
A Additional example

This example (see Figure 3) builds on the classical prosecutor/judge game by Kamenica and Gentzkow [23]
described in Section 2.2. Here, the judge has two possible types. A judge of type 1 gets payoff 1 for a just decision,
and 0 otherwise. A judge of type 2 has a worse perception of acquitting a guilty defendant, for which she gets
−1. In this case, the computation of best-response regions is more involved because different judge’s types yield
different boundaries on the space of posteriors. Specifically, by Equation (4), Ŵ is the result of the intersection
between the simplex ∆Ξ̂ and the closed half-spaces specified by [ξ1|ξ2|ξ3|ξ4] ·w ≥ µ. The vertices of the resulting
polytope are w1 = (3/10, 0, 0, 7/10)>, w2 = (0, 9/10, 0, 1/10)>, and w3 = (0, 0, 3/5, 2/5)>. Then, the new
sender’s action space can be restricted to W ? = {w1,w2,w3}. 9
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Figure 3: Left: A prosecutor/judge game with two types. When the judge is of type 2 she has a worse perception of acquitting a
guilty defendant. Center: A visual depiction of ΞkA and ΞkC for each possible type k ∈ {1, 2}. When k = 2, the judge is less
inclined towards acquitting and, therefore, the best-response boundary is ξ4. When k = 1 (resp., k = 2) and the posterior is
ξ2 (resp., ξ4), the judge is indifferent between acquitting and convicting the defendant. Right: Best-response regions for the
possible joint actions. When a = (C,A) we have Ξa = ∅ because there is no posterior for which A is a best response for a
receiver of type 1, and C is a best response for a receiver of type 2. We have Ξ̂ = {ξ1, ξ2, ξ3, ξ4}.

B Proofs omitted from Section 4

Theorem 1. For every 0 ≤ α < 1, it is NP-hard to compute an α-optimal solution to OPT-SIGNAL.

Proof. In order to prove Theorem 1, we resort to a result by Guruswami and Raghavendra [21] (see Theorem 5
below), which is about the following promise problem related to the satisfiability of a fraction of linear equations
with rational coefficients and variables restricted to the hypercube.

Definition 3 (LINEQ-MA(1 − ζ, δ) by Guruswami and Raghavendra [21]). For any two constants ζ, δ ∈ R
satisfying 0 ≤ δ ≤ 1 − ζ ≤ 1, LINEQ-MA(1 − ζ, δ) is the following promise problem: Given a set of linear
equations Ax = c over variables x ∈ Qnvar , with coefficients A ∈ Qneq×nvar and c ∈ Qnvar , distinguish between the
following two cases:

• there exists a vector x̂ ∈ {0, 1}nvar that satisfies at least a fraction 1− ζ of the equations;

• every possible vector x ∈ Qnvar satisfies less than a fraction δ of the equations.

Theorem 5 (Guruswami and Raghavendra [21]). For all valid ζ, δ > 0, LINEQ-MA(1− ζ, δ) is NP-hard.

We introduce a reduction from LINEQ-MA(1− ζ, δ) to OPT-SIGNAL, showing the following:

• Completeness: If an instance of LINEQ-MA(1− ζ, δ) admits a 1− ζ fraction of satisfiable equations when
variables are restricted to lie the hypercube {0, 1}nvar , then an optimal solution to OPT-SIGNAL provides
the sender with an expected utility at least of 1− 2ζ;

9The polytopes were computed using Polymake, a tool for computational polyhedral geometry [3, 20].
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• Soundness: If at most a δ fraction of the equations can be satisfied, then an optimal solution to OPT-SIGNAL
has sender’s expected utility at most δ.

Since ζ and δ can be arbitrary (with 0 ≤ δ ≤ 1− ζ ≤ 1), the two properties above immediately prove the result.
In the rest of the proof, given a vector of variables x ∈ Qnvar , for i ∈ [nvar], we denote with xi the component
corresponding to the i-th variable. Similarly, for j ∈ [neq], cj is the j-th component of the vector c, whereas, for
i ∈ [nvar] and j ∈ [neq], the (j, i)-entry of A is denoted by Aji.

Reduction As a preliminary step, we normalize the coefficients by letting Ā := 1
τA and c̄ := 1

τ c, where we
let τ := 2 max

{
maxi∈[nvar],j∈[neq] Aji,maxj∈[neq] cj , n

2
var

}
. It is easy to see that the normalization preserves the

number of satisfiable equations. Formally, the number of satisfied equations of Ax = c is equal to the number of
satisfied equations of Āx̄ = c̄, where x̄ = 1

τ x. For every variable i ∈ [nvar], we define a state of nature θi ∈ Θ.
Moreover, we introduce an additional state θ0 ∈ Θ. The prior distribution µ ∈ int(∆Θ) is defined in such a way that
µθi = 1

n2
var

for every i ∈ [nvar], while µθ0 = nvar−1
nvar

(notice that
∑
θ∈Θ µθ = 1). We define a receiver’s type kj ∈ K

for each equation j ∈ [neq] (recall that the distribution over receiver’s types ρ ∈ ∆K is uniform by definition of
OPT-SIGNAL). The receiver has three actions available, namely A := {a0, a1, a2}, whereas, for every kj ∈ K, the
utilities of type kj are ukjθi (a0) = 1

2 , ukjθi (a1) = 1
2−Āji+ c̄j , and ukjθi (a2) = 1

2 +Āji− c̄j for every i ∈ [nvar], while

u
kj
θ0

(a0) = 1
2 , ukjθ0 (a1) = 1

2 + c̄j , and ukjθ0 (a2) = 1
2 − c̄j . Finally, the sender’s utility is 1 when the receiver plays

a0, while it is 0 otherwise, independently of the state of nature. Formally, usθ(a0) = 1 and usθ(a1) = usθ(a2) = 0
for every θ ∈ Θ.

Completeness Suppose there exists a vector x̂ ∈ {0, 1}nvar such that at least a fraction 1− ζ of the equations in
Ax̂ = c are satisfied. Let X1 ⊆ [nvar] be the set of variables i ∈ [nvar] with xi = 1, while X0 := [nvar]\X1. Given
the definition of Ā and c̄, there exists a vector x̄ ∈ {0, 1

τ }
nvar such that at least a fraction 1− ζ of the equations in

Āx̄ = c̄ are satisfied, and, additionally, x̄i = 1
τ for all the variables in i ∈ X1, while x̄i = 0 whenever i ∈ X0.

Let us consider an (indirect) signaling scheme φ : Θ → ∆S defined for the set of signals S := {s1, s2}. Let
q := nvar(nvar−1)

τ−|X1| . For every i ∈ [nvar], we define φθi(s1) = q and φθi(s2) = 1− q if i ∈ X1, while φθi(s1) = 0 and
φθi(s2) = 1 otherwise. Moreover, we let φθ0(s1) = 1 and φθ0(s2) = 0. Now, let us take the receiver’s posterior

ξ1 ∈ ∆Θ induced by signal s1. Let h :=
q

n2
var∑

i∈X1
q

n2
var

+nvar−1
nvar

. Then, using the definition of ξ1, it is easy to check that

ξ1
θi

= h for every i ∈ X1, ξ1
θi

= 0 for every i ∈ X0, while ξ1
θ0

=
nvar−1
nvar∑

i∈X1
q

n2
var

+nvar−1
nvar

= 1− h
∣∣X1

∣∣. Next, we prove

that given the posterior ξ1 at least a fraction 1− ζ of the receiver’s types has action a0 as a best response, implying
that the expected utility of the sender is equal to 1

n

∑
k∈K u

s(φ, k) ≥ n−1
n (1− ζ) ≥ 1 − 2ζ, which holds for n

large enough. For each satisfied equality j ∈ [neq] in Āx̄ = c̄, the receiver of type kj ∈ K experiences a utility of∑
θ∈Θ ξ

1
θu

kj
θ (a0) = 1

2 by playing action a0. Instead, the utility she gets by playing a1 is defined as follows:∑
θ∈Θ

ξ1
θu

kj
θ (a1) =

∑
i∈X1

h

(
1

2
− Āji + c̄j

)
+ ξ1

θ0

(
1

2
+ c̄j

)
=

= h
∣∣X1

∣∣ (1

2
+ c̄j

)
− h

∑
i∈X1

Āji +
(
1− h

∣∣X1
∣∣)(1

2
+ c̄j

)
=

=
1

2
+ c̄j − h

∑
i∈X1

Āji =
1

2
+ c̄j −

1

τ

∑
i∈X1

Āji =
1

2
,

where the second to last equality holds since h = 1
τ (by definition of h and q), while the last equality follows from

the fact that the j-th equation is satisfied, and, thus, 1
τ

∑
i∈X1 Āji = c̄j (recall that x̄i = 1

τ for all i ∈ X1). Using
similar arguments, we can write

∑
θ∈Θ ξ

1
θu

kj
θ (a2) = 1

2 , which concludes the completeness proof.

Soundness Suppose, by contradiction, that there exists a signaling scheme φ : Θ → ∆S providing the sender
with an expected utility greater than δ. This implies, by an averaging argument, that there exists a signal inducing
a posterior ξ ∈ ∆Θ in which at least a fraction δ of the receiver’s types best responds by playing action a0. Let
K1 ⊆ K be the set of such reviver’s types. For every receiver’s type kj ∈ K, it holds

∑
θ∈Θ ξθu

kj
θ (a0) = 1

2 .
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Moreover, it is the case that:∑
θ∈Θ

ξθu
kj
θ (a1) =

∑
i∈[nvar]

ξθi

(
1

2
− Āji + c̄j

)
+ ξθ0

(
1

2
+ c̄j

)
=

1

2
+ c̄j −

∑
i∈[nvar]

ξθiĀji.

Similarly, it holds: ∑
θ∈Θ

ξθu
kj
θ (a2) =

1

2
− c̄j +

∑
i∈[nvar]

ξθiĀji.

By assumption, for every type kj ∈ K1, it is the case that
∑
θ∈Θ ξθu

kj
θ (a0) ≥

∑
θ∈Θ ξθu

kj
θ (a1), which implies that

c̄j −
∑
i∈[nvar]

ξθiĀji ≤ 0, whereas
∑
θ∈Θ ξθu

kj
θ (a0) ≥

∑
θ∈Θ ξθu

kj
θ (a2), implying −c̄j +

∑
i∈[nvar]

ξθiĀji ≤ 0.
Thus,

∑
i∈[nvar]

ξθiĀji = c̄j for every j ∈ [neq] such that kj ∈ K1 and the vector x̂ ∈ Qnvar with x̂i = ξθi for all
i ∈ [nvar] satisfies at least a fraction δ of the equations, reaching a contradiction.

C Proofs omitted from Section 5

Lemma 1. For every sequence of receiver’s types k = {kt}t∈[T ], it holds

max
w∈W

T∑
t=1

us(w, kt) = max
w?∈W?

T∑
t=1

us(w?, kt).

Proof. The idea to prove the lemma is the following: any posterior distribution ξ in supp(w) can be represented as
the convex combination of elements of Ξ̂. We denote such convex combination by wξ ∈ ∆Ξ̂. We define a new
signaling scheme w? ∈ ∆Ξ̂ as follows:

w?ξ′ :=
∑

ξ∈supp(w):

ξ′∈supp(wξ)

wξw
ξ
ξ′ for each ξ′ ∈ Ξ̂. (6)

Since w is consistent (i.e., w ∈W ) we have by construction that w? is consistent, and therefore w? ∈ Ŵ . Finally,
we show that w? guarantees to the sender an expected utility which is greater than or equal to that achieved via
w. The crucial point here is showing that whenever the decomposition over Ξ̂ involves a vertex (i.e., a posterior)
where the receiver is indifferent between two or more actions, her/his choice does not damage the sender. This
happens at the boundaries of best-response regions (see, e.g., what happens at ξ2 and ξ4 in the example of Figure 3).
The sender’s expected utility is a linear function of the signaling scheme w?. Therefore, the sender can limit her
attention to W ?, since her/his maximum expected utility is attained at one of the vertices of Ŵ .

Consider a posterior ξ ∈ Ξ and let a = {bkξ}k∈K (i.e., a is the tuple specifying the best-response action under
posterior ξ for each receiver’s type k). Tuple a defines polytope Ξa ⊆ Ξ. By Carathéodory’s theorem, any ξ ∈ Ξa
is the convex combination of a finite number of points in Ξa. Specifically, there exists wξ ∈ ∆V (Ξa) such that, for
each θ ∈ Θ,

∑
ξ′∈V (Ξa)

wξ
ξ′ξ
′
θ = ξθ.

Let w ∈ Ŵ (i.e., w is consistent). By following Equation (6), we define a distribution w? such that, for each
ξ′ ∈ Ξ̂,

w?ξ′ :=
∑

ξ∈supp(w):

ξ′∈supp(wξ)

wξw
ξ
ξ′ .

By construction, w? is a well-defined convex combination of elements of Ξ̂. Moreover, since w is consistent, the
same holds true for w?, which implies w? ∈ Ŵ .

Fix a type k ∈ K and a posterior ξ ∈ Ξ, and let a be defined as the tuple specifying the best response under ξ for
each k. At each posterior ξ′ ∈ V (Ξa), the receiver plays bkξ′ . The following holds:

bkξ′ ∈ arg max
a′∈Bk

ξ′

∑
θ∈Θ

ξ′θu
s
θ(a
′) ≥

∑
θ∈Θ

ξ′θu
s
θ(b

k
ξ), (7)
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where the inequality holds because, by construction, bkξ ∈ Bkξ′ . Therefore, we can show that the sender’s expected
utility when decomposing ξ as wξ ∈ ∆V (Ξa) is guaranteed to be greater than or equal to the expected utility under
ξ. Specifically, ∑

ξ′∈V (Ξa)

wξ
ξ′u

s(ξ′, k) =
∑

ξ′∈V (Ξa)

wξ
ξ′

∑
θ∈Θ

ξ′θu
s
θ(b

k
ξ′)

≥
∑

ξ′∈V (Ξa)

wξ
ξ′

∑
θ∈Θ

ξ′θu
s
θ(b

k
ξ) (By Equation (7))

=
∑
θ∈Θ

ξθu
s
θ(b

k
ξ) (By definition of wξ)

= us(ξ, k).

Let w ∈ W be the best-in-hindsight signaling scheme. We show that, for any sequence of receiver’s types
k = {kt}t∈[T ], the sender’s expected utility achieved via w is matched by the expected utility guaranteed by
w? ∈ Ŵ defined as in Equation (6). We have∑

t∈[T ]

∑
ξ∈supp(w?)

w?ξu
s(ξ, kt) =

∑
t∈[T ]

∑
ξ∈supp(w?)

∑
ξ′∈supp(w):

ξ∈supp(wξ′ )

wξ′w
ξ′

ξ u
s(ξ, kt)

=
∑
t∈[T ]

∑
ξ′∈supp(w)

wξ′

∑
ξ∈supp(wξ′ )

wξ′

ξ u
s(ξ, kt)

≥
∑
t∈[T ]

∑
ξ′∈supp(w)

us(ξ′, kt)

=
∑
t∈[T ]

us(w, kt).

Finally, since
∑
t∈[T ] u

s(w?, kt) =
∑
t∈[T ]

∑
ξ∈supp(w?) w

?
ξu

s(ξ, kt) is a linear function in the signaling scheme

w?, its maximum is attained at a vertex of Ŵ . This concludes the proof.

Lemma 2. The size of W ? is |W ?| ∈ O
(
(nm2 + d)d

)
.

Proof. By definition, for any a = (ak)k∈K, Wa ⊆ Ξ. Then, each w ∈ V (Wa) is an extreme point of a (d − 1)-
dimensional convex polytope, and therefore the point lies at the intersection of (d − 1) linearly independent
defining half-spaces of the polytope. Now, to provide a bound for |Ξ̂| we first compute the number of half-spaces
separating best-response regions corresponding to different actions. For each type k ∈ K, there are at most

(
m
2

)
half-spaces each separating W k

a and W k
a′ for two actions a 6= a′. Then, in order to take all the incentive constraints

into account, we have to sum over all possible reveiver’s types, obtaining O(nm2) half-spaces. The set Ξ̂ is
the result of the intersection between the region defined by such half-spaces, and the d constraints defining the
simplex. Each extreme point of the polytope defined by points in Ξ̂ lies at the intersection of d − 1 half-spaces.
Therefore, there are at most

(
nm2+d
d−1

)
∈ O

(
(nm2 + d)d

)
such extreme points. The convex polytope Ŵ is the

result of the intersection between the simplex defined over Ξ̂, which has O
(
(nm2 + d)d

)
extreme points, and d

half-spaces defining consistency constraints. Then, Ŵ has a number of extreme points which is less than or equal to
O
(
(nm2 + d)d

)
.

Theorem 3. Given an online Bayesian persuasion problem with full information feedback, there exists an online
algorithm such that, for every sequence of receiver’s types k = {kt}t∈[T ]:

RT ≤ O

(√
d log(nm2 + d)

T

)
.
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Proof. We employ an arbitrary algorithm satisfying RT ≤ O
(
η
√

log |A|/T
)

with action set A = W ?. Let
w∗ ∈W be the sender-optimal signaling scheme in hindsight. Then,∑

t∈[T ]

E[us(wt, kt)] ≥
∑
t∈[T ]

us(w∗, kt)−O
(√

T log |W ?|
)

≥
∑
t∈[T ]

us(w∗, kt)−O
(√

T log (nm2 + d)d
)

(By Lemma 2)

=
∑
t∈[T ]

us(w∗, kt)−O
(√

Td log (nm2 + d)
)
.

This completes the proof.

D Additional results on the partial information feedback setting

Appendix D.1 reports the proof of Lemma 3, which shows a regret bound for the reduction from partial information
to full information that exploits biased estimators. Appendix D.2 provides a detailed treatment on how Algorithm 1
computes the required sender’s utility estimates. Finally, Appendix D.3 concludes with the proof of Theorem 4.

D.1 Proof of Lemma 3

Lemma 3. Suppose that Algorithm 1 has access to estimators ũsIτ (w) with properties (i) and (ii) for some
constants ι ∈ (0, 1) and η ∈ R, for every signaling scheme w ∈ W ◦ and block Iτ with τ ∈ [Z]. Moreover, let
Z := T 2/3|W}|−2/3η2/3 log1/3 |W ◦|. Then, Algorithm 1 guarantees regret:

RT ≤ O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
+O (ι) .

Proof. In order to prove the desired regret bound for Algorithm 1, we rely on two crucial observations:

• during the exploration phase of each block Iτ with τ ∈ [Z], i.e., the iterations t1, . . . , t|W}|, the algorithm
plays a strategy qt 6= qτ , where qτ is the last strategy recommended by FULL-INFORMATION(·), resulting
in a corresponding utility loss that can be as large as −1 (since the utilities are in the range [0, 1]);

• running the full-information no-regret algorithm (i.e., the sub-procedure FULL-INFORMATION(·)) using
biased estimates of the sender’s utilities (rather than their real values) results in the regret bound being
worsened by only a term that is proportional to the bias ι of the adopted estimators.

In the following, we denote with RZfull the cumulative regret achieved by FULL-INFORMATION(·), where we remark
the fact that each block Iτ simulates a single iteration of the full information setting, and, thus, the number of
iterations for the full-information algorithm is Z rather than T . Formally, we have the following definition:

RZfull := max
w∈W◦

∑
τ∈[Z]

ũsIτ (w)−
∑
τ∈[Z]

∑
w∈W◦

qτwũ
s
Iτ (w),

where we notice that the regret is computed with respect to the estimates ũsIτ (w) of the sender’s average utilities
usIτ (w) experienced in each block Iτ , defined as usIτ (w) = 1

|Iτ |
∑
t∈Iτ u

s(w, kt) for every w ∈ W ◦. We also
remark that the full-information algorithm is run on a subset W ◦ ⊆W ? of signaling schemes, and, thus, the regret
RZfull is defined with respect to them. Moreover, from Section 5, we know that there exists an algorithm satisfying

the regret bound RZfull ≤ O
(
η
√
Z log |W ◦|

)
, where η is the range of the utility values observed by the algorithm

that, in our case, corresponds to the range of the estimates observed by the algorithm, which is limited thanks to
property (ii) of the estimators.

In order to prove the result, we also need the following relation, which holds for every τ ∈ [Z] and signaling scheme
w ∈W ◦: ∑

t∈Iτ

us(w, kt) = |Iτ |usIτ (w) ≥ |Iτ |
(
E[ũsIτ ]− ι

)
=
T

Z

(
E[ũsIτ ]− ι

)
, (8)
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where the first equality holds by definition, the inequality holds thanks to property (i) of the estimators, while the
last equality is given by |Iτ | = T

Z .

Letting U be the sender’s expected utility achieved by playing according to Algorithm 1, the following relations
hold:

1

T
U :=

1

T

∑
τ∈[Z]

∑
t∈Iτ

∑
w∈W◦

qtwu
s(w, kt)

≥ 1

T

∑
τ∈[Z]

∑
w∈W◦

qτw
∑
t∈Iτ

us(w, kt)− |W
}|Z
T

(qt 6= qτ in |W}| iterations and max. loss = −1)

≥ 1

T

∑
τ∈[Z]

∑
w∈W◦

qτw
T

Z

(
E
[
ũsIτ (w)

]
− ι
)
− |W

}|Z
T

(By Equation (8))

=
1

Z

∑
τ∈[Z]

∑
w∈W◦

qτw

(
E
[
ũsIτ (w)

]
− ι
)
− |W

}|Z
T

=
1

Z

∑
τ∈[Z]

∑
w∈W◦

qτwE
[
ũsIτ (w)

]
− ι− |W

}|Z
T

(Since
∑
τ∈[Z]

∑
w∈W◦

qτw = Z, being qτ ∈ ∆W◦ )

=
1

Z
E

∑
τ∈[Z]

∑
w∈W◦

qτwũ
s
Iτ (w)

− ι− |W}|Z
T

=
1

Z
E

[
max
w∈W◦

∑
τ∈Z

ũsIτ (w)−RZfull

]
− ι− |W

}|Z
T

(Definition of RZfull)

≥ 1

Z
max
w∈W◦

∑
τ∈[Z]

E
[
ũsIτ (w)

]
− 1

Z
RZfull − ι−

|W}|Z
T

(Jensen’s inequality)

≥ 1

Z
max
w∈W◦

∑
τ∈[Z]

(
usIτ (w)− ι

)
− 1

Z
RZfull − ι−

|W}|Z
T

(By property (i))

=
1

Z
max
w∈W◦

∑
τ∈[Z]

usIτ (w)− ι− 1

Z
RZfull − ι−

|W}|Z
T

=
1

Z
max
w∈W◦

Z

T

∑
τ∈[Z]

∑
t∈Iτ

us(w, kt)− 1

Z
RZfull − 2ι− |W

}|Z
T

(By def. of usIτ (w) and |Iτ | =
T

Z
)

=
1

T
max
w∈W◦

∑
τ∈[Z]

∑
t∈Iτ

us(w, kt)− 1

Z
RZfull − 2ι− |W

}|Z
T

=
1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)− 1

Z
RZfull − 2ι− |W

}|Z
T

=

≥ 1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)− 1

Z
O
(
η
√
Z log |W ◦|

)
− 2ι− |W

}|Z
T

≥ 1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)−O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
− 2ι− |W

}|1/3η2/3 log1/3 |W ◦|
T 1/3

≥ 1

T
max
w∈W◦

∑
t∈[T ]

us(w, kt)−O

(
|W}|1/3η2/3 log1/3 |W ◦|

T 1/3

)
−O (ι)

By using the definition of the regret RT of Algorithm 1, we get the statement.
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D.2 Details on sender’s average utilities estimation

In the following, we show in details how to compute the estimates needed by Algorithm 1 by using random samples
from a polynomially-sized set W} ⊆ W ?. Let us recall that, during each block Iτ with τ ∈ [Z], Algorithm 1
needs to compute the estimators ũsIτ (w) of usIτ (w) = 1

|Iτ |
∑
t∈Iτ u

s(w, kt) for all the signaling schemes w ∈W ◦
(Line 13). Notice that the set W ◦ ⊆W ? is defined (as shown in Lemma 6) in order to be able to build estimators
with the desired properties (i) and (ii).

As discussed in Section 6, the key insight that allows us to get the required estimates by using only a polynomial
number of random samples is that the utilities to be estimated are not independent. This is because they depend on
the frequencies of the receiver’s actions during bock Iτ , which depend, in turn, on the frequencies of the receiver’s
types. Thus, the goal is to devise estimators for the frequencies of the receiver’s types during each block Iτ . As an
intuition, imagine that the sender commits to a signaling scheme such that each receiver’s type best responds by
playing a different action. Then, by observing the receiver’s action, the sender gets to know the receiver’s type with
certainty. In general, for a given signaling scheme, there might be many different receiver’s types that are better off
playing the same action. In order to handle this problem and build the required estimates of the frequencies of the
receiver’s types, we use insights from the bandit linear optimization literature, and, in particular, we use the concept
of barycentric spanner introduced by Awerbuch and Kleinberg [4].

For every block Iτ with τ ∈ [Z], we let fτ : [0, 1]n → R be a function that, given a vector x = [x1, . . . , xn] ∈
[0, 1]n, returns the sum of the number of times the receiver’s types in K were active during block Iτ , weighted by
the coefficients defined by the vector x. Formally, the following definition holds:

fτ (x) :=
∑
k∈K

xk
∑
t∈Bτ

I{kt = k},

where I{kt = k} is an indicator function that is equal to 1 if and only if it is the case that kt = k, while it is 0
otherwise. Notice that, for a given τ ∈ [Z] and k ∈ K, the term

∑
t∈Bτ I{k

t = k} is a constant, and, thus, the
function fτ is linear. Intuitively, fτ is the key element that allows us to connect the utilities that we need to estimate
with the actual quantities we can estimate through the use of barycentric spanners.

The first crucial step is to restrict the attention to posteriors that can be induced with at least some (‘not too small’)
probability. This ensures that our estimators have a limited range. Given a probability threshold σ ∈ (0, 1), we
denote with Ξ} ⊆ Ξ the set of posteriors that can be induced with probability at least σ by some signaling scheme.
We can verify whether a given posterior ξ ∈ Ξ belongs to Ξ} by solving an LP. Formally, ξ ∈ Ξ} if and only if the
following set of linear equations admits a feasible solution w ∈ ∆Ξ:

wξ ≥ σ (10a)∑
ξ∈Ξ

wξξθ = µθ ∀θ ∈ Θ. (10b)

We defineR as the set of all the tuples a = (ak)k∈K ∈×k∈KA for which there exists a posterior ξ ∈ Ξ} such that,
for every receiver’s type k ∈ K, the action ak specified by the tuple is a best response to ξ for type k. Formally:

R :=
⋃

ξ∈Ξ}

(
b1ξ, . . . , b

n
ξ

)
,

where we recall that bkξ denotes the best response of type k ∈ K under posterior ξ. Intuitively,R is the set of tuples
of receiver’s best responses which result from the posteriors that the sender can induce with probability at least σ. 10

Given a tuple a = (ak)k∈K ∈ R and a receiver’s action a ∈ A, we denote with I(a=a) ∈ {0, 1}n an indicator vector
whose k-th component is equal to 1 if and only if type k ∈ K plays action a in a, i.e., it holds ak = a. Moreover,
we define X as the set of all the indicators vectors; formally, X :=

{
I(a=a) | a ∈ R, a ∈ A

}
.

Since the set X is a finite (and hence compact) subset of the Euclidean space Rn, we can use the following
proposition due to Awerbuch and Kleinberg [4] to introduce the barycentric spanner of X .
Proposition 1 ([4], Proposition 2.2). If X is a compact subset of an n-dimensional vector space V , then there exists
a setH = {h1, ...,hn} ⊆ X such that for all x ∈ X , x may be expressed as a linear combination of elements ofH
using coefficients in [−1, 1]. That is, for all x ∈ X , there exists a vector of coefficients λ = [λ1, . . . , λn] ∈ [−1, 1]n

such that x =
∑
i∈[n] λih

i. The setH is called barycentric spanner of X .

10Let us remark that the sets Ξ} andR depend on the given threshold σ ∈ (0, 1). In the following, for the ease of notation,
we omit such dependence, as the actual value of σ that the two sets refer to will be clear from context.
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In the following, we denote with H := {h1, ...,hn} ⊆ X a barycentric spanner of X . Notice that, since each
element h ∈ H of the barycentric spanner belongs to X by definition, there exist a tuple a ∈ R and a receiver’s
action a ∈ A such that h is equal to the indicator vector I(a=a). Moreover, by definition of R, there exists a

posterior ξ ∈ Ξ} such that the tuple of best responses
(
b1ξ, . . . , b

n
ξ

)
coincides with a.

Next, we describe how Algorithm 1 computes the required estmates. During the exploration phase of block Iτ with
τ ∈ [Z], one iteration is devoted to each element h ∈ H of the barycentric spanner, so as to get an estimate of
fτ (h). During such iteration, the algorithm plays a signaling scheme w ∈ ∆Ξ that is feasible for the LP defined
by Constraints (10) where the posterior ξ ∈ Ξ} is that associated to h. As a result, the set of all such signaling
schemes can be used as W} in Algorithm 1. Moreover, when the induced receiver’s posterior is ξ and the receiver
responds by playing action a, the algorithm sets a variable pτ (h) to the value 1

wξ
, otherwise pτ (h) is set to 0.

The following lemma shows that the variables pτ (h) computed by the algorithm during each block Iτ with τ ∈ [Z]
are unbiased estimates of the values fτ (h).
Lemma 4. For any τ ∈ [Z] and h ∈ H, it holds E [pτ (h) · |Iτ |] = fτ (h).

Proof. First, recall that pτ (h) = 1
wξ

if and only if during the iteration of exploration devoted to h, the induced
receiver’s posterior is ξ and she/he best responds by playing a (otherwise, pτ (h) = 0). Since the iteration is selected
uniformly at random over the block Iτ and the sequence of receiver’s types k = {kt}t∈[T ] is chosen adversarially
before the beginning of the game, we can conclude that also the receiver’s type for that iteration is picked uniformly
at random. Thus, E [pτ (h)] = 1

wξ
·wξ ·P

{
randomly chosen type from Iτ best responds to ξ consistently with h

}
,

where by best responding consistently we mean that the type k ∈ K is such that hk = 1, i.e., she plays action a in a.
By using the definition of fτ (h), we can write the following:

E [pτ (h)] =

∑
k∈K:hk=1 fτ (ek)

|Iτ |
=
fτ (h)

|Iτ |
,

where ek ∈ Rn denotes an n-dimensional vector whose k-th component is 1, while others components are 0.

For any x ∈ X , we let λ(x) = [λ1(x), . . . , λn(x)] ∈ [−1, 1]n be the vector of coefficients representing x with
respect to basisH. Formally, we can write x =

∑
i∈[n] λi(x)hi.

For any posterior ξ ∈ Ξ}, let a[ξ] ∈ R be such that a[ξ] =
(
b1ξ, . . . , b

n
ξ

)
. Then, for each τ ∈ [Z], let us define

ũsIτ (ξ) :=
∑
a∈A

∑
k∈K

λk
(
Ia[ξ]=a

)
pτ
(
hk
)∑
θ∈Θ

ξθu
s
θ(a).

Letting usIτ (ξ) := 1
|Iτ |
∑
t∈τ u

s(ξ, kt) be the sender’s average utility achieved by inducing the receiver’s posterior
ξ ∈ Ξ} during each iteration of block Iτ with τ ∈ [Z], the following lemma shows that ũsIτ (ξ) is an unbiased
estimator of usIτ (ξ), and, additionally, the range in which the estimator values lie is not to large.

Lemma 5. For any posterior ξ ∈ Ξ} and τ ∈ [Z], it holds E
[
ũsIτ (ξ)

]
= usIτ (ξ). Moreover, ũsIτ (ξ) ∈ [−mnσ , mnσ ].

Proof. The first statement follows from the following relations:

E
[
ũsIτ (ξ)

]
= E

[∑
a∈A

∑
k∈K

λk
(
Ia[ξ]=a

)
pτ
(
hk
)∑
θ∈Θ

ξθu
s
θ(a)

]
=
∑
a∈A

∑
k∈K

λk
(
Ia[ξ]=a

)
E
[
pτ
(
hk
)]∑
θ∈Θ

ξθu
s
θ(a)

=
∑
a∈A

∑
θ∈Θ

ξθu
s
θ(a)

∑
k∈K

λk
(
Ia[ξ]=a

)
E
[
pτ
(
hk
)]

=
∑
a∈A

∑
θ∈Θ

ξθu
s
θ(a)

∑
k∈K

λk
(
Ia[ξ]=a

) fτ (hk)
|Iτ |

(By Lemma 4)

=
∑
a∈A

∑
θ∈Θ

ξθu
s
θ(a)

∑
k∈K

fτ
(
Ia[ξ]=a

)
|Iτ |

(By definition of fτ )

= usIτ (ξ),
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where the last equality holds by using again the definition of fτ and re-arranging the terms.

As for the second statement, since λk
(
Ia[ξ]=a

)
∈ [−1, 1],

∑
θ∈Θ ξθu

s
θ(a) ∈ [0, 1], and pτ

(
hk
)
∈
[
0, 1

σ

]
, it is easy

to show that ũsIτ (ξ) ∈ [−mnσ , mnσ ].

In the next lemma, we show that there always exists a best-in-hindsight signaling scheme that uses (i.e., induces
with positive probability) only a small number of posteriors. This is the final step needed to show that the estimators
ũsIτ (ξ) allow to compute slightly biased estimates of the utilities needed by the full-information algorithm.

Lemma 6. Given a sequence of receiver’s types k = {kt}t∈[T ], there always exists a best-in-hindsight signaling

scheme w? ∈ W ? such that the set of posteriors it induces with positive probability
{
ξ ∈ Ξ | w?ξ > 0

}
has

cardinality at most the number of states d.

Proof. Notice that a best-in-hindsight signaling scheme w? ∈W ? can be computed by solving the following LP:

max
w∈∆Ξ

∑
t∈[T ]

∑
ξ∈Ξ

wξu
s(w, kt)

s.t.
∑
ξ∈Ξ

wξξθ = µθ ∀θ ∈ Θ.

Since the LP has d equalities, it always admits an optimal basic feasible solution in which at most d variables wξ

are greater than 0. This concludes the proof.

Then, we define the W ◦ used by Algorithm 1 as the set of signaling schemes w ∈W ? whose support is at most
d, i.e., it is the case that |{ξ ∈ Ξ | wξ > 0}| ≤ d. By definition of W ? and Lemma 6, it is easy to see that a
best-in-hindsight signaling scheme is always guaranteed to be in the set W ◦.

Letting ũsIτ (w) :=
∑

ξ∈Ξ} wξũ
s
Iτ

(ξ) for every w ∈ W ◦ and τ ∈ [Z], the following lemma shows that each
ũsIτ (w) is a biased estimator of the sender’s average utility usIτ (w) in block Iτ , while also providing bounds on the
bias and the range of the estimators. This final result allows us to effectively use the estimators ũsIτ (w) defined
above in Algorithm 1.
Lemma 7. For any signaling scheme w ∈ W ◦ and τ ∈ [Z], it holds usIτ (w) ≥ E

[
ũsIτ (w)

]
≥ usIτ (w) − dσ.

Moreover, it is the case that ũsIτ (w) ∈ [−mnσ , mnσ ].

Proof. By using Lemma 5, it is easy to check that the left inequality in the first statement holds:

usIτ (w) =
∑
ξ∈Ξ

wξu
s
Iτ (ξ) ≥

∑
ξ∈Ξ}

wξu
s
Iτ (ξ) =

∑
ξ∈Ξ}

wξE
[
ũsIτ (ξ)

]
= E

[
ũsIτ (w)

]
.

Moreover, it is the case that:

E
[
ũsIτ (w)

]
=
∑
ξ∈Ξ}

wξE
[
ũsIτ (ξ)

]
=
∑
ξ∈Ξ}

wξu
s
Iτ (ξ) (By Lemma 5)

= usIτ (w)−
∑

ξ∈Ξ\Ξ}

wξu
s
Iτ (ξ) (By definition of usIτ (w))

≥ usIτ (w)−
∑

ξ∈Ξ\Ξ}

wξ (Since usIτ (w) ≤ 1)

≥ usIτ (w)−
∑

ξ∈Ξ\Ξ}

σ (By definition of Ξ}, it must be wξ < σ)

≥ usIτ (w)− dσ (Since w ∈W ◦)

Finally, ũsIτ (w) ∈ [−mnσ , mnσ ] follows from the fact that, by definition, ũsIτ (w) is the weighted sum of quantities
within the range [−mnσ , mnσ ], with the weights sum being at most 1.
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D.3 Proof of Theorem 4

Theorem 4. Given an online Bayesian persuasion problem with partial feedback, there exist W ◦ ⊆W ?, W} ⊆
W ?, and estimators ũsIτ (w) such that Algorithm 1 provides the following regret bound:

RT ≤ O

(
nm2/3d log1/3 (mn+ d)

T 1/5

)
.

Proof. By setting σ := d−2/5T−1/5, it is sufficient to run Algorithm 1 with estimators usIτ (w) for every w ∈W ◦

computed as previously described in this section. Thus, it holds |W}| = n and η = mnd2/5T 1/5. By Theorem 3,
the following holds:

RT ≤ O
(
|W}|1/3η2/3log1/3|W ◦|

T 1/3

)
+O (ι)

= O

(
n1/3

(
mnd2/5T 1/5

)2/3
log1/3 |W ◦|

T 1/3

)
+O

(
d

d2/5T 1/5

)

= O

(
nm2/3d4/15

(
d log

(
m2n+ d

))1/3
T 1/5

)
+O

(
d3/5

T 1/5

)

= O

(
nm2/3d3/5 log1/3 (mn+ d)

T 1/5

)
.

This concludes the proof.
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