the bound.
Theorem E.1. If N ≥ 2

ε2 we have

Pr{gen(W ) ≥ ε} ≤ 2 Pr{R′ −R ≥ ε/2}. (E.4)

Proof. The result follows by a standard technique in proving generalization bound that intro-
duces an auxiliary ghost sample set (for example see Appendix A.1 of [1]). Define eµ(W ) =
EXY [`(W, (X,Y ))]. If Pr{eµ(W ) − R ≥ ε} = 0, the desired inequality holds. Assume
Pr{eµ(W )−R ≥ ε} > 0, we have

Pr{R′ −R ≥ ε

2
} ≥ Pr{R′ −R ≥ ε/2 and eµ(W )−R ≥ ε}

= Pr{R′ −R ≥ ε

2
| eµ(W )−R ≥ ε}Pr{eµ(W )−R ≥ ε}

≥ Pr{eµ(W )−R′ ≤ ε

2
| eµ(W )−R ≥ ε}Pr{eµ(W )−R ≥ ε}

≥ (1− e− 1
2 ε

2n) Pr{eµ(W )−R ≥ ε}. (E.5)

First inequality holds because taking intersection with another event, does not increase probability.
The second inequality is obtained since when eµ(W )−R ≥ ε and eµ(W )−R′ ≤ ε

2 it is guaranteed
that R′ −R ≥ ε

2 . In the final inequality, Hoeffding’s bound is used, which is possible because W is
independent of S′.

Using Theorem E.1 we have

Pr{gen(W ) ≥ ε} ≤ 32σ2
` (I(S;W ) + 1)

nε2
.
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Figure 6: Conditioning on sample index.
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Figure 7: Conditioning on the super sample.

E.2 Conditioning on Sample Index

Considering Fig. 6, by conditioning on J , and processing S → SJ we have

gen(µ, PSW ) = E[L′ − L]

≤ |E[L′ − L]|

≤ EJ [
√

2σ2
` I(SJ ;W )]

=
1

n

n∑
j=1

√
2σ2

` I(Sj ;W ) (E.6)

≤
√

2σ2
` I(SJ ;W ). (E.7)

Here it is assumed that W is independent of the order of samples in S and thus I(SJ ;W |J) =
I(SJ ;W ). In Section 4.1, we saw that E[L′−L] is one of the equivalent ways to compute gen(µ, PSW ),
and no further corrections is needed.

E.3 Conditioning on the Super Sample

Considering Fig. 7, by conditioning on S(1), S(2) we have

|E[R̄−R]| ≤
√

2σ2
`

n
I(U ;W |S(1), S(2)), (E.8)

and

Pr
{
R̄−R ≥ ε

}
≤ 4σ2

` (I(U ;W |S(1), S(2)) + 1)

nε2
. (E.9)

Note that here we had to use another branch for random variables Ū , S̄ and R̄ to have the required
conditional independence. Moreover, we assumed that the input distribution µ is continuous, thus
S(1) ∪ S(2) is a set of 2n distinct random variables. As a result, when S(1) ∪ S(2) is given, knowing
S is the same as knowing U and I(S;W |S(1), S(2)) = I(U ;W |S(1), S(2)). Also note that the
discussion on Section 4.1 demonstrated that the distribution of R and R′ is the same as in Section E.1.
Next theorem shows the relation between the obtained bounds and generalization error.
Theorem E.2. In the setting represented in Fig. 7, we have

gen(µ, PSW ) = 2E[R̄−R]. (E.10)
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Moreover, if zero-one loss is used and N ≥ 64
ε2 , we have

Pr{gen(W ) ≥ ε} ≤ 4× I(U ;W |S(1), S(2)) + 1

n(ε/8)2
(E.11)

Proof. Define eµ(W ) = EXY [`(W, (X,Y ))] and eµ̂(W ) = 1
2n

∑
(xi,yi)∈S(1),S(2) `(W, (xi, yi)).

Note that eµ̂(W ) = 1
2 (R+R′). For expectation of generalization gap, we have

gen(µ, PSW ) = E[R′ −R]

= E[2(eµ̂(W ) −R)

= 2E[R̄−R], (E.12)

where final equality is due to the fact that R̄ is an unbiased estimator for eµ̂(W ), calculated using n
samples from µ̂.

For the tail bound we have

Pr{gen(W ) ≥ ε} ≤ 2 Pr{R′ −R ≥ ε/2}
= 2 Pr{eµ̂(W ) −R ≥ ε/4}
= 2 Pr{eµ̂(W ) − R̄) + (R̄−R) ≥ ε/4}
≤ 2 Pr{eµ̂(W ) − R̄ ≥ ε/8}+ Pr{R̄−R ≥ ε/8}

≤ 2
(

2e−2n( ε8 )2 + Pr{R̄−R ≥ ε/8}
)

(E.13)

First inequality is based on Theorem E.1. The next equality is based on the algebraic relation
eµ̂(W ) = 1

2 (R + R′). In second inequality we used union bound and the mathematical relation
A + B ≥ c ⇒ (A ≥ c

2 ) ∨ (B ≥ c
2 ). In third inequality, Hoeffding’s bound for sampling without

replacement is used. Now note that for zero-one loss σ` = 1/2 and by using (E.9), we have

Pr
{
R̄−R ≥ ε/8

}
≤ I(U ;W |S(1), S(2)) + 1

n(ε/8)2
. (E.14)

On the other hand, when N ≥ 64
ε2 we also have

2e−2n( ε8 )2 ≤ 1

n(ε/8)2
. (E.15)

This inequality can be verified for N = 64
ε2 . Which means that it is also valid for larger N , because

l.h.s approaches zero with exponential rate while the r.h.s has slower rate of 1
n .

Finally, we have

2e−2n( ε8 )2 + Pr{R̄−R ≥ ε/8} ≤ 2× I(U ;W |S(1), S(2)) + 1

n(ε/8)2
, (E.16)

which concludes the proof.

E.4 Conditioning on the Super Sample and Index

Considering Fig. 6, by conditioning on J, S(1), S(2), and processing S → SJ we have

|E[L̄− L]| ≤ EJ [
√

2σ2
` I
J(UJ ;W |S(1), S(2))] (E.17)

≤
√

2σ2
` I(UJ ;W |S(1), S(2), J) (E.18)

Note that the same argument which was used in Theorem E.2, can be used for datasets with one
sample to show that gen(µ, PSW ) = 2E[L̄− L].
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Figure 8: Conditioning on the super sample and index.

F Proof of Theorem 6

Definition 1 (Separable process). The random process {Xt}t∈T is called separable if there is a
countable set T0 ⊆ T such that Xt ∈ lim s→t

s∈T0

Xs for all t ∈ T a.s., where x ∈ lim s→t
s∈T0

xs means

that there is a sequence (sn) in T0 such that sn → t and xsn → x.

Theorem 6. Assume that XW = {
√
ngen(w)}w∈W is a separable subgaussian process on the

bounded metric space (W, d) and the learned hypothesis W is a deterministic function of XW .
Consider the sequence of functions (Πk)∞k=k1(W) where k1(W) is the largest integer that satisfies
2−(k1(W)−1) ≥ diam(W), and for all k ≥ k1, Πk :W →W is a function satisfying d(w,Πk(w)) ≤
2−k;∀w ∈ W . Define W̃k = Πk(W ), we have

gen(µ, PSW ) ≤ 1√
n

6
√

2

∞∑
k=k1(W)

2−k
√
I(W̃k;S). (F.1)

Proof. This result is based on Theorem 11 of [3]. Here it is restated using notations used in current
paper.

Theorem F.1. Assume that XW = {Xw}w∈W is a separable subgaussian process on the bounded
metric space (W, d). Consider the sequence of functions (Πk)∞k=k1(W) where k1(W) is the largest
integer that satisfies 2−(k1(W)−1) ≥ diam(W), and for all k > k1, Πk : W → W is a function
satisfying d(w,Πk(w)) ≤ 2−k;∀w ∈ W . Define W̃k = Πk(W ) for k ≥ k1 and W̃k1−1 = w0 for
an arbitrary w0 ∈ W . We have

E[XW ] ≤ 3
√

2

∞∑
k=k1(W)

2−k
√
I(W̃k−1, W̃k;XW). (F.2)

Theorem F.1 is stated for a general random process. In Theorem 6, we usedXW = {
√
ngen(w)}w∈W .

Moreover, knowing S, the values {
√
ngen(w)}w∈W are all deterministically calculated. Thus, by

data processing inequality I(W̃k−1, W̃k;XW) ≤ I(W̃k−1, W̃k;S). Now the only remained part is
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to remove the dependence in W̃k−1 without resorting to the nested partitioning. We have

E[XW ] ≤ 3
√

2

∞∑
k=k1

2−k
√
I(W̃k−1, W̃k;XW)

= 3
√

2

∞∑
k=k1

2−k
√
I(W̃k;XW) + I(W̃k−1;XW |W̃k)

≤ 3
√

2

∞∑
k=k1

2−k
√
I(W̃k;XW) + I(W̃k−1;XW) (F.3)

≤ 3
√

2(

∞∑
k=k1

2−k
√
I(W̃k;XW) +

∞∑
k=k1

2−k
√
I(W̃k−1;XW)) (F.4)

≤ 3
√

2(

∞∑
k=k1

2−k
√
I(W̃k;XW) +

∞∑
k=k1−1

2−(k+1)

√
I(W̃k;XW))

≤ 3
√

2(

∞∑
k=k1

2−k
√
I(W̃k;XW) +

∞∑
k=k1−1

2−k
√
I(W̃k;XW))

≤ 6
√

2

∞∑
k=k1

2−k
√
I(W̃k;XW). (F.5)

Inequality (F.3) is valid based on Theorem 4 because W̃k−1 ⊥⊥ W̃k|XW (which is a consequence
of the deterministic relation between W and XW ). In (F.4) we used the mathematical relation√
a+ b ≤

√
a+
√
b;∀a, b ∈ R+. In final inequality we used I(w0;XW) = 0, because w0 is a

deterministic value.

G Proof of theorem 7

Theorem 7. SupposeW has VC-dimension d(vc)(W) and `(w, (x, y)) = 1(w(x) 6= y). There is a
universal constant C such that the following bound holds on RU (D) defined in (28)

RU (D) ≤ Cd(vc)(W) log(
C

D
). (G.1)

Proof. Note that IS
(1)S(2)

(W̃k, S) ≤ H(W̃k), where H(W̃k) is the entropy of random variable W̃k

and is bounded by logarithm of number of possible values it takes. A possible mapping for producing
W̃ is to use centers of a D-covering. Thus,

RS
(1)S(2)

(D) ≤ logN(W, dS
(1)S(2)

, D), (G.2)

where N(W, dS
(1)S(2)

, D) is the covering number of (W, d) at the scale D. Recall that
dS

(1)S(2)

(w,w′) = 2 ‖w − w′‖L2(µ̂). Here µ̂ is the empirical distribution of the superset and

‖w − w′‖L2(µ̂) =

 1

n

n∑
j=1

(w(xj)− w′(xj))
2

1/2

. (G.3)

Now we use the following theorem which is based on [10].

Theorem G.1 (Dudley [10]). There is a universal constant C such that

sup
µ
N(W, ‖.‖L2(µ) , D) ≤

(
C

D

)Cd(vc)(W)

; ∀D < 1.

Using this theorem with inequality (G.2) completes the proof.
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