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Abstract

Obtaining generalization bounds for learning algorithms is one of the main subjects
studied in theoretical machine learning. In recent years, information-theoretic
bounds on generalization have gained the attention of researchers. This approach
provides an insight into learning algorithms by considering the mutual information
between the model and the training set. In this paper, a probabilistic graphical
representation of this approach is adopted and two general techniques to improve
the bounds are introduced, namely conditioning and processing. In conditioning, a
random variable in the graph is considered as given, while in processing a random
variable is substituted with one of its children. These techniques can be used to
improve the bounds by either sharpening them or increasing their applicability. It
is demonstrated that the proposed framework provides a simple and unified way
to explain a variety of recent tightening results. New improved bounds derived by
utilizing these techniques are also proposed.

1 Introduction

Bounding the generalization gap is one of the most studied problems in theoretical machine learning.
Classically, uniform bounds on the hypothesis set were one of the most popular techniques in
understanding the generalization gap, but they are not always sufficient. In particular that’s the case
for deep neural networks [22]. Recently there has been a line of research trying to reason about the
generalization gap by bounding the mutual information between the dataset and the learned model
[17, 16, 18, 6, 3, 19]. Such bounds consider the details of the algorithm used to generate the model
according to the dataset, providing new opportunities to take into account the specific dynamics
involved in each learning algorithm. In particular, this idea can be used in studying deep neural
networks [14, 2, 20]. There is ongoing research to expand this information-theoretic machinery
and to tighten the generalization bounds. Bu et al. [7] provided bounds which are based on the
mutual information between the model and each individual sample. In another line of work, Asadi
et al. [3] used subgaussian assumption to apply chaining techniques in the information-theoretic
framework. An idea which was later used to analyze the layered structure of deep neural networks
[2]. Recently Steinke and Zakynthinou [19] proposed using a super sample where the training set is
selected randomly from it, and computing the mutual information conditioned on this super sample.
It was demonstrated how some of the classical tools based on VC-dimension, compression schemes,
and differential privacy, can be explained in this new information-theoretic framework. Though in
the case of VC theory, the obtained bounds were not tight and have an extra log n factor, a problem
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which authors conjectured could be solved. This work was followed by Haghifam et al. [12], where
individual sample bounds and data-dependent bounds were provided in this new setting.

This paper has two main objectives. Firstly, we try to expand the tool set which is used in the
information-theoretic bounds by introducing conditioning and processing techniques. To make the
ideas more accessible, we adapt a probabilistic graphical representation of them (made possible by
a slight generalization of the standard approach). Using these techniques we explain how bounds
similar to previous tightened results can be found. Secondly, we study Chaining Conditional Mutual
Information (CCMI) to demonstrate how the conditioning technique can be used to tighten the
chaining mutual information of [3], a setting which needs a more elaborate treatment. This brings
together the idea of conditioning on a super sample, with the chaining method. We show that this
approach eliminates the extra log n factor which appears in the basic application of the conditioning
technique and suggests interesting directions for future work.The proofs of theorems are presented in
the supplementary material.

It is worth mentioning that it is also possible to use PAC-Bayesian to derive non-uniform generalization
bounds. PAC-Bayesian also has been combined with chaining in [4, 5]. While there are situations
where the PAC-Bayesian and information-theoretic approaches become close together (for example
see Section 1.3 of [8]), each of these approaches brings their advantages. In particular, in the
information-theoretic approach the main focus is on the relation between the learned hypothesis (as a
random variable) to other random variables (e.g. dataset), while in PAC-Bayesian the focus is on the
relation between two distributions on hypothesis set. An advantage of the former approach is that
it is simpler to bring in various random variables in the picture and mold the bounds accordingly.
This plays an important role in next sections where graphical models with multiple random variables
are studied (in particular see Section E). An advantage of the PAC-Bayesian approach is that it
explicitly provides bounds that are independent of the data distribution, while this is not the case for
the information-theoretic approach (see Section 3.3).

2 Notation and Preliminaries

Capital letters X ,Y , and Z are used for random variables taking values in X , Y and Z respectively.
The superscripts on distributions and expectations are used to describe conditional distributions,
e.g. P zX indicates the conditional distribution of X given Z = z and EzX [f(X, z)] indicate the
expectation of f(X, z) based on this distribution. The subscripts in expectations indicate the random
variables upon which the expectation is acting. In many cases where these random variables are
clear from the context, the subscript is omitted to prevent cluttering the notation. The KL divergence
of distribution PX from QX is denoted as KL(PX ‖ QX) =

∫
log P (X)

Q(X)dP . Mutual information
is defined as I(X;Y ) = KL(PXY ‖ PX ⊗ PY ) where PX and PY are marginal distributions of
PXY . The conditional mutual information is denoted as I(X;Y |Z) = EZ [IZ(X;Y )] in which for
all z, Iz(X;Y ) is the mutual information on the conditioned distributions P zXY , i.e. Iz(X;Y ) =
KL(P zXY ‖ P zX ⊗ P zY ). Throughout the paper, all logarithms are in natural base and all information-
theoretic quantities are in nats.

3 Conditioning and Processing

Let us begin by restating a very useful lemma presented by [21].
Lemma 1 ([21]). Consider random variables X and Y with joint distribution PXY and a function
g : X ×Y → R such that g(X,Y ) is σ-subgaussian under the distribution PX̄Ȳ = PX ⊗PY 1, then∣∣E[g(X̄, Ȳ )]− E[g(X,Y )]

∣∣ ≤√2σ2I(X;Y ). (1)

While in Lemma 1 the E[g(X̄, Ȳ )] is discussed, the result is also valid for E[g(X, Ȳ )] if Ȳ is
independent of X since PX̄Ȳ = PX̄Y . Actually this is the case usually encountered in studying the
generalization gap. This is summarized in a Probabilistic Graphical Model (PGM) represented in
Fig. 1 where we defined G = g(X,Y ) and Ḡ = g(X, Ȳ ). In all the figures, we use the convention
that nodes sharing the same letter in their name (with different accents, e.g. Y and Ȳ ), share the same

1Recall that a random variable V is σ-subgaussian if logE[eλ(V−E[V ])] ≤ λ2σ2/2 for all λ ∈ R.
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Figure 1: PGM representation for Lemma 2. The direct line between Y and X is used without an
arrow to indicate that it can be in either direction. The parameter σ2 at the side of node Ḡ is used to
summarize that Ḡ is σ-subgaussian.

(conditional) distribution. For example in Fig. 1 we have PY = PȲ and PXȲ
Ḡ

= PXYG . Note that the
random variable G = g(X,Y ) in Lemma 1 has a deterministic relation with X and Y , but the result
can be extended to support general stochastic mapping in form of PXYG . This is done in Lemma 2
where we also provided a companion tail bound to set the ground for the next steps.
Lemma 2. Consider random variables X,Y, Ȳ , G and Ḡ with the conditional independences pre-
sented in Bayesian network of Fig. 1. Also suppose that PȲ = PY and PX,Ȳ

Ḡ
= PX,YG .

(a) If the marginal distribution PḠ is σ-subgaussian, then∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(X;Y ). (2)

(b) If P x
Ḡ

is σ-subgaussian for all x ∈ X , then

Pr
{
u× (Ḡ−G) ≥ ε

}
≤ 4σ2(I(X;Y ) + 1)

ε2
; u ∈ {−1, 1} . (3)

Remark: Note that since in part (b) the bounds for u = −1 and u = 1 are the same, using union
bound we have

Pr
{
|Ḡ−G)| ≥ ε

}
≤ 8σ2(I(X;Y ) + 1)

ε2
. (4)

The conditioning and processing are general techniques that can be used to improve information-
theoretic bounds such as the ones presented in Lemma 2.

3.1 Conditioning

Lemma 3. (Conditioning) Consider random variables X,Y, Z,H .

(a) Suppose there is a concave function b : R+ → R which satisfies
∀z ∈ Z;Ez[H] ≤ b(Iz(X;Y )), (5)

then
E[H] ≤ EZ [b(IZ(X;Y ))] (6)

≤ b(I(X;Y |Z)). (7)

(b) Suppose there is a function δ : R+ × R→ R which is concave on its first argument and satisfies
∀z ∈ Z, ε ∈ R+; Prz[H ≥ ε] ≤ δ(Iz(X;Y ), ε),

then
Pr[H ≥ ε] ≤ δ(I(X;Y |Z), ε). (8)

In simple words, Lemma 3 states that if we have a concave information-theoretic bound which is valid
in a conditioned setting, there is an accompanying bound on the unconditioned setting which depends
on the conditional mutual information. For example by considering H = Ḡ−G, Lemma 3 can be
used in conjunction with Lemma 2 in cases that Ȳ is not independent of Y , but for some random
variable Z there is the conditional independence Ȳ ⊥⊥ Y |Z (see Fig. 2a). Though it should be noted
that even in the case where Ȳ and Y are independent, if I(X;Y |Z) ≤ I(X;Y ), this lemma can be
used to achieve tighter bounds. Conditioning does not necessarily decrease mutual information. The
next theorem summarizes some conditions which guarantee that conditioning will not increase the
mutual information (see Corollaries of Theorem 2.8.1 in [9]).
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Figure 2: PGM representation of (a) conditioning and (b) processing. The gray background is used to
indicate that a random variable is conditioned.

Theorem 4 ([9]). If the random variables X,Y and Z form a Markov chain (in any order), then

I(X;Y |Z) ≤ I(X;Y ). (9)

In the Bayesian network representation, the condition of Theorem 4 is satisfied if the sub-network
representing independences of X , Y and Z contains no v-structure.

3.2 Processing

In many cases there are auxiliary random variables T and V which are generated from X and Y
respectively and are the only ingredients needed to find G. In such cases the bound can be rewritten
to use T, V instead of X,Y . This is made precise in the next lemma.
Lemma 5. (Processing) Consider random variables X,Y, Ȳ , G, Ḡ, V, V̄ and T with the conditional
independences presented in the Bayesian network of Fig. 2b. Also suppose that PȲ = PY , PYV = P Ȳ

V̄

and PT,V̄
Ḡ

= PT,VG .

(a) If the marginal distribution PḠ is σ-subgaussian, then∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(T ;V ). (10)

(b) If P t
Ḡ

is σ-subgaussian for all t ∈ T , we have

Pr
{
u× (Ḡ−G) ≥ ε

}
≤ 4σ2(I(T ;V ) + 1)

ε2
; u ∈ {−1, 1} . (11)

We call this transformation "processing" as it moves away from (X,Y ) to G by preprocessing (T, V ).
This is demonstrated in Fig. 2b. While processing is a simple application of Lemma 2 on T and V ,
this identification as a separate step, makes it simpler to follow the reasoning when the problem gets
complicated (we will encounter such problems in section 4.1). Note that processing can not increase
the bound because of information processing inequality.

Remark: Processing can be combined with conditioning, if the conditions are satisfied in case Z is
given, e.g. if G ⊥⊥ X,Y |T, V, Z then

∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(T ;V |Z).

3.3 Applicability of the Bounds

One thing to note about information-theoretic bounds is that even if one can show that a resulting
bound is sharper, it does not necessarily mean that it is more applicable. The reason is that the
information-theoretic bounds rely on the distribution of data, which is usually unknown. Thus, it
should be noted that the real benefit of the proposed techniques is to make it possible to easily
transform the bounds, without loosening them, until the situation is ready to have a distribution
independent bound or a quantity which is easy to estimate. The problems discussed in next sections
demonstrate the applicability of these techniques in practice.
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4 Some Applications of Conditioning and Processing

Recently there has been a series of papers trying to improve the information-theoretic generalization
bounds [6, 7, 19, 12].In Section 4.1 it is demonstrated that it is possible to achieve similar bounds by
simple application of conditioning and processing steps. The result is a unified and simple framework
to study these bounds, demonstrating the potential of the proposed techniques. In Section 4.2 it is
demonstrated how basic bounds based on VC-dimension can be obtained.

4.1 A Unified View on Information-Theoretic Generalization Bounds

Consider learning problem where the training set S = {(xj , yj)}nj=1 ∼ µ⊗n is given and the learned
hypothesis W ∈ W is generated by conditional distribution PSW . We use Sj to denote the jth sample
of S. The loss of hypothesis w on the sample (x, y) is represented by `(w, (x, y)). Generalization
gap of hypothesis w is the difference between the expected loss and the average loss on training set

gen(w) = EXY [`(w, (X,Y ))]− 1

n

n∑
j=1

`(w, Sj). (12)

One subject of interest is expected generalization gap, gen(µ, PSW ) , EW [gen(W )]. This can
be described in various ways each describing a special Bayesian network, providing a variety of
opportunities to use the conditioning and processing steps to derive new bounds. These are described
in the following series of equations.

gen(µ, PSW ) = ES,S′,W [
1

n

n∑
j=1

`(W,S′j)−
1

n

n∑
j=1

`(W,Sj)] (13)

= ES,S′,W,J [`(W,S′J)− `(W,SJ)]. (14)

In these equations S′ ∼ µ⊗n is an independent copy of S working as test set. In the second equation
an auxiliary random variable J is introduced which is uniformly distributed on {1, . . . , n}. These
equations can be further expanded by utilizing an alternative approach to generate datasets S and S′.
Suppose S(1) and S(2) are two sets of n i.i.d. samples from µ and the binary random variable Uj
is uniformly distributed on {−1, 1} (Rademacher distribution) and defines whether the jth training
sample is selected from S(1) or S(2), i.e.

Sj =

{
S

(1)
j Uj = −1

S
(2)
j Uj = 1

; S′j =

{
S

(2)
j Uj = −1

S
(1)
j Uj = 1

. (15)

We have

gen(µ, PSW ) = ES(1),S(2),U,W [
1

n

n∑
j=1

`(W,S′j)−
1

n

n∑
j=1

`(W,Sj)] (16)

= ES(1),S(2),U,W,J [`(W,S′J)− `(W,SJ)] (17)

= ES(1),S(2),U,W,J [UJ(`(W,S
(1)
J )− `(W,S(2)

J ))]. (18)

The required ingredients for the following discussion is that for all w the loss function Lw =
`(w, (X,Y )) is σ`-subgaussian2. Define Lj = `(W,Sj) and L′j = `(W,S′j). Also define the
averages R = 1/n

∑n
j=1 Lj and R′ = 1/n

∑n
j=1 L

′
j . Note that R′ is σ2

`

/
n -subgaussian since L′js

are independent.

In Table 1 it is demonstrated how the previous techniques can be applied to study generalization in
practice. To do that the graphical model representing each of the equations (13), (14), (16) and (17)
are represented in the first column. In each diagram, the nodes with gray background are conditioned.
As usual, the (conditional) distribution of nodes sharing the same base name are the same (e.g.
PŪ = PU and P S̄W

R̄
= PSWR ).

2Recall that if a random variable L satisfies a ≤ L ≤ b, it is (b− a)/2 -subgaussian.
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The first row corresponds to the original case. Usage of Lemma 1 by [21] to bound the generalization
gap was based on this formulation. The tail bound was studied in [6]. The individual sample bound
of the second row is the main subject of paper [7] where they show that this technique could result in
much sharper bounds compared to the basic bound and the chaining bound of [3]. Applications on
noisy iterative learning algorithms were also proposed. In the third row, a set of indices J of size
m is conditioned, which is one of the inequalities presented in [14]. The fourth row correspond to
the setting where super sample is given, which was recently studied by [19] and various applications
were considered. The fifth row is individual sample variant of the fourth one, proposed by [12].

In the checklist column, the necessary independence requirements which were validated to find the
bounds are listed. The conditioned variables are denoted as Z. For fourth and fifth rows were the
Z = (S(1), S(2)) are given, the requirement that S′ ⊥⊥ S|Z is no longer satisfied, thus an auxiliary
random variable S̄ is introduced in a way that guarantees S̄ ⊥⊥ S′|Z. This results to bounds for
E[R̄−R] and E[L̄−L] which is not the same as gen(µ, PSW ) = E[R′−R] = E[L′−L] that we were
looking for. For tail bounds, there is actually one more difficulty. The quantity Pr{R′ −R ≥ ε} is
not the same as the usual quantity of interest Pr{gen(w) ≥ ε} (i.e. the generalization gap estimated
by using a test set of size n is not the same as true generalization gap, even though it is an unbiased
estimator). This is as far as we can get by just using the general techniques of processing and
conditioning to understand the problem. Fortunately, the usual bounds of interest, differ from these
bounds by small constant factors. This is further discussed in the supplementary material (see
Theorems E.1 and E.2).

Note that the bounds derived in rows 2 to 5 are improved versions of the first row. The Individual
Sample Mutual Information (ISMI) bound of the second row is shown to be always tighter than the
basic bound of the first row [7]. Similarly, the conditional mutual information I(U ;W |S(1), S(2))+1)
present in the fourth row has been shown to be never larger than I(S;W ) [12]. The amount of
improvement achieved by these techniques can be quite large. Actually, there are cases where the
basic bound based on I(S;W ) is infinite while the improved bounds are finite [7, 19, 12]. The bound
provided in the fifth row is shown to be a further tightened variant of the third row [12].

One of the main applications of information-theoretic generalization bounds is to study Stochastic
Gradient Langevin Dynamics (SGLD). In SGLD there is a series of models W(1), . . . ,W(T ). At each
step t, a training sample SU(t)

is sampled, where U(t) ∈ {1, . . . , n} denotes the random index, and
noisy gradient descent is used to find W(t) by the update rule

W(t) = W(t−1) − η(t)∇`(W(t−1), SU(t)
) + σ(t)ξ,

where η(t) is step size, ξ is noise (usually a Gaussian random variable) and σ(t) controls the strength
of noise at time step t. This noise addition can control the amount of information stored in W(t) from
the sample set. Consequently, information-theoretic generalization bounds can be used to bound
the generalization gap. This was the idea first used by [15] to study SGLD generalization based on
I(S;W ), which was followed by a series of tightening results using the conditional variants of the
bounds [7, 14, 12].

4.2 VC-dimension

In case of binary classification with zero-one loss `(w, (x, y)) = 1(w(x) 6= y), bounds similar to
those obtained in VC theory can be retrieved by conditioning on the super sample S(1), S(2). The
set of dichotomies ofW on the set S is defined as DW(S) , {(w(Sj))

n
j=1 | w ∈ W}. Now since

S(1), S(2) is given, suppose a fixed ordering on DW(S(1) ∪ S(2)) and define KW as the index of
(W (Sj))

n
j=1 in this ordering. W can be processed to KW , since knowing KW and the target set

S ⊂ S(1) ∪ S(2) is enough to calculate the error. Now note that

IS
(1),S(2)

(S;KW ) ≤ HS(1),S(2)

(KW ) ≤ log( sup
S(1),S(2)

|DW(S(1) ∪ S(2))|) ≤ 1 + dvc(W) log n,

where dvc(W) is the VC-dimension ofW . The last inequality is based on the well known exponential
relation between the VC-dimension and the growth function ΠW(2n) = supS(1),S(2) |D(S(1) ∪
S(2))|(see for example Section 2.1.3 of [1]). Finally by noticing that zero-one loss is 1/2-subgaussian,
we have

|E[R′ −R]| ≤
√

2σ2
`

n
I(S;KW |S(1), S(2)) ≤

√
1 + dvc(W) log n

2n
, (19)
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Table 1: Summary of Sharpened Information-Theoretic Generalization Bounds.
Diagram Checklist Transformations / Bounds

𝑆

𝑅

𝑆#

𝑅#

𝑊

𝜎&' 𝑛⁄

S′ ⊥⊥ S
S′ ⊥⊥W

|E[R′ −R]| ≤
√

2σ2
`

n I(S;W )

Pr {R′ −R ≥ ε} ≤ 4σ2
` (I(S;W )+1)

nε2

[21]

𝑆"

𝐿

𝑆"$	

𝐿$

𝐽
𝑆 𝑊 𝑆′

𝜎)*

S′ ⊥⊥ S|Z
S′ ⊥⊥W |Z
L ⊥⊥ S|SJW

Condition: J
Process: S → SJ

|E[L′ − L]| ≤ 1
n

∑n
j=1

√
2σ2

` I(Sj ;W )
[7]

𝑆𝒥

𝑅𝒥

𝑆𝒥$ 	

𝑅𝒥$

𝒥
𝑆 𝑊 𝑆′

𝜎() 𝑚⁄

S′ ⊥⊥ S|Z
S′ ⊥⊥W |Z
RJ ⊥⊥ S|SJW

Condition: J
Process: S → SJ

|E[R′J −RJ ]| ≤
√

2
σ2
`

m I(SJ ;W )

[14]

𝑅"

𝑊

𝑆′

𝑈	𝑆()) 	𝑆(+)𝑈,

𝑅-

𝑆̅

𝑅

𝑆

𝜎0+ 𝑛⁄

S̄ ⊥⊥ S|Z
S̄ ⊥⊥W |Z

Condition: S(1), S(2)

|E[R̄−R]| ≤
√

2σ2
`

n I(U ;W |S(1), S(2))

Pr
{
R̄−R ≥ ε

}
≤ 4σ2

` (I(U ;W |S(1),S(2))+1)
nε2

[19]

𝑆"#

𝐿#

𝐽

𝑊

𝑆′

𝑈	𝑆(+) 		𝑆(-)𝑈.

	𝑆"̅

𝐿0

𝑆̅

𝑆"

𝐿

𝑆

𝜎2-

S̄ ⊥⊥ S|Z
S̄ ⊥⊥W |Z
L ⊥⊥ S|SJW

Condition: S(1), S(2), J

Process: S → SJ

|E[L̄−L]| ≤
√

2σ2
` I(UJ ;W |S(1), S(2), J)

[12]
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and

Pr {R′ −R ≥ ε} ≤ 4σ2
` (I(S;KW |S(1), S(2)) + 1)

nε2
≤ 2 + dvc(W) log n

nε2
. (20)

We know that these bounds are not tight since there is an extra log n term which is not present in the
tightest bound provided in VC theory. In the next section we will see how to overcome this.

A similar result based on conditioning the super sample is presented by [19], but their setting does not
allow processing and thus that approach does not work for all learning algorithms. More precisely,
the results of [19] show that for each hypothesis class with finite V C-dimension, there exists an
Empirical Risk Minimizer (ERM) which its generalization can be explained by just conditioning the
super sample. This is also demonstrated that there are other ERMs which does not have this property.
They also conjectured that the log n factor can be removed by going beyond ERMs to find a suitable
learning algorithm. This is in contrast to the standard results of VC theory which work for all learning
algorithms.

5 Chaining Conditional Mutual Information

In the previous section, conditioning was used along with the base bound of Lemma 2 to achieve
tightened results. But it should be noted that the conditioning technique of Lemma 3 is a general
method applicable to any concave information-theoretic bound. In this section, it is demonstrated how
this technique can be used in combination with the chaining method of [3] to make tighter bounds.
We call this technique Chaining Conditional Mutual Information (CCMI). We first state an alternative
formulation of the chaining mutual information.
Theorem 6. Assume that XW = {

√
ngen(w)}w∈W is a separable subgaussian process on the

bounded metric space (W, d) and the learned hypothesis W is a deterministic function of XW .
Consider the sequence of functions (Πk)∞k=k1(W) where k1(W) is the largest integer that satisfies
2−(k1(W)−1) ≥ diam(W), and for all k ≥ k1, Πk :W →W is a function satisfying d(w,Πk(w)) ≤
2−k;∀w ∈ W . Define W̃k = Πk(W ), we have

gen(µ, PSW ) ≤ 1√
n

6
√

2

∞∑
k=k1(W)

2−k
√
I(W̃k;S). (21)

Recall that random process {Xt}t∈T on metric space (T, d) is called subgaussian if E[Xt] = 0 for
all t ∈ T and Xt −Xs is a d(t, s)-subgaussian random variable for all t, s ∈ T . Separability is a
technical assumption defined in the supplementary material and is assumed in the next discussions.
There are two differences between Theorem 6 and the result provided by [3]. First of all, it is restated
by focusing on the mappings Πk, instead of partitions, a modification which makes next discussions
simpler. More importantly, the constraint that W̃k should be a function of W̃k+1 (enforced in the
original formulation by using an "increasing sequence of partitions") is removed. But to do that, it
was required to add the assumption that the learning algorithm is deterministic (and increase the
constant by a factor of 2). The latter modification allows us to separately optimize each term of the
sum in (21) when trying to find tightest bounds. Let us define the rate-distortion function

R(D) , inf
Π:W→W

I(W̃ ;S); s.t. d(W, W̃ ) ≤ D a.s., (22)

where W̃ = Π(W ), we have

gen(µ, PSW ) ≤ 1√
n

6
√

2

∞∑
k=k1(W)

2−k
√
R(2−k). (23)

Note that since the algorithms is deterministic, I(W̃ ;S) = I(W̃ ;W ) and the optimization of (22)
resembles the setting of rate-distortion theory (see Chapter 10 of [9]).3

An integral part of the standard method to study empirical process {gen(w)}w∈W is based on the
usage of a super sample S(1), S(2) as was done in Section 4.1 (for example see Chapter 7 of [13]).

3But note that it differs from the usual setting in which the constraint is on the expected distance and the
mappings are stochastic.
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Consider Eq. (18), we have

gen(µ, PSW ) = E[
1

n

n∑
j=1

Uj(`(W,S
(1)
j )− `(W,S(2)

j ))] (24)

Now note that when S(1) and S(2) are given, for each w, the randomness is only in the Rademacher
random variables U = (Uk)nk=1. By using Azuma-Hoeffding inequality, {

√
ngen(w)}w∈W is

subgaussian with distance function

dS
(1)S(2)

(w,w′) ,

 1

n

n∑
(x,y)∈S(1)∪S(2)

(`(w, (x, y))− `(w′, (x, y)))
2

1/2

. (25)

Thus, for fixed and given S(1), S(2), the conditions of Theorem 6 are satisfied for {
√
ngen(w)}w∈W

on space (W, dS
(1)S(2)

). Now the conditioning lemma, can be used to find the bound on unconditioned
case as

gen(µ, PSW ) ≤ 1√
n
ES(1)S(2) [6

√
2

∞∑
k=k1(W)

2−k
√
IS(1)S(2)(W̃k;S)]. (26)

Note that here W̃ks can be generated based on the given super sample by solving the optimization

RS
(1)S(2)

(D) , inf
Π:W→W

IS
(1)S(2)

(W̃ ;S); s.t. dS
(1)S(2)

(W, W̃ ) ≤ D a.s.. (27)

Dependence on the super sample is the main difficulty of this definition. One way to resolve this is to
define the uniform bound of

RU (D) , sup
S(1)S(2)

RS
(1)S(2)

(D), (28)

which can be used in (23) to control generalization.

Next theorem which is based on [11] shows that RU (D) can be controlled by dvc(W).
Theorem 7. SupposeW has VC-dimension d(vc)(W) and `(w, (x, y)) = 1(w(x) 6= y). There is a
universal constant C such that the following bound holds on RU (D) defined in (28)

RU (D) ≤ Cd(vc)(W) log(
C

D
). (29)

Using this theorem with (26) we have

gen(µ, PSW ) ≤ 1√
n

6
√

2

∞∑
k=k1(W)

2−k
√
RU (2−k) = C ′

√
d(vc)(W)

n
, (30)

for a universal constant C ′. This eliminates the previous extra log n factor and provides the optimal
rate of O(n−1/2).

Note that the real benefit of conditioning and processing techniques is to easily transform the
information-theoretic bounds without resorting to applying the uniform bound. As such, it should be
emphasized that the real highlight of this section was introduction of rate-distortion function R(D)

and its conditioned counterpart RS
(1)S(2)

(D) (equations (22) and (27)), i.e. before applying the final
uniform bound. Also, note that it is rather straightforward to combine CCMI with other ideas from
Section 4.1 (e.g. by conditioning on both super sample and random index). This is an advantage of
the information-theoretic framework over the PAC-Bayesian approach, as was discussed in Section 1.
These subjects provide interesting directions for future study.

6 Conclusion

In this paper two techniques to improve information-theoretic generalization bounds were studied.
Utilizing a probabilistic graphical representation, it was demonstrated that these techniques provide
a simple machinery to reason about the generalization gap and to tighten information-theoretic
bounds. Then the conditioning technique was used in conjunction with the method of chaining mutual
information as a next step toward understanding the generalization gap in the context of information
theory. It was demonstrated how using this technique the bounds based on VC-dimension can be
achieved. The developed theory to achieve this result introduced some interesting subjects for further
study.
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Broader Impact

As a theoretical work, the direct foreseeable impact is on the academic community. In particular, in
the field of machine learning, this work should be viewed along a series of works trying to understand
learning algorithms from the lens of information theory. The unified framework introduced in this
paper provides an intuitive and convenient way to derive tighter generalization bounds. This can
increase the ability of researchers to apply information theory to derive bounds for their learning
algorithms and to easily communicate their ideas. These contributions have the potential to boost the
ongoing paradigm shift toward an information-theoretic understanding of machine learning. It should
also be noted that the studied techniques are not limited to deriving generalization bounds, which is
evident from the quite general structure of graphical models and techniques. As such, these kinds of
graphical representations along the conditioning and chaining techniques may find their way to be
used in other fields beside learning theory as well.
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Appendices

A Proof of Lemma 2

𝑌

𝐺

𝑋 𝑌$ 	
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Figure 3: PGM representation for Lemma 2.

Lemma 2. Consider random variables X,Y, Ȳ , G and Ḡ with the conditional independences pre-
sented in the Bayesian network of Fig. 3. Also suppose that PȲ = PY and PX,Ȳ

Ḡ
= PX,YG .

(a) If the marginal distribution PḠ is σ-subgaussian, then∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(X;Y ). (A.1)

(b) If P x
Ḡ

is σ-subgaussian for all x ∈ X , then

Pr
{
u× (Ḡ−G) ≥ ε

}
≤ 4σ2(I(X;Y ) + 1)

ε2
; u ∈ {−1, 1} , ε ∈ R+. (A.2)

Proof. For Part (a), a slight modification of proof of Lemma 1 in [21] is used. Based on the
Donsker–Varadhan variational representation of the relative entropy, for any two distributions π , ρ
on a common measurable space (Ω,F) we have

KL(π ‖ µ) = sup
F

{∫
Ω

Fdπ − log

∫
Ω

eF dρ

}
(A.3)

where supremum is over all measurable functions F : Ω→ R, such that eF ∈ L1(ρ). Consider the
distribution π = PXYG = PXY ⊗ PXYG and let µ = PXȲ Ḡ = PX ⊗ PY ⊗ PXYG . Note that E[G]
and E[Ḡ] are calculated based on π and µ, respectively. Define the function f(x, y, g) = g. For all
λ ∈ R, we have

KL(π ‖ µ) ≥ E[λf(X,Y,G)]− logE[eλf(X,Ȳ ,Ḡ)]

= λ(E[G]− logE[eλḠ])

≥ λ(E[G]− E[Ḡ])− λ2σ2

2
, (A.4)

where the final inequality is due to the σ-subgaussian assumption on PḠ

logE[eλ(G−E[G])] ≤ λ2σ2/2; ∀λ ∈ R.

The inequality (A.4) gives a nonnegative parabola in λ. For the inequality to hold for all λ, the
discriminant of this parabola must be nonpositive. This implies that∣∣E[Ḡ]− E[G]

∣∣ ≤√2σ2KL(π ‖ µ). (A.5)

Now noting that

KL(π ‖ µ) = KL(PXY ⊗ PXYG ‖ PX ⊗ PY ⊗ PXYG ) (A.6)
= KL(PXY ‖ PX ⊗ PY ) (A.7)
= I(X;Y ) (A.8)

concludes the proof of Part (a).

To prove Part (b), first consider that u = 1, for u = −1 the proof follows similarly. Let us first restate
a lemma from [6].
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Lemma A.1 ([6]). Let π and µ be distributions on a set Ω and let E ⊆ Ω. Then,

π(E) ≤ KL(π ‖ µ) + 1

log(1/µ(E))
. (A.9)

Proving Part (b) requires a stronger technique based on an auxiliary distribution. Let π be the
distribution presented in Fig. 3, i.e. π = PXYGȲ Ḡ = PXY ⊗ PXYG ⊗ PY ⊗ PXYG . Consider
another distribution µ which is similar to π except that the link between X and Y is severed, i.e.
µ = PX′Y ′G′Ȳ ′Ḡ′ = PX⊗PY ⊗PXYG ⊗PY ⊗PXYG . Note that again we have KL(π ‖ µ) = I(X;Y ).

Let H ′ = Ḡ′ −G′ and E be the event that H ′ ≥ ε. To find µ(E), note that when X ′ = x′ is given,
G′ and Ḡ′ are independent random variables each having the same distributions as P x

Ḡ
. As this

distribution is assumed to be σ-subgaussian, for an arbitrary x′ ∈ X , we have

Ex
′
[eλ(Ḡ′−G′−(Ex

′
[Ḡ′−G′]))] = Ex

′
[eλ(Ḡ′−Ex

′
[Ḡ′])]Ex

′
[eλ(G′−Ex

′
[G′])] ≤ eλ

2σ2

;∀λ ∈ R. (A.10)

This means that the conditional distribution P x
′

H′ is subgaussian with the variance proxy 2σ2. Also
note that Ex

′
[Ḡ′ − G′] = 0. Now, by using the well known fact that the tail of any subgaussian

distribution around its mean, is dominated by the Gaussian distribution with the same variance proxy,
we have

Prx
′
{H ′ ≥ ε} ≤ e−

ε2

4σ2 . (A.11)
Since this is valid for all x′, by taking expectation from both sides we have

µ(E) = Pr{H ′ ≥ ε} = EX′ [PrX
′
{H ′ ≥ ε}] ≤ e−

ε2

4σ2 . (A.12)

Now that a bound on µ(E) is found, Lemma A.1 can be used to control π(E) = Pr{Ḡ−G ≥ ε}.
We have

π(E) ≤ KL(π ‖ µ) + 1

log(1/µ(E))
≤ 4σ2(I(X;Y ) + 1)

ε2
. (A.13)

B Proof of Lemma 3

Lemma 3. (Conditioning) Consider random variables X,Y, Z,H .

(a) Suppose there is a concave function b : R+ → R which satisfies

∀z ∈ Z;Ez[H] ≤ b(Iz(X;Y )), (B.1)

then

E[H] ≤ EZ [b(IZ(X;Y ))] (B.2)
≤ b(I(X;Y |Z))]. (B.3)

(b) Suppose there is a function δ : R+ × R→ R which is concave on its first argument and satisfies

∀z ∈ Z, ε ∈ R+; Prz[H ≥ ε] ≤ δ(Iz(X;Y ), ε),

then

Pr[H ≥ ε] ≤ δ(I(X;Y |Z), ε). (B.4)

Proof. (a) Note that E[H] = EZ [EZ [H]]. Since inequality (B.1) holds for all z ∈ Z , by taking
expectation on Z from the random upper bound b(IZ(X;Y )), the inequality (B.2) is achieved.
Inequality (B.3) is a consequence of the concavity of b, the Jensen’s inequality, and the definition of
conditional mutual information.

(b) This part follows similarly by noting that for any event E we have EZ [PrZ {E}] = Pr {E} .
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Figure 4: PGM representation of processing technique.

C Proof of Theorem 4

Theorem 4 ([9]). If the random variables X,Y and Z form a Markov chain (in any order), then

I(X;Y |Z) ≤ I(X;Y ). (C.1)

Proof. Suppose the conditional dependences of X ,Y and Z satisfies a Markov chain V1 − V2 − V3

where Vi ∈ {X,Y, Z} and (Vi)
3
i=1 is a specific ordering of (X,Y, Z). The Markov property results

in V1 ⊥⊥ V3|V2. If V2 = Z, I(X;Y |Z) = I(V1;V3|V2) = 0 has the smallest possible value and thus
(C.1) is satisfied. If V2 6= Z either V2 = X or V2 = Y . Because of the symmetry between X and Y ,
it is enough to consider either of these cases and the other follows similarly. Suppose V2 = X , i.e.
Z ⊥⊥ Y |X . By chain rule of mutual information, the quantity I(Y ; (X,Z)) can be decomposed in
two ways and we have

I(Y ; (X,Z)) = I(Y ;Z) + I(Y ;X|Z) = I(Y ;X) + I(Y ;Z|X). (C.2)

Since I(Y ;Z|X) = 0, we have

I(X;Y |Z) = I(X;Y )− I(Y ;Z). (C.3)

Thus, (C.1) is obtained according to the nonnegativity of I(Y ;Z).

D Proof of Lemma 5

Lemma 5. (Processing) Consider random variables X,Y, Ȳ , G, Ḡ, V, V̄ and T with the conditional
independences presented in the Bayesian network of Fig. 4. Also suppose that PȲ = PY , PYV = P Ȳ

V̄

and PT,V̄
Ḡ

= PT,VG .

(a) If the marginal distribution PḠ is σ-subgaussian, then∣∣E[Ḡ−G]
∣∣ ≤√2σ2I(T ;V ). (D.1)

(b) If P t
Ḡ

is σ-subgaussian for all t ∈ T , we have

Pr
{
u× (Ḡ−G) ≥ ε

}
≤ 4σ2(I(T ;V ) + 1)

ε2
; u ∈ {−1, 1} . (D.2)

Proof. Note that V̄ ⊥⊥ (T, V ) and marginal distributions PV and PV̄ are the same, because PY = PȲ
and PYV = P Ȳ

V̄
. The result easilly is obtained as the conditions of Lemma 2 are satisfied for random

variables T, V, V̄ , G and Ḡ.

E A Unified View on Information-Theoretic Generalization Bounds

In this section results provided in Section 4.1 are proved and discussed. Recall that we assumed for all
w the loss function `(w,X) is σ`-subgaussian. For binary classification with zero-one loss σ` = 1/2.
We also defined Lj = `(W,Sj) , L′j = `(W,S′j) , R = 1/n

∑n
j=1 Lj and R′ = 1/n

∑n
j=1 L

′
j .

Note that R′ is σ2
`

/
n -subgaussian since L′js are independent. The object of interest is generalization
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Figure 5: Basic generalization.

gap of hypothesis w, which is the difference between the expected loss and the average loss on
training set

gen(w) = EXY [`(w, (X,Y ))]− 1

n

n∑
j=1

`(w, Sj). (E.1)

We want to have bounds on gen(µ, PSW ) , E[gen(w)] and Pr{gen(w) ≥ ε}; ε ∈ R+.

E.1 Basic Generalization Bound

Considering the conditional independences presented in Fig. 5, using Lemma 2 directly results in

gen(µ, PSW ) = |E[R′ −R]| ≤
√

2σ2
`

n
I(S;W ), (E.2)

and

Pr {R′ −R ≥ ε} ≤ 4σ2
` (I(S;W ) + 1)

nε2
. (E.3)

In Section 4.1, we saw that E[R′ −R] in the original formulation is equal to gen(µ, PSW ). But the
situation is different for Pr{gen(W ) ≥ ε} because now the variance also matters. Next theorem
proves that for the large enough N this difference just introduces a constant factor to the bound.
Theorem E.1. If N ≥ 2

ε2 we have

Pr{gen(W ) ≥ ε} ≤ 2 Pr{R′ −R ≥ ε/2}. (E.4)

Proof. The result follows by a standard technique in proving generalization bound that intro-
duces an auxiliary ghost sample set (for example see Appendix A.1 of [1]). Define eµ(W ) =
EXY [`(W, (X,Y ))]. If Pr{eµ(W ) − R ≥ ε} = 0, the desired inequality holds. Assume
Pr{eµ(W )−R ≥ ε} > 0, we have

Pr{R′ −R ≥ ε

2
} ≥ Pr{R′ −R ≥ ε/2 and eµ(W )−R ≥ ε}

= Pr{R′ −R ≥ ε

2
| eµ(W )−R ≥ ε}Pr{eµ(W )−R ≥ ε}

≥ Pr{eµ(W )−R′ ≤ ε

2
| eµ(W )−R ≥ ε}Pr{eµ(W )−R ≥ ε}

≥ (1− e− 1
2 ε

2n) Pr{eµ(W )−R ≥ ε}. (E.5)

First inequality holds because taking intersection with another event, does not increase probability.
The second inequality is obtained since when eµ(W )−R ≥ ε and eµ(W )−R′ ≤ ε

2 it is guaranteed
that R′ −R ≥ ε

2 . In the final inequality, Hoeffding’s bound is used, which is possible because W is
independent of S′.

Using Theorem E.1 we have

Pr{gen(W ) ≥ ε} ≤ 32σ2
` (I(S;W ) + 1)

nε2
.
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Figure 7: Conditioning on the super sample.

E.2 Conditioning on Sample Index

Considering Fig. 6, by conditioning on J , and processing S → SJ we have

gen(µ, PSW ) = E[L′ − L]

≤ |E[L′ − L]|

≤ EJ [
√

2σ2
` I(SJ ;W )]

=
1

n

n∑
j=1

√
2σ2

` I(Sj ;W ) (E.6)

≤
√

2σ2
` I(SJ ;W ). (E.7)

Here it is assumed that W is independent of the order of samples in S and thus I(SJ ;W |J) =
I(SJ ;W ). In Section 4.1, we saw that E[L′−L] is one of the equivalent ways to compute gen(µ, PSW ),
and no further corrections is needed.

E.3 Conditioning on the Super Sample

Considering Fig. 7, by conditioning on S(1), S(2) we have

|E[R̄−R]| ≤
√

2σ2
`

n
I(U ;W |S(1), S(2)), (E.8)

and

Pr
{
R̄−R ≥ ε

}
≤ 4σ2

` (I(U ;W |S(1), S(2)) + 1)

nε2
. (E.9)

Note that here we had to use another branch for random variables Ū , S̄ and R̄ to have the required
conditional independence. Moreover, we assumed that the input distribution µ is continuous, thus
S(1) ∪ S(2) is a set of 2n distinct random variables. As a result, when S(1) ∪ S(2) is given, knowing
S is the same as knowing U and I(S;W |S(1), S(2)) = I(U ;W |S(1), S(2)). Also note that the
discussion on Section 4.1 demonstrated that the distribution of R and R′ is the same as in Section E.1.
Next theorem shows the relation between the obtained bounds and generalization error.
Theorem E.2. In the setting represented in Fig. 7, we have

gen(µ, PSW ) = 2E[R̄−R]. (E.10)
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Moreover, if zero-one loss is used and N ≥ 64
ε2 , we have

Pr{gen(W ) ≥ ε} ≤ 4× I(U ;W |S(1), S(2)) + 1

n(ε/8)2
(E.11)

Proof. Define eµ(W ) = EXY [`(W, (X,Y ))] and eµ̂(W ) = 1
2n

∑
(xi,yi)∈S(1),S(2) `(W, (xi, yi)).

Note that eµ̂(W ) = 1
2 (R+R′). For expectation of generalization gap, we have

gen(µ, PSW ) = E[R′ −R]

= E[2(eµ̂(W ) −R)

= 2E[R̄−R], (E.12)

where final equality is due to the fact that R̄ is an unbiased estimator for eµ̂(W ), calculated using n
samples from µ̂.

For the tail bound we have

Pr{gen(W ) ≥ ε} ≤ 2 Pr{R′ −R ≥ ε/2}
= 2 Pr{eµ̂(W ) −R ≥ ε/4}
= 2 Pr{eµ̂(W ) − R̄) + (R̄−R) ≥ ε/4}
≤ 2 Pr{eµ̂(W ) − R̄ ≥ ε/8}+ Pr{R̄−R ≥ ε/8}

≤ 2
(

2e−2n( ε8 )2 + Pr{R̄−R ≥ ε/8}
)

(E.13)

First inequality is based on Theorem E.1. The next equality is based on the algebraic relation
eµ̂(W ) = 1

2 (R + R′). In second inequality we used union bound and the mathematical relation
A + B ≥ c ⇒ (A ≥ c

2 ) ∨ (B ≥ c
2 ). In third inequality, Hoeffding’s bound for sampling without

replacement is used. Now note that for zero-one loss σ` = 1/2 and by using (E.9), we have

Pr
{
R̄−R ≥ ε/8

}
≤ I(U ;W |S(1), S(2)) + 1

n(ε/8)2
. (E.14)

On the other hand, when N ≥ 64
ε2 we also have

2e−2n( ε8 )2 ≤ 1

n(ε/8)2
. (E.15)

This inequality can be verified for N = 64
ε2 . Which means that it is also valid for larger N , because

l.h.s approaches zero with exponential rate while the r.h.s has slower rate of 1
n .

Finally, we have

2e−2n( ε8 )2 + Pr{R̄−R ≥ ε/8} ≤ 2× I(U ;W |S(1), S(2)) + 1

n(ε/8)2
, (E.16)

which concludes the proof.

E.4 Conditioning on the Super Sample and Index

Considering Fig. 6, by conditioning on J, S(1), S(2), and processing S → SJ we have

|E[L̄− L]| ≤ EJ [
√

2σ2
` I
J(UJ ;W |S(1), S(2))] (E.17)

≤
√

2σ2
` I(UJ ;W |S(1), S(2), J) (E.18)

Note that the same argument which was used in Theorem E.2, can be used for datasets with one
sample to show that gen(µ, PSW ) = 2E[L̄− L].
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Figure 8: Conditioning on the super sample and index.

F Proof of Theorem 6

Definition 1 (Separable process). The random process {Xt}t∈T is called separable if there is a
countable set T0 ⊆ T such that Xt ∈ lim s→t

s∈T0

Xs for all t ∈ T a.s., where x ∈ lim s→t
s∈T0

xs means

that there is a sequence (sn) in T0 such that sn → t and xsn → x.

Theorem 6. Assume that XW = {
√
ngen(w)}w∈W is a separable subgaussian process on the

bounded metric space (W, d) and the learned hypothesis W is a deterministic function of XW .
Consider the sequence of functions (Πk)∞k=k1(W) where k1(W) is the largest integer that satisfies
2−(k1(W)−1) ≥ diam(W), and for all k ≥ k1, Πk :W →W is a function satisfying d(w,Πk(w)) ≤
2−k;∀w ∈ W . Define W̃k = Πk(W ), we have

gen(µ, PSW ) ≤ 1√
n

6
√

2

∞∑
k=k1(W)

2−k
√
I(W̃k;S). (F.1)

Proof. This result is based on Theorem 11 of [3]. Here it is restated using notations used in current
paper.

Theorem F.1. Assume that XW = {Xw}w∈W is a separable subgaussian process on the bounded
metric space (W, d). Consider the sequence of functions (Πk)∞k=k1(W) where k1(W) is the largest
integer that satisfies 2−(k1(W)−1) ≥ diam(W), and for all k > k1, Πk : W → W is a function
satisfying d(w,Πk(w)) ≤ 2−k;∀w ∈ W . Define W̃k = Πk(W ) for k ≥ k1 and W̃k1−1 = w0 for
an arbitrary w0 ∈ W . We have

E[XW ] ≤ 3
√

2

∞∑
k=k1(W)

2−k
√
I(W̃k−1, W̃k;XW). (F.2)

Theorem F.1 is stated for a general random process. In Theorem 6, we usedXW = {
√
ngen(w)}w∈W .

Moreover, knowing S, the values {
√
ngen(w)}w∈W are all deterministically calculated. Thus, by

data processing inequality I(W̃k−1, W̃k;XW) ≤ I(W̃k−1, W̃k;S). Now the only remained part is
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to remove the dependence in W̃k−1 without resorting to the nested partitioning. We have

E[XW ] ≤ 3
√

2

∞∑
k=k1

2−k
√
I(W̃k−1, W̃k;XW)

= 3
√

2

∞∑
k=k1

2−k
√
I(W̃k;XW) + I(W̃k−1;XW |W̃k)

≤ 3
√

2

∞∑
k=k1

2−k
√
I(W̃k;XW) + I(W̃k−1;XW) (F.3)

≤ 3
√

2(

∞∑
k=k1

2−k
√
I(W̃k;XW) +

∞∑
k=k1

2−k
√
I(W̃k−1;XW)) (F.4)

≤ 3
√

2(

∞∑
k=k1

2−k
√
I(W̃k;XW) +

∞∑
k=k1−1

2−(k+1)

√
I(W̃k;XW))

≤ 3
√

2(

∞∑
k=k1

2−k
√
I(W̃k;XW) +

∞∑
k=k1−1

2−k
√
I(W̃k;XW))

≤ 6
√

2

∞∑
k=k1

2−k
√
I(W̃k;XW). (F.5)

Inequality (F.3) is valid based on Theorem 4 because W̃k−1 ⊥⊥ W̃k|XW (which is a consequence
of the deterministic relation between W and XW ). In (F.4) we used the mathematical relation√
a+ b ≤

√
a+
√
b;∀a, b ∈ R+. In final inequality we used I(w0;XW) = 0, because w0 is a

deterministic value.

G Proof of theorem 7

Theorem 7. SupposeW has VC-dimension d(vc)(W) and `(w, (x, y)) = 1(w(x) 6= y). There is a
universal constant C such that the following bound holds on RU (D) defined in (28)

RU (D) ≤ Cd(vc)(W) log(
C

D
). (G.1)

Proof. Note that IS
(1)S(2)

(W̃k, S) ≤ H(W̃k), where H(W̃k) is the entropy of random variable W̃k

and is bounded by logarithm of number of possible values it takes. A possible mapping for producing
W̃ is to use centers of a D-covering. Thus,

RS
(1)S(2)

(D) ≤ logN(W, dS
(1)S(2)

, D), (G.2)

where N(W, dS
(1)S(2)

, D) is the covering number of (W, d) at the scale D. Recall that
dS

(1)S(2)

(w,w′) = 2 ‖w − w′‖L2(µ̂). Here µ̂ is the empirical distribution of the superset and

‖w − w′‖L2(µ̂) =

 1

n

n∑
j=1

(w(xj)− w′(xj))
2

1/2

. (G.3)

Now we use the following theorem which is based on [10].

Theorem G.1 (Dudley [10]). There is a universal constant C such that

sup
µ
N(W, ‖.‖L2(µ) , D) ≤

(
C

D

)Cd(vc)(W)

; ∀D < 1.

Using this theorem with inequality (G.2) completes the proof.
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