
A Additional Notation

A controller is a mapping π : X × {0, . . . H − 1} → U . Given a instantaneous cost function
c : X × U → R, we define the cost (or the “cost-to-go” ) of a policy as:

Jπ(x; c,W ) = E

[
H−1∑
h=0

c(xh, uh)
∣∣∣π, x0 = x,W

]
where the expectation is under trajectories sampled under π starting from x0 in model parameterized
by W . The “cost-to-go” at state x at time h ∈ {0, . . . H − 1} is denoted by:

Jπh (x; c,W ) = E

[
H−1∑
`=h

c(x`, u`)
∣∣∣π, xh = x

]
.

When clear from context, we let the episode t index the policy, e.g. we write J t(x; c) to refer to
Jπ

t

(x, c). Subscripts refer to the timestep within an episode and superscripts index the episode
itself, i.e. φth will refer to the random vector which is the observed features during timestep h within
episode t. We letHt denote the history up to the beginning of episode t.

Also, ‖x‖2M := x>Mx for a vector x and a matrix M .

B Lower Confidence Bound based Analysis

In this section, we provide proofs for the two main theorems: Theorem 3.2 and Theorem 3.8.

B.1 Simulation Analysis

We derive a novel self-bounding simulation lemma (Lemma B.3) in this section, using the Optional
Stopping Theorem.
Lemma B.1 (Difference Lemma). Fix a policy π, cost function c, and model W . Consider any
trajectory {xh, uh}H−1

h=0 where uh = π(xh) for all h ∈ {0, . . . H − 1}. For h ∈ {0, . . . H − 1}, let
Ĵh refer to the realized cost-to-go on this trajectory, i.e.

Ĵh =

H−1∑
τ=h

c(xτ , uτ ).

For all τ ∈ {1, . . . H − 1}, we have that:

Ĵ0 − Jπ0 (x0; c,W ) = Ĵτ − Ex′τ∼P (·|W,xτ−1,uτ−1)J
π
τ (x′τ ; c,W )

+

τ−1∑
h=1

Jπh (xh; c,W )− Ex′h∼P (·|W,xh−1,uh−1)J
π
h (x′h; c,W )

Proof. Starting from h = 0, using u0 = π(x0), we have:

Ĵ0 − Jπ0 (x0; c,W ) = Ĵ1 − Ex′1∼P (·|W,x0,u0)J
π
1 (x′1; c,W )

= Ĵ1 − Jπ1 (x1; c,W ) + Jπ1 (x1; c,W )− Ex′1∼P (·|W,x0,u0)J
π
` (x′1; c,W )

= Ĵ2 − Ex′2∼P (·|x1,u1,W )J
π
2 (x′2; c,W )

+ Jπ1 (x1; c,W )− Ex′1∼P (·|W,x0,u0)J
π
1 (x′1; c,W ).

Recursion completes the proof, where, at each step of the recursion, we add and subtract
Jπt (xt; c,W ) and apply the same operation on the term Ĵt − Jπt (xt; c,W );

Lemma B.2 (“Optional Stopping” Simulation Lemma). Fix a policy π, cost function c, and model
W . Consider the stochastic process over trajectories, where {xh, uh}Hh=0 ∼ π is sampled with
respect to the model W ?. With respect to this stochastic process, define a stopping time τ as:

τ = min {h ≥ 0 : Jπh (xh; c,W ) ≥ Jπh (xh; c,W ?)} .
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Define the random variable J̃πh (xh) as:

J̃πh (xh) = min {Jπh (xh; c,W ), Jπh (xh; c,W ?)} .
We have that:
Jπ0 (x0; c,W ?)− Jπ0 (x0; c,W )

≤ E

[
H−1∑
h=0

1{h < τ}
(
Ex′h+1∼P (·|W?,xh,uh)J̃

π
h+1(x′h+1)− Ex′h+1∼P (·|W,xh,uh)J̃

π
h+1(x′h+1)

)]
where the expectation is with respect to {xh, uh}Hh=0 ∼ π sampled with respect to the model W ?.

Proof. Our filtration, Fh, at time h will be the previous noise variables, i.e.
Fh := {ε0, ε1 . . . εh−1},

and note that {x1, u1, c(x1, u1), . . . xh, uh, c(xh, uh)} is fully determined by Fh. Also, observe that
τ is a valid stopping time with respect to the filtration Fh.

Define:
Mh = E

[
Ĵ0 − J?(x0; c,W ) | Fh

]
which is a Doob martingale (with respect to our filtration), and so E[Mh+1|Fh] = Mh. By Doob’s
optional stopping theorem,

E
[
Ĵ0 − J?(x0; c,W )

]
= E[Mτ ] = E

[
E
[
Ĵ0 − J?(x0; c,W ) | Fτ

]]
. (B.1)

The proof consists in bounding Mτ .

Consider an Fτ , which is stopped at the random time τ . By Lemma B.1,

Mτ = E
[
Ĵ0 − J?(x0; c,W ) | Fτ

]
= Jτ (xτ ; c,W ?)− Ex′τ∼P (·|W,xτ−1,uτ−1)Jh(x′τ ; c,W )

+

τ−1∑
h=1

(
Jh(xh; c,W )− Ex′h∼P (·|W,xh−1,uh−1)Jh(x′h; c,W )

)
=

τ∑
h=1

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)Jh(x′h; c,W )

)
≤

τ∑
h=1

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
=

H∑
h=1

1(h ≤ τ)
(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
.

where the third equality follows using the definition of τ which implies that Jτ (xτ ; c,W ?) =

J̃τ (xτ ) and that Jh(xh; c,W ) = J̃h (xh) for h < τ ; and the inequality is due to the definition
of J̃ .

Using this bound on Mτ and Equation B.1, we have:

E
[
Ĵ0 − J?(x0; c,W )

]
≤

H∑
h=1

E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)]
.

For the h-th term, observe:

E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

) ]
= E

[
E
[
1(h ≤ τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
| Fh−1

] ]
= E

[
E
[
1(h− 1 < τ)

(
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h)

)
| Fh−1

] ]
= E

[
1(h− 1 < τ)E

[
J̃h (xh)− Ex′h∼P (·|W,xh−1,uh−1)J̃h (x′h) | Fh−1

] ]
= E

[
1(h− 1 < τ)

(
Ex′h∼P (·|W?,xh−1,uh−1)J̃h(x′h)− Ex′h∼P (·|W,xh−1,uh−1)J̃h(x′h)

) ]
.
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where the second equality uses that 1(h ≤ τ) = 1(h − 1 < τ), and the third equality uses that
1(h− 1 < τ) is measurable with respect to Fh−1 = {ε0, . . . εh−2}. This completes the proof.

The previous lemma allows us to bound the difference in cost under two different models, i.e.
Jπ(x; c,W ?) − Jπ(x; c,W ), in terms of the second moment of the cumulative cost itself, i.e. in
terms of V π(x; c,W ?), where

V π(x0; c,W ?) := E

(H−1∑
h=0

c(xh, uh)

)2

| x0, π,W
?

 .
Lemma B.3 (Self-Bounding, Simulation Lemma). For any policy π, model parameterization W ,
and non-negative cost c, and for any state x0, we have:

Jπ(x0; c,W ?)− Jπ(x0; c,W )

≤
√
HV π(x0; c,W ?)

√√√√E

[
H−1∑
h=0

min

{
1

σ2
‖(W ? −W )φ(xh, uh)‖22 , 1

}]
.

where the expectation is with respect to π in W ? starting at x0.

Proof. For the proof, it is helpful to define the random variables:

∆h = Ex′h+1∼P (·|W?,xh,uh)

[
J̃h+1(x′h+1)

]
− Ex′h+1∼P (·|W,xh,uh)

[
J̃h+1(x′h+1)

]
Ah := Ex′h+1∼P (·|W?,xh,uh)

[
J̃h+1(x′h+1)2

]
By Lemma C.2 (which bounds the difference in means under two Gaussian distributions, using the
chi-squared distance function), we have:

∆h ≤
√

Exh+1∼P (·|W?,xh,uh)

[
J̃h+1(xh+1)2

]
min

{
1

σ
‖(W ? −W )φ(xh, uh)‖2 , 1

}
=
√
Ah min

{
1

σ
‖(W ? −W )φ(xh, uh)‖2 , 1

}
.

From Lemma B.2, we have:

Jπ0 (x0; c,W ?)− Jπ0 (x0; c,W ) ≤
H−1∑
h=0

E [1(h < τ)∆h]

≤
H−1∑
h=0

E
[√

Ah min

{
1

σ
‖(W ? −W )φ(xh, uh)‖2 , 1

}]

≤
H−1∑
h=0

√
E [Ah]

√
E
[
min

{
1

σ2
‖(W ? −W )φ(xh, uh)‖22 , 1

}]

≤

√√√√E

[
H−1∑
h=0

Ah

]√√√√E

[
H−1∑
h=0

min

{
1

σ2
‖(W ? −W )φ(xh, uh)‖22 , 1

}]
,

where in the second inequality we use E[ab] ≤
√

E[a2]E[b2] and the Cauchy-Schwartz inequality
in the last inequality. For the first term, observe that:

E [Ah] = E
[
Ex′h+1∼P (·|W?,xh,uh)

[
J̃h+1(x′h+1)2

]]
= E

[
J̃h+1(xh+1)2

]
≤ E

[
Jh+1(xh+1)2

]
= E

(E[ H−1∑
`=h+1

c(x`, u`) | xh+1

])2
 ≤ E

( H−1∑
`=h+1

c(x`, u`)

)2


≤ E

(H−1∑
`=0

c(x`, u`)

)2
 = V π
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where the first inequality uses the definition of J̃ ; the second inequality follows from Jensen’s in-
equality; and the last inequality follows from our assumption that the instantaneous costs are non-
negative. The proof is completed by substitution.

B.2 Regret Analysis (and proofs of Theorem 3.2 and Theorem 3.8)

Throughout, let Et,cb be the event that W ? ∈ BALLt holds at episode t.
Lemma B.4 (Per-episode Regret Lemma). Suppose Assumptions 1 and 2 hold. Let H<t be the
history of events before episode t. For the LC3, we have:

1(Et,cb)
(
J t(x0; ct)− J?(x0; ct)

)
≤

√
HV t(x0; c,W ?)

(
4βt

σ2
+H

)√√√√E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t].
Note that the expectation is with respect to the trajectory of LC3, i.e. it is under πt in W ?.

Proof. Suppose Etcb holds, else the lemma is immediate. By construction of the LC3 algorithm (the
optimistic property) and by the self-bounding, simulation lemma (Lemma B.3), we have:

J t(x0; ct,W ?)− J?(x0; ct,W ?) ≤ J t(x0; ct,W ?)− J t(x0; ct, Ŵ t)

≤
√
HV t(x0; c,W ?)

√√√√E

[
H−1∑
h=0

min

{
1

σ2

∥∥∥(W ? − Ŵ t
)
φth

∥∥∥2

2
, 1

} ∣∣∣H<t].
where the expectation is with respect to the trajectory of LC3, i.e. of πt in W ?.

For W ? ∈ BALLt, we have∥∥∥(Ŵ t −W ?
)
φth

∥∥∥
2
≤
∥∥∥(Ŵ t −W ?

)
(Σt)1/2

∥∥∥
2

∥∥∥(Σt)−1/2φth

∥∥∥
2

≤
(∥∥∥(Ŵ t −W t

)
(Σt)1/2

∥∥∥
2

+
∥∥∥(W t −W ?

)
(Σt)1/2

∥∥∥
2

)∥∥φth∥∥(Σt)−1 ≤ 2
√
βt‖φth‖(Σt)−1 .

where we have also used that Ŵ t,W
t ∈ BALLt, by construction.

This implies that:

H−1∑
h=0

min

{
1

σ2
‖(W ? − Ŵ t)φth‖22, 1

}
≤
H−1∑
h=0

min

{
4βt

σ2
‖φth‖2(Σt)−1 , 1

}

≤ min

{
4βt

σ2

H−1∑
h=0

‖φth‖2(Σt)−1 , H

}
≤ max

{
4βt

σ2
, H

}
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}
.

The proof is completed by substitution.

Before we complete the proofs, the following two lemmas are helpful. Their proofs are provided
in Appendix B.3. The first lemma bounds the sum failure probability of W ? not being in all the
confidence balls (over all the episodes); the lemma generalizes the argument from [Abbasi-Yadkori
et al., 2011, Dani et al., 2008] to matrix regression.
Lemma B.5 (Confidence Ball). Let

βt = 2λ‖W ?‖22 + 8σ2
(
dX log(5) + 2 log(t) + log(4) + log

(
det(Σt)/ det(Σ0)

))
.

We have:
∞∑
t=0

Pr
(
Et,cb

)
=

∞∑
t=0

Pr

(∥∥∥(W t −W ?
) (

Σt
)1/2∥∥∥2

2
> βt

)
≤ 1

2
.

18



The next lemma provides a bound on the potential function used in our analysis. It is based on the
elliptical potential function argument from [Dani et al., 2008, Srinivas et al., 2009].
Lemma B.6 (Sum of Potential Functions). For any sequence of φth, we have:

T−1∑
t=0

min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}
≤ 2 log

(
det(ΣT ) det(Σ0)−1

)
.

Also, recall that LC3 uses the setting of λ = σ2/‖W ?‖22. We will also use that, for βT as defined in
Lemma B.5,

βT = 2σ2 + 8σ2
(
dX log(5) + 2 log(T ) + log(4) + log

(
det(ΣT ) det(Σ0)−1

))
≤ 16σ2

(
dX + log(T ) + log

(
det(ΣT ) det(Σ0)−1

))
. (B.2)

In particular, we can take C1 = 16 in LC3. Also,
E[βT ] ≤ 16σ2 (dX + log(T ) + γT (λ)) . (B.3)

using the definition of the information gain.

We now conclude the proof our first main theorem (Theorem 3.2).

Proof of Theorem 3.2. Using the per-episode regret bound (Lemma B.4), our confidence ball, failure
probability bound (Lemma B.5), and that V t ≤ Vmax,

E
[
REGRETLC3

]
= E

[
T−1∑
t=0

(
J t(x0; ct)− J?(x0; ct)

)]

≤ E

[
T−1∑
t=0

E
[
1(Et,cb)

(
J t(x0; ct)− J?(x0; ct)

)
| Ht

]]
+
√
Vmax

T−1∑
t=0

E
[
1(Et,cb)

]

≤
√
HVmax

T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]
+

√
Vmax/2

≤
√
HVmax

T−1∑
t=0

√
E
[

4βt

σ2
+H

] √√√√E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}]
+
√
Vmax/2

≤
√
HVmax

√√√√T−1∑
t=0

E
[

4βt

σ2
+H

] √√√√E

[
T−1∑
t=0

min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}]
+
√
Vmax/2

≤
√
HVmax

√
T

(
4E[βT ]

σ2
+H

)√
γT (λ) +

√
Vmax/2

≤
√
HVmax

√
64T

(
dX + log(T ) + γT (λ) +H

) √
γT (λ) +

√
Vmax/2

where the third inequality use that E[ab] ≤
√
E[a2]E[b2]; the fourth uses the Cauchy-Schwartz

inequality; the penultimate step uses that βt is non-decreasing, along with the Lemma B.6 and the
definition of the information gain; and the final step uses the bound on βT in Equation B.3. This
completes the proof.

The proof of our second main theorem (Theorem 3.8) now follows.

Proof of Theorem 3.8. By assumption 3 on V t and the per-episode regret lemma (Lemma B.4),
1(Et,cb)V t ≤ α21(Et,cb)J t(x0; ct,W ?)2

≤ 2α2J?(x0; ct,W ?)2 + 21(Et,cb)α2
(
J t(x0; ct,W ?)− J?(x0; ct,W ?)

)2

≤ 2α2J?(x0; ct,W ?)2 + 2α2HVmax

(
4βt

σ2
+H

)
E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]
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Using this, and with Lemma B.4 and Lemma B.5, we have

E
[
REGRETLC3

]
≤ E

[
T−1∑
t=0

E
[
1(Et,cb)

(
J t(x0; ct)− J?(x0; ct)

)
| Ht

]]
+
√
Vmax

T−1∑
t=0

E
[
1(Et,cb)

]

≤
T−1∑
t=0

E

√H1(Et,cb)V t
(

4βt

σ2
+H

)√√√√E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]
+

√
Vmax/2

≤ αJ∗
√

2H

T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]


+ α
√

2H2Vmax

T−1∑
t=0

E

[(
4βt

σ2
+H

)
E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]]+
√
Vmax/2.

where have used that
√
a+ b ≤

√
a+
√
b for positive a and b in the last inequality.

An identical argument to that in the proof of Theorem 3.2 leads to the first term above being bounded
as:

αJ∗
√

2H

T−1∑
t=0

E

√4βt

σ2
+H

√√√√E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]


≤ αJ?
√

128γT (λ) (dX + log(T ) + γT (λ) +H)HT

For the second term,

E

[
T−1∑
t=0

(
4βt

σ2
+H

)
E

[
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

} ∣∣∣H<t]]

= E

[
T−1∑
t=0

(
4βt

σ2
+H

)
min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}]

≤ E

[(
4βT

σ2
+H

) T−1∑
t=0

min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}]

≤ 2E
[(

4βT

σ2
+H

)
log
(
det(ΣT ) det(Σ0)−1

)]
≤ 128E

[(
dX + log(T ) + log

(
det(ΣT ) det(Σ0)−1

)
+H

)
log
(
det(ΣT ) det(Σ0)−1

)]
≤ 128 (H + dX + log(T )) γT (λ) + 128γ2,T (λ)

where we have used that βt is measurable with respect to H<t in the first equality; that βt is non-
decreasing in the first inequality; Lemma B.6 in the second inequality; our bound on βT in Equa-
tion B.2 in the third inequality; and the definition of γT (λ) and γ2,T (λ) in the final step.

The proof is completed via substitution.

B.3 Confidence Bound and Potential Function Analysis

Proof of Lemma B.5. The center of the confidence ball, W
t
, is the minimizer of the ridge regression

objective in Equation 3.1; its closed-form expression is:

W
t

:=

t−1∑
τ=0

H−1∑
h=0

xτh+1(φτh)>(Σt)−1,
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where Σt = λI +
∑t−1
τ=0

∑H−1
h=0 φ

τ
h(φτh)>. Using that xτh+1 = W ?φτh + ετh with ετh ∼ N (0, σ2I),

W
t −W ? =

t−1∑
τ=0

H−1∑
h=0

xτh+1(φτh)>(Σt)−1 −W ?

=

t−1∑
τ=0

H−1∑
h=0

(W ?φτh + ετh)(φτh)>(Σt)−1 −W ?

= W ?

(
t−1∑
τ=0

H−1∑
h=0

φτh(φτh)>

)
(Σt)−1 −W ? +

t−1∑
τ=0

H−1∑
h=0

ετh(φτh)>(Σt)−1

= −λW ?
(
Σt
)−1

+

t−1∑
τ=0

H−1∑
h=0

ετh(φτh)>(Σt)−1.

For any 0 < δt < 1, using Lemma C.4, it holds with probability at least 1− δt,∥∥∥(W t −W ?
) (

Σt
)1/2∥∥∥

2
≤
∥∥∥λW ?

(
Σt
)−1/2

∥∥∥
2

+

∥∥∥∥∥
t−1∑
τ=0

H−1∑
h=0

ετh(φτh)>(Σt)−1/2

∥∥∥∥∥
2

≤
√
λ‖W ?‖2 + σ

√
8dX log(5) + 8 log (det(Σt) det(Σ0)−1/δt).

where we have also used the triangle inequality. Therefore, Pr(Et,cb) ≤ δt.

We seek to bound
∑∞
t=0 Pr(Et,cb). Due to that at t = 0 we have initialized BALL0 to contain

W ?, we have Pr(E0,cb) = 0. For t ≥ 1, let us assign failure probability δt = (3/π2)/t2 for
the t-th event, which, using the above, gives us an upper bound on the sum failure probability as∑∞
t=1 Pr(Et,cb) <

∑∞
t=1(1/t2)(3/π2) = 1/2. This completes the proof.

Proof of Lemma B.6. Recall that Σt+1 = Σt +
∑H−1
h=0 φ

t
h (φth)

> and Σ0 = λI . First use x ≤
2 log(1 + x) for x ∈ [0, 1], we have:

min

{
H−1∑
h=0

‖φth‖2(Σt)−1 , 1

}
≤ 2 log

(
1 +

H−1∑
h=0

‖φth‖2(Σt)−1

)
.

For Σt+1, using its recursive formulation, we have:

log det
(
Σt+1

)
= log det

(
Σt
)

+ log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

φth(φth)>
(
Σt
)−1/2

)

Denote the eigenvalues of (Σt)
−1/2∑H−1

h=0 φ
t
h(φth)> (Σt)

−1/2 as σi for i ≥ 1. We have

log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

φth(φth)>
(
Σt
)−1/2

)
= log

∏
i≥1

(1 + σi) ≥ log

1 +
∑
i≥1

σi

 ,

where the last inequality uses that σi ≥ 0 for all i. Using the above and the definition of the trace,

log det

(
I +

(
Σt
)−1/2

H−1∑
h=0

φth(φth)>
(
Σt
)−1/2

)
≥ log

(
1 + tr

((
Σt
)−1/2

H−1∑
h=0

φth(φth)>
(
Σt
)−1/2

))

= log

(
1 +

H∑
h=0

(φth)>(Σt)−1φth

)
By telescoping the sum,

2

T−1∑
t=0

log

(
1 +

H∑
h=0

(φth)>(Σt)−1φth

)
≤ 2

T−1∑
t=1

(
log det

(
Σt+1

)
− log det

(
Σt
))

= log
(
det(ΣT ) det(Σ0)−1

)
,

which completes the proof.
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C Technical Lemmas

Lemma C.1 (Chi Squared Distance Between Two Gaussians). For Gaussian distributions
N (µ1, σ

2I) and N (µ2, σ
2I), the (squared) chi-squared distance between N1 and N2 is:∫
(N1(z)−N2(z))2

N1(z)
dz = exp

(
‖µ1 − µ2‖2

2σ2

)
− 1

Proof. Observe that:∫
(N1(z)−N2(z))2

N1(z)
dz =

∫
N1(z)− 2N2(z) +

N2(z)2

N1(z)
dz = −1 +

∫
N2(z)2

N1(z)
dz.

Note that for N 2
2 (z)/N1(z), we have:

N 2
2 (z)/N1(z) =

1

Z
exp

(
− 1

2σ2

(
2‖z − µ2‖22 − ‖z − µ1‖22

))
,

where Z is the normalization constant for N (0, σ2I), i.e. Z =
∫

exp
(
− 1

2σ2 ‖z‖22
)
dz.

For 2‖z − µ2‖22 − ‖z − µ1‖22, we can verify that:

2‖z − µ2‖22 − ‖z − µ1‖22 = ‖z + (µ1 − 2µ2)‖22 − 2‖µ1 − µ2‖22.

This implies that:∫
N2(z)2

N1(z)
dz =

1

Z

∫
exp

(
− 1

2σ2

(
‖z − (2µ2 − µ1)‖22 − 2‖µ1 − µ2‖

))
dz

=
1

Z
exp

(
‖µ1 − µ2‖22

σ2

)∫
exp

(
− 1

2σ2
‖z − (2µ2 − µ1)‖22

)
dz

= exp

(
‖µ1 − µ2‖22

σ2

)
,

which concludes the proof.

Lemma C.2 (Expectation Difference Under Two Gaussians). For Gaussian distributionN (µ1, σ
2I)

and N (µ2, σ
2I), and for any (appropriately measurable) positive function g, it holds that:

Ez∼N1 [g(z)]− Ez∼N2 [g(z)] ≤ min

{
‖µ1 − µ2‖

σ
, 1

} √
Ez∼N1 [g(z)2].

Proof. Define mi = Ez∼Ni [g(z)] for i ∈ {0, 1}. We have:

m1 −m2 = Ez∼N1
[g(z)(1− N2(z)

N1(z)
)]

≤
√
Ez∼N1

[g(z)2]

√∫
(N1(z)−N2(z))2

N1(z)
dz

=
√
Ez∼N1

[g(z)2]

√
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1

where we have used the previous chi-squared distance bound. Also since m2 is positive,

m1 −m2 ≤ m1 ≤
√

Ez∼N1
[g(z)2],

and so

m1 −m2 ≤
√

Ez∼N1
[g(z)2]

√
min

{
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1, 1

}
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Now if the min is not achieved by 1, then ‖µ1−µ2‖2
2σ2 ≤ 1. And since exp(x) ≤ 1+2x for 0 ≤ x ≤ 1,

we have:

min

{
exp

(
‖µ1 − µ2‖2

2σ2

)
− 1, 1

}
≤ min

{
1 +
‖µ1 − µ2‖2

σ2
− 1, 1

}
= min

{
‖µ1 − µ2‖2

σ2
, 1

}
.

which completes the proof.

Lemma C.3 (Self-Normalized Bound for Vector-Valued Martingales; [Abbasi-Yadkori et al.,
2011]). Let {εi}∞i=1 be a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such
that εi is Fi measurable, E[εi|Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R+. Let
{Xi}∞i=1 be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft measurable.
Assume that a linear operator V : H → H is positive definite, i.e., x>V x > 0 for any x ∈ H. For
any t, define the linear operator Vt = V +

∑t
i=1XiX

>
i (here xx> denotes outer-product in H).

With probability at least 1− δ, we have for all t ≥ 1:∥∥∥∥∥
t∑
i=1

Xiεi

∥∥∥∥∥
2

V −1
t

≤ 2σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)
.

We generalize this lemma as follows:
Lemma C.4 (Self-Normalized Bound for Matrix-Valued Martingales). Let {εi}∞i=1 be a d-
dimensional vector-valued stochastic process with corresponding filtration {Fi}∞i=1 such that εi
is Fi measurable, E[εi|Fi−1] = 0, and εi is conditionally σ-sub-Gaussian with σ ∈ R+.1 Let
{Xi}∞i=1 be a stochastic process with Xi ∈ H (some Hilbert space) and Xi being Ft measurable.
Assume that a linear operator V : H → H is positive definite. For any t, define the linear operator
Vt = V +

∑t
i=1XiX

>
i Then, with probability at least 1− δ, we have for all t, we have:∥∥∥∥∥

t∑
i=1

εiX
>
i V
−1/2
t

∥∥∥∥∥
2

2

≤ 8σ2d log (5) + 8σ2 log

(
det(Vt)

1/2 det(V )−1/2

δ

)

Proof. Denote S =
∑t
i=1 εiX

>
i . Let us form an ε-net, in `2 distance, C over the unit ball {w :

‖w‖2 ≤ 1, w ∈ Rd}. Via a standard covering argument (e.g. [Shalev-Shwartz and Ben-David,
2014]), we can choose C such that log (|C|) ≤ d log(1 + 2/ε).

Consider a fixed w ∈ C and w>S =
∑t
i=1 w

>εiX
T
i . Note that w>εi is a σ-sub Gaussian due to

‖w‖2 ≤ 1. Hence, Lemma C.3 implies that with probability at least 1− δ, for all t,∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√
log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

Now apply a union bound over C, we get that with probability at least 1− δ:

∀w ∈ C :

∥∥∥∥∥V −1/2
t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√
d log (1 + 2/ε) + log

(
det(Vt)1/2 det(V )−1/2

δ

)
.

For any w with ‖w‖2 ≤ 1, there exists a w′ ∈ C such that ‖w − w′‖2 ≤ ε. Hence, for all w such
that ‖w‖2 ≤ 1,∥∥∥∥∥V −1/2

t

t∑
i=1

Xi

(
w>εi

)∥∥∥∥∥
2

≤
√

2σ

√
d log (1 + 2/ε) + log

(
det(Vt)1/2 det(V )−1/2

δ

)

+ ε

∥∥∥∥∥
t∑
i=1

εiX
>
i V
−1/2
t

∥∥∥∥∥
2

.

1We say a vector-valued, random variable z is σ-sub-Gaussian if w · z is σ-sub-Gaussian for every unit
vector w.
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By the definition of the spectral norm, this implies that:∥∥∥∥∥
t∑
i=1

εiX
>
i V
−1/2
t

∥∥∥∥∥
2

≤ 1

1− ε
√

2σ

√
d log (1 + 2/ε) + log

(
det(Vt)1/2 det(V )−1/2

δ

)
Taking ε = 1/2 concludes the proof.

Lemma C.5. For any sequence x0, . . . xT−1 such that, for t < T , xt ∈ Rd and ‖xt‖2 ≤ B ∈ R+,
we have:

log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
≤ d log

(
1 +

TB2

dλ

)
.

Proof. Denote the eigenvalues of
∑T−1
t=0 xtx

>
t as σ1, . . . σd, and note:

d∑
i=1

σi = tr

(
T−1∑
t=0

xtx
>
t

)
≤ TB2.

Using the AM-GM inequality,

log det

(
I +

1

λ

T−1∑
t=0

xtx
>
t

)
= log

(
d∏
i=1

(1 + σi/λ)

)

= d log

(
d∏
i=1

(1 + σi/λ)

)1/d

≤ d log

(
1

d

d∑
i=1

(1 + σi/λ)

)
≤ d log

(
1 +

TB2

dλ

)
,

which concludes the proof.

D Simulation Setups and Results

Below, we provide simulation setups, including the details of environments and parameter settings.
Specifically, the hyper-parameters, namely, 1) variance of random control variation for MPPI, 2)
temperature parameter for MPPI, 3) planning horizon, 4) number of planning samples, 5) prior
parameter λ, 6) posterior reshaping constant, 7) number of episodes between model updates, 8)
number of features, 9) RFF bandwidth, are presented.

Note parameters were tuned in the following way: we first tuned MPPI parameters on ground truth
models, then we tuned number of RFFs, their bandwidth, prior parameter, and posterior reshaping
constant.

D.1 Gym Environments

Fig. 3 plots the learning curves against GT-MPPI and the best model-based RL (MBRL) algorithm
reported in Wang et al. [2019]. It is observed that LC3 with RFFs quickly increased reward in early
stages, indicating low sample complexities empirically.

The hyper-parameters used for InvertedPendulum, Acrobot, CartPole, Mountain Car, Reacher, and
Hopper are shown in Table 2, 3, 4, 5, 6, and 7, respectively. We used JULIA NUM THREADS=12 for
all the Gym experiments.

We mention that we tested many heuristics to improve performance such as input normalization,
different prior parameter for each output dimension, using multiple bandwidth of RFFs, ensemble
of RFF models, warm start of planner, experience replay, etc., however, none of them consistently
improved the performance across tasks. Therefore we present the results with no such heuristics in
this paper. Interestingly, increasing number of RFFs for some contact-rich dynamics such as Hopper
did not reduce the modeling error significantly. Being able to model some of the critical interactions
such as contacts seems to be the key for the success of such a complicated environment.
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Table 2: Hyper-parameters used for InvertedPendulum environment.

MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.1 RFF bandwidth 5.5
planning horizon 10 prior parameter 10−4

number of planning samples 256 posterior reshaping constant 0
episodes between model updates 1

Table 3: Hyper-parameters used for Acrobot environment.

MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.3 RFF bandwidth 4.5
planning horizon 30 prior parameter 0.01
number of planning samples 256 posterior reshaping constant 10−3

episodes between model updates 1

Table 4: Hyper-parameters used for CartPole environment.

MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.1 RFF bandwidth 1.5
planning horizon 50 prior parameter 5× 10−4

number of planning samples 128 posterior reshaping constant 10−4

episodes between model updates 1

Table 5: Hyper-parameters used for Mountain Car environment.

MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.32 number of features 100
temperature parameter 0.2 RFF bandwidth 1.3
planning horizon 110 prior parameter 0.01
number of planning samples 512 posterior reshaping constant 10−6

episodes between model updates 1

Table 6: Hyper-parameters used for Reacher environment.

MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 300
temperature parameter 0.3 RFF bandwidth 4.0
planning horizon 20 prior parameter 0.01
number of planning samples 256 posterior reshaping constant 0

episodes between model updates 4

Table 7: Hyper-parameters used for Hopper environment.

MPPI Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.22 number of features 200
temperature parameter 0.2 RFF bandwidth 12.0
planning horizon 128 prior parameter 0.005
number of planning samples 64 posterior reshaping constant 0.01

episodes between model updates 1
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Figure 3: Performance curves of LC3 with RFFs for different Gym environments. Note the reward
(negative cost) ranges of those plots are made different. The final mean performances of GT-MPPI
and the best model-based RL (MBRL) algorithm reported in Wang et al. [2019] are also shown for
reference. The algorithm is run for 200,000 timesteps and with four random seeds. The curves are
averaged over the four random seeds and a window size of 5,000 timesteps.

Table 8: Hyper-parameters used for Maze environment.

Planner Hyper-parameters Value LC3 Hyper-parameters Value

variance of controls 0.32 number of features 100
temperature parameter 0.05 prior parameter 0.01
MPPI planning horizon 50 posterior reshaping constant 10−3 (best)
MPPI planning samples 1024 episodes between model updates 1
PETS-CEM horizon 50
PETS-CEM samples 500
PETS-CEM elite size 50

D.2 Maze

In the Maze environment, states and controls are continuous and the agent plans over continuous
spaces; however, the dynamics is given by 1) xh+1 = xh + [−0.5, 0]> (i.e., moving one step
left) if d2uhe = −1, 2) xh+1 = xh + [0,−0.5]> (i.e., moving one step up) if d2uhe = 0, 3)
xh+1 = xh + [0.5, 0]> (i.e., moving one step right) if d2uhe = 1, and 4) xh+1 = xh + [0, 0.5]>

(i.e., moving one step down) if d2uhe = 2, except for the case there is a wall in the direction of
travel, which then ends up xh+1 = xh.

The hyper-parameters of Maze experiments are shown in Table 8. Note the number of features is
100 because one hot vector (e.g., φ(x, u) = [1, 0, . . . , 0]> if x ≤ −0.75 and u ≤ −0.5) in this
maze environment is 100 dimension. Table 8 also includes the parameters used for PETS-CEM; we
used the recommended values as in the paper and the codebase, except for the planning horizon. The
planning horizon was set to be the same as the MPPI counterpart. We used JULIA NUM THREADS=12
for all the Maze experiments.
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Figure 4: Here we render a representative heatmap of the learned W model from the 6 ensemble
model features. Visible are 6 diagonal traces acting as a weighted average of the output of each
member of the ensemble, but also significant off-diagonal values. The upper block values represent
generalized positions, while the lower block is generalized velocities. Critical to modeling contact
forces is accurate prediction of velocity.

D.3 Armhand with Model Ensemble Features

This task involves a 33 DOF anthropomorphic hand at the end of a robot arm attempting to grasp
and lift an object to a desired target position. We take the perspective that most model parameters
of a robotic system will be known, such as kinematic lengths, actuator specifications, and inertial
configurations. Since we would like robots to operate in the wild, some dynamical properties may be
unknown: in this case, the manipulated object’s dynamical properties. Said another way, the robot
knows about itself, but only a little about the object.

In table 9, we list the dynamical properties that were randomized to make our ensemble. We use
uniform distributions to present a window of possible, realistic values for the parameters: for exam-
ple, we randomize the objects mass between 0.1 and 1.0 kg. The center of mass distributions is the
deviation from the center of the sphere, while the moments of inertia parameter is one value applied
to all elements of a diagonal inertia matrix for the object. The contact parameters are specific to the
MuJoCo dynamics simulator we use Todorov et al. [2012], and are the parameters of internal contact
model of the simulation. The range of values of the parameters allow for objects in the ensemble
to have different softness and rebound effects. Also, table 10 lists learned model predictive error
for different features, indicating that the ensemble of MuJoCo model successfully captured the true
dynamics.

We clarify the setting in which this approach may be relevant as follows. Complex dynamics, such as
that in the real world, are difficult to represent with function approximation like neural networks or
random features. This problem can be broken into two parts: learning the structure of the features,
and how to combine the features into a model. Rather than collect inordinate amounts of data to
mimic the combination of features and model, we can instead use structured representations of the
real world, such as dynamics simulators, to produce features, and the method in this work to learn the
model. Since dynamics simulators represent the current distillation of physics into a computational
form and accurate measurement of engineered systems is paramount for the modern world, this
instantiation of this method is reasonable.
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Table 9: Hyper-parameters used for Armhand environment.

Hyper-parameter Value Ensemble Parameter Value

variance of controls 0.22 Models in Ensemble 6
temperature parameter 0.08 Mass U(0.01, 1.0)
planning horizon 50 Center of Mass U(−0.04, 0.04)× 3
number of planning samples 64 Moments of Inertia U(0.0001, 0.0004)
prior parameter 0.0001 Contact Param. (solimp) [U(0.5, 0.99),

U(0.4, 0.98),
U(0.0001, 0.01),
U(0.49, 0.51),
U(1.9, 2.1)]

posterior reshaping constant 0.01 Contact Param. (solref) [U(0.01, 0.03),
U(0.9, 1.1)]

episodes between model updates 1

Table 10: Learned model predictive error for different features.

Feature method Predictive Error:
‖xh+1 −Wφ‖2/‖Wφ‖2

Random Fourier Features, 2048 0.22
2 Layer Neural Network, 2048 hidden, relu activation 0.41
Model Ensemble of 6 models 0.09
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