
Supplementary Material for Paper ID: 4406

A Appendix for Section 3

A.1 Missing Proofs from Section 3

Proof of Theorem 3.3. For completeness, we outline again the instance described earlier. Let an
action space A = {h, h′} such that h = (1, 1,−1) and h′ = (0.5,−1, 0.25), and let δ = 0.1.
The environment draws feature vectors x1 = (0.4, 0.5),x2 = (0.6, 0.6),x3 = (0.8, 0.9),x4 =
(0.65, 0.3) with probabilities p1 = 0.05, p2 = 0.15, p3 = 0.05, p4 = 0.75 respectively, and with
labels y1 = −1, y2 = −1, y3 = +1, y4 = +1. For clarity, Figure 1 provides a pictorial depiction of
the example, along with the best responses of the agents for each action. We first explain the values
that the loss function takes according to the best-responses of the agents and the feature vectors
drawn by nature.

• (E [` (h, rt (h) , yt)]) When the learner plays h against agent’s responses rt (h), she makes
a mistake in her prediction every time that the environment drew x1 or x2 for the agent.
This is because for x1 the agent can misreport and fool the hyperplane. For x2 the agent
does not need to misreport; hyperplane h classifies it as +1 erroneously already. For x4 the
agent can misreport and get correctly classified and for x3 the hyperplane is correct all by
itself. Hence:

E [` (h, rt (h) , yt)] = P
[
nature draws x1 or x2

]
= p1 + p2 = 0.2

• (E [` (h′, rt (h′) , yt)]) When the learner plays h′ against agent’s responses rt (h′), she
makes a mistake in her prediction every time that the environment drew x1 or x2 or x3

for the agent. This is because for both x1 and x2 the agent could misreport and fool the
hyperplane and for x3 the hyperplane classifies it incorrectly, but there is nothing that the
learner can do to change it (due to δ-boundedness). For x4 the hyperplane classifies the
point correctly, without the need of misreport from the agent. Hence:

E [` (h′, rt (h′) , yt)] = P
[
nature draws x1 or x2 or x3

]
= p1 + p2 + p3 = 0.25

• (E [` (h, rt (h′) , yt)]) When the learner plays h against agent’s responses rt (h′), she makes
a mistake in her prediction every time that the environment drew x2 or x4 for the agent,
i.e.,

E [` (h, rt (h′) , yt)] = P
[
nature draws x2 or x4

]
= p2 + p4 = 0.9

• (E [` (h′, rt (h) , yt)]) When the learner plays h′ against agent’s responses rt (h), she makes
a mistake in her prediction every time that the environment drew x3 for the agent, i.e.,

E [` (h′, rt (h) , yt)] = P
[
nature draws x3

]
= p3 = 0.05

We now prove that any sequence with sublinear Stackelberg regret will have linear external regret.
Observe that for the Stackelberg regret, the best fixed action in hindsight is action h, with cumula-
tive loss 0.2T . Therefore, any action sequence that yields sublinear Stackelberg regret must have
cumulative loss 0.2T + o(T), meaning that action h′ is played at most o(T) times, while action h is
played at least T − o(T) times. Given this, we proceed by identifying the best fixed action for the
external regret in any action such sequence {αt}Tt=1. For that, we compute the loss that any of the
actions in A would incur, had they been the fixed action for sequence {αt}Tt=1.

Assume that action h was the fixed action in hindsight for the sequence {αt}Tt=1. Then, the cumula-
tive loss incurred by playing h constantly for T rounds, denoted by

∑T
t=1 ` (h, rt(αt), yt) is:

0.2(T − o(T))︸ ︷︷ ︸
loss incurred when playing

h against rt(h)

+ 0.9o(T)︸ ︷︷ ︸
loss incurred when playing

h against rt(h′)

13

Assume that action h′ was the fixed action in hindsight for the aforementioned action sequence.
Then, the cumulative loss incurred by playing h′, denoted by

∑T
t=1 `(h

′, rt(αt), yt) is equal to

0.05(T − o(T))︸ ︷︷ ︸
loss incurred when playing

h′ against rt(h)

+ 0.25o(T)︸ ︷︷ ︸
loss incurred when playing

h′ against rt(h′)

Hence, we have that the best fixed action in hindsight for the external regret for the sequence {αt}Tt=1

is action h′. This means, however, that for the sequence {αt}Tt=1, which guaranteed sublinear Stack-
elberg regret, the external regret is linear in T :

R(T) ≥ 0.2T − 0.05T ≥ 0.15T

Moving forward, we prove that any action sequence with sublinear external regret will have linear
Stackelberg regret. Since we previously proved that any action sequence {αt}Tt=1 with sublinear
Stackelberg regret plays at least T − o(T) times action h and this resulted in having linear external
regret, we only need to consider sequences where action h′ is played T − o(T) times, while action
h is played for o(T) times. For any such action sequence, it suffices to show that the external regret
will be sublinear, since for any such sequence the Stackelberg regret will be linear:

R(T) = 0.2o(T) + 0.25 · (T − o(T))− 0.2T ≥ 0.05T

Similarly to the analysis above, we distinguish the following cases. Assume that action h was
the fixed action in hindsight for {αt}Tt=1. Then, the cumulative loss incurred by playing h is∑T
t=1 ` (h, rt(αt), yt) = 0.2o(T) + 0.9(T − o(T)). Assume that action h′ was the fixed action

in hindsight for the aforementioned action sequence. Then, the cumulative loss incurred by playing
h′ is

∑T
t=1 ` (h′, rt(αt), yt) = 0.05o(T) + 0.25(T − o(T)). As a result, the best fixed action in

hindsight for the Stackelberg regret would be action h′, yielding external regret o(T), i.e., sublinear.
This concludes our proof. �

A.2 Purely Adversarial and Cooperative Stackelberg Games

Despite the worst-case incompatibility results that we have shown for the notions of external and
Stackelberg regret, there are families of repeated games for which there is a clear hierarchy be-
tween the two. In this subsection, we study two of the most important ones; the family of Purely
Adversarial, and the family of Purely Cooperative Stackelberg Games.

Definition A.1 (Purely Adversarial Stackelberg Game (PASGs)). We call a Stackelberg Game
Purely Adversarial, if for all actions α′ ∈ A for the loss of the learner it holds that: `(α, r(α), yt) ≥
`(α, r(α′), yt), i.e., the agent inflicts the highest loss to the learner, when best-responding to the
action to which she committed.

Definition A.2 (Purely Cooperative Stackelberg Game (PCSGs)). We call a Stackelberg Game
Purely Cooperative if for all actions α′ ∈ A for the loss of the learner it holds that: `(α, r(α), yt) ≤
`(α, r(α′), yt), i.e., the agent inflicts the lowest loss to the learner, when best-responding to the
action to which she committed.

rt(α) rt(α
′)

α (7,−1) (6,−3)
α′ (6,−3) (7,−1)

Table 1: Example of a PASG
that is not zero-sum.

We remark here that despite their similarities, PASGs and PCSGs
are not equivalent to zero-sum games; in fact, it is easy to see that
every zero-sum game is either a PASG or a PCSG, but the con-
verse is not true (see e.g., the example loss matrix given in Table 1
where the first coordinate of tuple (i, j) corresponds to the loss of
the learner, and the second to the loss of the agent). Next, we outline
the hierarchy between external and Stackelberg regret in repeated
PASGs and PCSGs.

Lemma A.3. In repeated PASGs, Stackelberg regret is upper
bounded by external regret, i.e.,R(T) ≤ R(T). In other words, any no-Stackelberg regret sequence
of actions is also a no-external regret one.

14

Proof. Let α̃ = arg minα∈A
∑T
t=1 `(α, rt(αt), yt) and α? = arg minα∈A

∑T
t=1 `(α, rt(α), yt).

Then:

R(T) =

T∑
t=1

`(αt, rt(αt), yt)−
T∑
t=1

`(α̃, rt(αt), yt) (definition of external regret)

≥
T∑
t=1

`(αt, rt(αt), yt)−
T∑
t=1

`(α?, rt(αt), yt) (definition of α̃)

≥
T∑
t=1

`(αt, rt(αt), yt)−
T∑
t=1

`(α?, rt(α
?), yt) (`(α?, rt(αt), yt) ≤ `(α?, rt(α?), yt))

= R(T)

�

On the other hand, for PCSGs it holds that:
Lemma A.4. In repeated PCSGs, Stackelberg regret is lower bounded by external regret, i.e.,
R(T) ≥ R(T). In other words, any no-external regret sequence of actions is also a no-Stackelberg
regret one.

Proof. Let α̃ = arg minα∈A
∑T
t=1 `(α, rt(αt), yt) and α? = arg minα∈A

∑T
t=1 `(α, rt(α), yt).

Then:

R(T) =

T∑
t=1

`(αt, rt(αt), yt)−
T∑
t=1

`(α̃, rt(αt), yt) (definition of external regret)

≤
T∑
t=1

`(αt, rt(αt), yt)−
T∑
t=1

`(α̃, rt(α̃), yt) (definition of PCSGs)

≤
T∑
t=1

`(αt, rt(αt), yt)−
T∑
t=1

`(α?, rt(α
?), yt) (definition of α?)

= R(T)

�

A.3 The Function `(α, rt(α), yt)

As we mentioned in the main body, the learner’s loss function `(α, rt(α), yt) is gen-
erally not Lipschitz in her chosen action α. For that, we study below the quantity
|`(α, rt(α), yt)− `(α′, rt(α′), yt)|.
Lemma A.5. Let `(x, y, z) denote the learner’s loss function in a Stackelberg game, such that ` is
L1-Lipschitz with respect to the first argument, and L2-Lipschitz with respect to the second. Then,
for the learner’s loss between any two actions α, α′ ∈ A it holds that:

|`(α, rt(α), yt)− `(α′, rt(α′), yt)| ≤ max {L1 · ‖α′ − α‖, L2 · ‖rt(α)− rt(α
′)‖}

Proof. We split the set of actions A into pairs (α, α′) satisfying the following properties:

1. For pair (α, α′) it holds that: `(α, rt(α), yt) ≥ `(α, rt(α
′), yt) and `(α′, rt(α′), yt) ≥

`(α′, rt(α), yt). In other words, by best-responding the agent causes the biggest loss to the
learner. Observe that, given that ` is L1-Lipschitz in its first argument, we have that:

`(α′, rt(α
′), yt)− `(α, rt(α), yt) ≥ `(α′, rt(α), yt)− `(α, rt(α), yt) ≥ −L1‖α′ − α‖

and

`(α′, rt(α
′), yt)− `(α, rt(α), yt) ≤ `(α′, rt(α′), yt)− `(α, rt(α′), yt) ≤ L1‖α′ − α‖

Therefore, for such pairs of actions function `(α, rt(α), yt) is L1-Lipschitz with respect to
α.

15

2. For pair (α, α′) it holds that: `(α, rt(α), yt) ≤ `(α, rt(α
′), yt) and `(α′, rt(α′), yt) ≤

`(α′, rt(α), yt). In other words, by best-responding the agent causes the smallest loss to
the learner. Similarly to Case 1, it is easy to see that on these pairs of actions, function
`(α, rt(α), yt) is again L1-Lipschitz with respect to α.

3. For pair (α, α′) it holds that

`(α, rt(α), yt) ≥ `(α, rt(α′), yt) (4)

and
`(α′, rt(α

′), yt) ≤ `(α′, rt(α), yt) (5)
From Equations (4) and (5) we have that

`(α′, rt(α
′), yt)− `(α, rt(α), yt) ≤ L1‖α′ − α‖ (6)

We further distinguish the following cases:

(a) `(α, rt(α), yt) = `(α′, rt(α
′), yt). Clearly, |`(α, rt(α), yt)− `(α′, rt(α′), yt)| ≤ L1·

‖α′ − α‖ holds.
(b) `(α, rt(α), yt) ≤ `(α′, rt(α

′), yt). From Equation (6), we get:
|`(α, rt(α), yt)− `(α′, rt(α′), yt)| ≤ L1 · ‖α′ − α‖.

(c) `(α, rt(α), yt) ≥ `(α′, rt(α
′), yt) Observe now that if `(α, rt(α), yt) ≥

`(α′, rt(α), yt), then from Equation (5) the latter is lower bounded by
`(α′, rt(α

′), yt), which leads to a contradiction. Hence, it has to be the case that
`(α, rt(α), yt) ≤ `(α′, rt(α), yt). The latter, combined with the assumption that `
is L2 - Lipschitz with respect to its second argument, implies that `(α′, rt(α′), yt) −
`(α, rt(α), yt) ≥ −L2 · ‖rt(α′)− rt(α)‖.

4. For the pair (α, α′) it holds that `(α, rt(α), yt) ≤ `(α, rt(α
′), yt) and `(α′, rt(α′), yt) ≥

`(α′, rt(α), yt). The case is analogous to Case 3.

�

To summarize, in PASGs (Case 1 from aforementioned proof) and PCSGs (Case 2 of afore-
mentioned proof) the loss function written in terms of the action of the agent is Lipschitz, i.e.,
|`(α, rt(α), yt)− `(α′, rt(α′), yt)| ≤ L1 · ‖α′ − α‖. However, in General Stackelberg Games one
can only guarantee that

|`(α, rt(α), yt)− `(α′, rt(α′), yt)| ≤ max {L1 · ‖α′ − α‖, L2 · ‖rt(α′)− rt(α)‖} (7)

Using Equation (7), we show that there are some meaningful Stackelberg settings where
‖rt(α′)− rt(α)‖ can be upper bounded by ‖α′ − α‖ multiplied by a constant. For example, from
well known results in convex optimization (for completeness see Lemma A.6), we can see that this
is exactly the case in settings where the agent’s utility function, ut(α, r) is strongly concave in r,
and quasilinear13 in α.
Lemma A.6 (Closeness of Maxima of Strongly Concave Functions (folklore)). Let functions f :
X 7→ R, g : X 7→ R be two multidimensional, 1/ηc-strongly concave functions with respect to some
norm || · ||. Let h(x) = f(x)− g(x),x ∈ X be Lf,g-Lipschitz14 with respect to the same norm || · ||.
Then, for the maxima of the two functions: µf = arg maxx∈X f(x) and µg = arg maxx∈X g(x) it
holds that:

||µf − µg|| ≤ Lf,g · ηc (8)

Proof. First, we take the Taylor expansion of f around its maximum, µf and use the strong concavity
condition:

f(x) ≤ f(µf) + 〈∇f(µf),x− µf 〉 −
1

2η
||µf − x||2 (strong concavity)

= f(µf)− 1

2η
||µf − x||2 (∇f(µf) = 0, since µf is the maximum)

13Quasilinearity in α establishes that Lf,g which is used by Lemma A.6 will be linear in ‖α′ − α‖.
14We use the subscript f, g in the Lipschitzness constant to denote the fact that it depends on the two functions

f and g.

16

Similarly, by taking the Taylor expansion of g around its maximum and using the strong concavity
condition:

g(x) ≤ g(µg)−
1

2η
||µg − x||2 (9)

Using the Lf,g-Lipschitzness of h(x) we get:
Lf,g · ||µg − µf || ≥ |h(µg)− h(µf)| ≥ h(µg)− h(µf)

≥ f(µg)− f(µf) + g(µf)− g(µg)

≥ 1

2η
||µf − µg||2 +

1

2η
||µf − µg||2 (from Taylor expansion)

≥ 1

η
||µf − µg||2

Dividing both sides with ||µg − µf || concludes the proof. �

An example of such a utility function in the context of strategic classification (similar to the family
of utility functions used in [17]) is presented below.

Example. Let ut(α, r(α), σt) = 〈α, r(α)〉 − (x − r(α))2. Then, we would like to compute an
upper bound on the difference between ‖r(α)− r (α′)‖, where r(α) = arg maxz∈X ;x ut(α, z, σt)
and r(α′) = arg maxz∈X ;x ut(α

′, z, σt). Following Lemma A.6 we can define functions f(z) =
ut(α, z, σt) and g(z) = ut(α

′, z, σt). Now, observe that function h(z) = f(z) − g(z) is indeed
‖α− α′‖-Lipschitz (i.e., the Lipschitzness constant depends on the specific actions):

|f(y)− g(y)− f(z) + g(z)| = |〈α− α′,y − z〉| ≤ ‖α− α′‖ · ‖y − z‖
where the last inequality comes from the Cauchy-Schwartz inequality. Furthermore, observe that
both f(·) and g(·) are 1

2 -strongly concave. Therefore, from Lemma A.6 we get that:

‖r(α)− r(α′)‖ ≤ ‖α− α
′‖

2

B Appendix for Section 4

B.1 Notation Reference Tables.

Our model and proof use a lot of notation. For easier reference, we summarize the notation used in
our analysis in Tables 2 and 3.

Variable Description

d ∈ N dimension of the problem
A ⊆ [−1, 1]d+1 learner’s action space
αt ∈ A learner’s committed action for round t
X ⊆

(
[0, 1]d, 1

)
agent’s feature vector space

Y = {−1,+1} labels’ space
xt ∈ X agent’s feature vector, as chosen by nature
σt = (xt, yt), yt ∈ Y agent’s labeled datapoint, as chosen by nature
rt(αt, σt) ∈ X (simplified to rt(αt)) agent’s reported feature vector
ŷt ∈ Y rt(αt)’s label
`(αt, rt(αt), yt) learner’s loss for action αt against agent’s report rt(αt)
ut(αt, rt(αt), σt) agent’s utility for reporting rt(αt), when learner commits to αt
R(T) learner’s external regret after T rounds
R(T) learner’s Stackelberg regret after T rounds
λ(A) Lebesgue measure of measurable space A

Table 2: Model Notation Summary

17

Variable Description

Pt set of active polytopes at round t
Pt set of active point-polytopes at round t
Dt induced distribution from 2-step sampling process
Pt, ft cdf and pdf of Dt
βut (αt) : 〈rt(αt),w〉 = 4

√
dδ upper boundary hyperplane

βlt(αt) : 〈rt(αt),w〉 = −4
√
dδ lower boundary hyperplane

H+ (βut (α)) α′ ∈ H+ (βut (α)), if 〈rt(α), α′〉 ≥ 4
√
dδ

H−
(
βlt(α)

)
α′ ∈ H−

(
βlt(α)

)
, if 〈rt(α), α′〉 ≤ −4

√
dδ

Put (α) upper polytopes set (p ∈ Pt : p ∈ H+ (βut (α)))
P lt(α) lower polytopes set (p ∈ Pt : p ∈ H−

(
βlt(α)

)
)

Pmt (α) middle polytopes set (p ∈ Pt : p /∈ Pt \
(
P lt
⋃
P lt
)

Pin
t [α],Pin

t [p] in-probability for α and p (see Definition 4.2)
p
δ

polytope (/∈ Pt) with smallest Lebesgue measure at round T
Table 3: Notation Summary for Regret Analysis of GRINDER.

B.2 Proof of Theorem 4.1.

The proof of Theorem 4.1 follows from a sequence of lemmas and claims presented below. By
convention, we call a single point a point-polytope, and we denote the set of all point-polytopes by
P .

Proposition B.1. The two-stage sampling probability distribution Dt is equivalent to a one-stage
probability distribution of drawing directly an action from density dπt(·).

Proof. The one-stage probability distribution that draws an action from πt is equivalent to choosing
an action α ∈ A from probability density function: dπt(α) = (1− γ)dqt(α) + γ

λ(A) . The two-stage

probability is: dπDt(α) = 1
λ(p)

(
(1− γ)qt(p) + γλ(p)

λ(A)

)
. Since qt(p) = λ(p)dqt(α),∀α ∈ p, we

get the result. �

Moving forward we analyze the first and the second moment of the loss ˆ̀(α, rt(α), yt) for each
action α, based on the induced probability distribution Dt, assuming oracle access to Pin

t [α].

Lemma B.2 (First Moment). The estimated loss ˆ̀(α, rt(α), yt) is an unbiased estimator of the true
loss `(α, rt(α), yt), when actions are drawn from the induced probability distribution Dt.

Proof. For all the actions α ∈ A, given Proposition B.1, it holds that:

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

]
=

∫
A
ft (α′)

`(α, rt(α), yt)1 {α ∈ Nout(α′)}
Pin
t [α]

dα′ = `(α, rt(α), yt)

�

Lemma B.3 (Second Moment). For the second moment of the estimated loss ˆ̀(α, rt(α), yt) with
respect to the induced probability distribution Dt it holds that:

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

2
]

=
`(α, rt(α), yt)

2

Pin
t [α]

≤ 1

Pin
t [α]

Proof. For all the actions α ∈ A, given Claim B.1, it holds that:

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

2
]

=

∫
A
ft (α′)

`(α, rt(α), yt)
2
1 {α ∈ Nout(α′)}

Pin
t [α]2

dα′ =
`(α, rt(α), yt)

2

Pin
t [α]

≤ 1

Pin
t [α]

�

18

Lemma B.4. Let p
δ
(t) = arg minp∈Pt\Pt λ(p) be the polytope with the smallest Lebesgue measure

(excluding point-polytopes) after t rounds. Then, the following inequality holds:

E
αt∼Dt

[
1

Pin
t [αt]

]
≤ 4 log

4λ (A) ·
∣∣Put,σt ⋃P lt,σt∣∣

γλ
(
p
δ
(t)
)

+ λ
(
Pmt,σt

)

Proof. By definition, we expand the term: Eα∼Dt
[

1
Pin
t [αt]

]
as follows:

E
αt∼Dt

[
1

Pin
t [αt]

]
=

∫
A

ft(α)

Pin
t [α]

dα

=

∫
⋃

(Put,σt∪P
l
t,σt

)

ft(α)

Pin
t [α]

dα︸ ︷︷ ︸
Q1

+

∫
⋃
Pmt,σt

ft(α)

Pin
t [α]

dα︸ ︷︷ ︸
Q2

(10)

where by integrating over
⋃
P we denote the integral over all actions that belong in some polytope

from the setP . In the right hand side of Equation (10), termQ2 is relatively easier to analyze. Due to
the conservative estimates of the true middle space (i.e., the actions such that sdist(α,xt) ≤ δ), the
set of polytopes Pmt,σt contains all the actions that actually belong in the σt-induced middle space,
plus some other actions for which the agent could not have misreported, due to their δ-boundedness.
Now, for all the actions that actually belong in the σt-induced middle space, it holds that they only
get information (i.e., get updated) when they are chosen by the algorithm, while for the rest of the
actions that have ended up in our middle space, they could have been updated by other actions as
well. Thus, it holds that:

∀α ∈
⋃
Pmt,σt : Pin

t [α] ≥ ft(α)

As a result:

Q2 =

∫
⋃
Pmt,σt

ft(α)

Pin
t [α]

dα ≤
∫
⋃
Pmt,σt

ft(α)

ft(α)
dα = λ

(
Pmt,σt

)
(11)

Moving forward, we turn our attention to term Q1. Assume now that an action α belongs in a
polytope pα. Then, there are (weakly) more actions that can potentially update action α, than the
whole polytope in which it belongs, pα; indeed, in order to update the polytope, one must make sure
that every action within it is updateable. As a result, Pin

t [α] ≥ Pin
t [pα]. Using this in Equation (10)

we get that the first term of the RHS of the variance is upper bounded by:

Q1 ≤
∑

p∈Put,σt∪P
l
t,σt

∫
p

ft(α)

Pin
t [p]

dα (12)

Further, let Pin
t [p]u,l be the part of Pin

t [p] that depends only in the updates that stem from actions
in either the upper or the lower polytopes sets. As such: Pin

t [p]u,l ≤ Pin
t [p] and the term in Equa-

tion (12) can be upper bounded by:

Q1 ≤
∑

p∈Put,σt∪P
l
t,σt

1

Pin
t [p]u,l

∫
p

ft(α)dα (13)

where we have also used the fact that we gain oracle access to quantity Pin
t [p]u,l and therefore, we

treat it as a constant in the integral. Observe now that the term
∫
p
ft(α)dα corresponds to the total

probability that the action αt, which is chosen from the induced probability distribution Dt, belongs
to polytope p, i.e., it is equal to πt(p). Hence, the upper bound in Equation (13) can be relaxed to:

Q1 ≤
∑

p∈Put,σt∪P
l
t,σt

πt(p)

Pin
t [p]u,l

(14)

As we have explained before, πt(p) = 0, for p ∈ Pt and as a result, we can disregard point-
polytopes from our consideration for the rest of this proof. We now upper bound this term by using
the graph-theoretic lemma of Alon et al. [1, Lemma 5], which we provide below for completeness.

19

Lemma B.5 ([1, Lemma 5]). Let G = (V,E) be a directed graph with |V | = K, in which each
node i ∈ V is assigned a positive weight wi lower bounded by a positive scalar ε ∈ (0, 1/2), i.e.,
wi ≥ ε,∀i ∈ V . If

∑
i∈V wi ≤ 1 then, denoting by αG the independence number of G we have

that: ∑
i∈V

wi
wi +

∑
j∈Nin(i) wj

≤ 4αG
4K

αGε

Observe that all the actions within the σt-induced upper and the lower polytopes set form the fol-
lowing feedback graph: each node corresponds to a polytope from one of the sets Put,σt ,P

l
t,σt . So

the total number of nodes is at most
∣∣Put,σt ∪ P lt,σt ∣∣, where by |S| we denote the cardinality of a set

S. Each edge (i, j) corresponds to information passing from node i to node j, i.e., the directed edge
(i, j) exists when the loss for actions of polytope j can be computed by just observing the loss for
action from the polytope i. However, for each action belonging in a polytope among the σt-induced
upper and lower polytopes sets, we know that the agent could not possibly misreport, due to him
being myopically rational and δ-bounded, and as a result, the loss for all the actions within the up-
per and the lower polytopes sets can be computed! As a result, the independence number of this
feedback graph is αG = 1. Using the fact that each polytope p is chosen with probability at least

πt(p) ≥ γ λ(p)
λ(A) ≥ γ

λ(p
δ
(t))

λ(A) we can apply Lemma B.5 for ε = γ
λ(p

δ
(t))

λ(A) and αG = 1 and obtain:

Q1 ≤ 4 log

4λ (A) ·
∣∣Put,σt ⋃P lt,σt∣∣

λ
(
p
δ
(t)
)
· γ

Summing up the upper bounds for Q1 and Q2 we get:

E
αt∼Dt

[
1

Pin
t [αt]

]
≤ 4 log

4λ (A) ·
∣∣Put,σt ∪ P lt,σt∣∣

λ
(
p
δ
(t)
)
· γ

+ λ
(
Pmt,σt

)
�

Lemma B.6 (Second Order Regret Bound). Let q1, . . . , qT be the probability distribution over the
polytopes defined by in Step 15 of Algorithm 2 for the estimated losses ˆ̀(α, rt(α), yt), t ∈ [T]. Then,
the second order regret bound induced by GRINDER is:
T∑
t=1

∑
p∈Pt+1

qt(p)ˆ̀(p, rt(p), yt)−
T∑
t=1

ˆ̀(α?, rt(α
?), yt) ≤

η

2

T∑
t=1

∑
p∈Pt+1

qt(p)ˆ̀(p, rt(p), yt)
2+

1

η
log

(
λ (A)

λ(p)

)
(15)

where p
δ

is the polytope with the smallest Lebesgue measure in the finest partition of space A:
p
δ

= arg minp∈PT \PT λ(p).

Proof. Let Wt =
∑
p∈Pt wt(p). We upper and lower bound the quantity Q =

∑T
t=1 log Wt+1

Wt
. For

the lower bound:

Q =

T∑
t=1

log

(
Wt+1

Wt

)
= log

(
WT

W1

)
(16)

Observe now that in t = 1 there only exists one polytope (the whole [−1, 1]d+1 space), with a
total weight of λ(A) and a probability of 1. In other words, all the actions within this poly-
tope have the same weight, which is equal to 1 (uniformly weighted). As a result, logW1 =

log
(∑

p∈P1

∫
A 1dα

)
= log (λ (A)). For term logWT we have:

logWT = log

∑
p∈PT

wT (p)

 = log

(∫
A
wT (α)dα

)

= log

 ∑
p∈PT \PT

λ(p) exp

(
−η

T∑
t=1

ˆ̀(p, rt(p), yt)

)
+

∫
⋃
PT

exp

(
−η

T∑
t=1

ˆ̀(α, rt(α), yt)

)
dα

(17)

20

where the last equality is due to the fact that not further grinded polytopes have maintained the same
estimated loss, ˆ̀, for all their containing points at each round t and we denote by PT the set of
point-polytopes contained in PT .

Since the horizon T is finite, set PT is essentially a set of points, and it has a Lebesgue measure of
0. Hence, ∫

⋃
PT

exp

(
−η

T∑
t=1

ˆ̀(α, rt(α), yt)

)
dα = 0

Let α? = arg minα∈A
∑T
t=1

ˆ̀(α, rt(α), yt) (i.e., the best fixed action in hindsight among the all
actions after T rounds, irrespective of whether it belongs to

⋃
PT or

⋃
PT \PT) and p

δ
∈ PT \PT

be the polytope with the smallest Lebesgue measure in PT \ PT (i.e., excluding point-polytopes).
Then, denoting by p∗ ∈ PT the polytope where α? belongs to, among the set of active polytopes
PT , Equation (17) becomes can be lower bounded as follows:

logWT = log

 ∑
p∈PT \PT

λ(p) exp

(
−η

T∑
t=1

ˆ̀(p, rt(p), yt)

)
≥ log

λ(p
δ
)

∑
p∈PT \PT

exp

(
−η

T∑
t=1

ˆ̀(p, rt(p), yt)

)
(λ(p) ≥ λ(p

δ
),∀p ∈ PT \ PT)

≥ log

(
λ(p

δ
) · exp

(
−η

T∑
t=1

ˆ̀(p∗, rt (p∗) , yt)

))
(e−x ≥ 0,∀x)

= log

(
λ
(
p
δ

)
· exp

(
−η

T∑
t=1

ˆ̀(α?, rt(α
?), yt)

))
= log

(
λ
(
p
δ

))
− η

T∑
t=1

ˆ̀(α?, rt (α?) , yt)

(18)
As a result:

Q = logWT − logW1 ≥ log

λ
(
p
δ

)
λ(A)

− η T∑
t=1

ˆ̀(α?, rt(α
?), yt) (19)

We move on to the upper bound of Q now. Upper bounding quantity log Wt+1

Wt
we get:

log

(
Wt+1

Wt

)
= log

∫A wt(α) exp
(
−η ˆ̀(α, rt(α), yt)

)
dα

Wt

= log

(∫
A
qt(α) exp

(
−η ˆ̀(α, rt(α), yt)

)
dα

)
≤ log

(∫
A
qt(α)

(
1− η ˆ̀(α, rt(α), yt) +

η2

2
ˆ̀(α, rt(α), yt)

2

)
dα

)
(e−x ≤ 1− x+ x2

2 , x ∈ [0, 1])

≤ log

(
1− η

∫
A
qt(α)ˆ̀(α, rt(α), yt)dα+

η2

2

∫
A
qt(α)ˆ̀(α, rt(α), yt)

2dα

)
(
∫
A qt(α)dα = 1)

≤ −η
∫
A
qt(α)ˆ̀(α, rt(α), yt)dα+

η2

2

∫
A
qt(α)ˆ̀(α, rt(α), yt)

2dα (log(1− x) ≤ x, x ≤ 0)

Summing up for the T rounds the latter becomes:
T∑
t=1

log

(
Wt+1

Wt

)
≤ −

T∑
t=1

η

∫
A
qt(α)ˆ̀(α, rt(α), yt)dα+

T∑
t=1

η2

2

∫
A
qt(α)ˆ̀(α, rt(α), yt)

2dα

(20)

21

Combining the upper and lower bounds of Equations (19) and (20) we get that:
T∑
t=1

∫
A
qt(α)ˆ̀(α, rt(α), yt)dα−

T∑
t=1

ˆ̀(α?, rt(α
?), yt) ≤

η

2

T∑
t=1

∫
A
qt(α)ˆ̀(α, rt(α), yt)

2dα+
1

η
log

 λ (A)

λ
(
p
δ

)

�

We are now ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. By taking the expectation with respect to distribution Dt in Lemma B.6 we
get that:
T∑
t=1

∫
A
qt(α) E

Dt

[
ˆ̀(α, rt(α), yt)

]
dα−

T∑
t=1

E
Dt

[
ˆ̀(α?, rt(α

?), yt)
]
≤

≤ η

2

T∑
t=1

∫
A
qt(α) E

Dt

[
ˆ̀(α, rt(α), yt)

2
]
dα+

1

η
log

 λ (A)

λ
(
p
δ

)

Combining Lemmas B.2, B.3 with the latter we get:
T∑
t=1

∫
A
qt(α)`(α, rt(α), yt)dα−

T∑
t=1

`(α?, rt(α
?), yt)

≤
T∑
t=1

η

2

∫
A

qt(α)

Pin
t [α]

dα+
1

η
log

 λ (A)

λ
(
p
δ

)

≤
T∑
t=1

η

∫
A

πt(α)

Pin
t [α]

dα+
1

η
log

 λ (A)

λ
(
p
δ

)
 (πt(α) ≥ (1− γ)qt(α) and γ ≤ 1

2)

≤
T∑
t=1

η

4 log

4λ (A)
∣∣Put,σt ⋃P lt,σt∣∣

γ · λ
(
p
δ
(t)
)

+ λ
(
Pmt,σt

)+
1

η
log

 λ (A)

λ
(
p
δ

)

(Lemma B.4)

Using the fact that
∫
A πt(α)dα ≤

∫
A qt(α)dα+ γ, the latter becomes:

R(T) ≤ γT + η

T∑
t=1

4 log

4λ (A)
∣∣Put,σt ⋃P lt,σt∣∣

γ · λ
(
p
δ
(t)
)

+ λ
(
Pmt,σt

)+
1

η
log

 λ (A)

λ
(
p
δ

)

Setting γ = η:

R(T) ≤ η
T∑
t=1

1 + 4 log

4λ (A)
∣∣Put,σt ⋃P lt,σt∣∣

η · λ
(
p
δ
(t)
)

+ λ
(
Pmt,σt

)+
1

η
log

 λ (A)

λ
(
p
δ

)

which can be relaxed to:

R(T) ≤ η
T∑
t=1

1 + 4 log

4λ (A)
∣∣Put,σt ⋃P lt,σt∣∣
λ
(
p
δ
(t)
)

+ λ
(
Pmt,σt

)+
1

η
log

 λ (A)

λ
(
p
δ

)

≤ η
T∑
t=1

1 + 4 log

4λ (A)
∣∣Put,σt ⋃P lt,σt∣∣T
λ
(
p
δ

)
+ λ

(
Pmt,σt

)+
1

η
log

 λ (A)

λ
(
p
δ

)

(λ(p
δ
(t)) ≥ λ(p

δ
))

≤ η ·max
t∈[T]

1 + 4 log

4λ (A)
∣∣Put,σt ⋃P lt,σt∣∣T
λ
(
p
δ

)
+ λ

(
Pmt,σt

) · T +
1

η
log

 λ (A)

λ
(
p
δ

)

22

Tuning η to be

η =

√√√√√√√
log

(
λ(A)

λ(p
δ
)

)
maxt∈[T]

{
1 + 4 log

(
4λ(A)|Put,σt

⋃
Plt,σt |T

λ(p
δ
)

)
+ λ

(
Pmt,σt

)}
· T

we get that the Stackelberg regret is upper bounded by:

R(T) ≤ O

√√√√√max
t∈[T]

{
λ
(
Pmt,σt

)
+ 4 log

(
4λ (A)

∣∣Put,σt ⋃P lt,σt∣∣T
λ(p

δ
)

)
+ 1

}
· log

 λ (A)

λ
(
p
δ

)
 · T

Since the actions that belong inPmt,σt are a subset of all the actions inA, then λ

(
Pmt,σt

)
≤ λ(A) = 1.

The set of all polytopes is upper bounded by λ(A)
λ(p

δ
) and hence,

∣∣Put,σt ⋃P lt,σt∣∣ ≤ λ(A)
λ(p

δ
) . Hence, for

the Stackelberg regret we have:

R(T) ≤ O

√√√√log

(
λ(A)

λ(p
δ
)
T

)
· log

(
λ(A)

λ(p
δ
)

)
T

≤ O

√√√√(λ(A) + 1 + 4 log

(
4λ(A)

λ(p
δ
)
· λ(A)

λ(p
δ
)
· T

))
· log

(
λ(A)

λ(p
δ
)

)
T

≤ O

√√√√(λ(A) + 1 + 8 log

(
2λ(A)

λ(p
δ
)
· T

))
· log

(
λ(A)

λ(p
δ
)

)
T

≤ O

√√√√log

(
λ(A)

λ(p
δ
)
T

)
· log

(
λ(A)

λ(p
δ
)

)
T

where the O(·) notation hides constants with respect to the horizon T . �

B.3 Remaining Proofs

Lemma B.7. For ε ≤ 1/2, we call P̃t[αt] an ε-approximation oracle to Pin
t [αt], if |P̃t[αt] −

Pin
t [αt]| ≤ εPin

t [αt]. Then, GRINDER run with oracle P̃t[·] instead of Pin
t [αt] achieves Stackel-

berg regretR(T) ≤ O(
√
T log(Tλ(A)/λ(p

δ
)) · log(λ(A)/λ(p

δ
))) + 2εT .

Proof of Lemma B.7. We start by computing how the first moment of estimator ˆ̀changes once you
reweigh with P̃t[·] rather than Pin

t [·]:

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

]
=

∫
A
ft (α′)

`(α, rt(α), yt)1 {α ∈ Nout(α′)}
P̃t[α]

dα′

= `(α, rt(α), yt) ·
Pin
t [α]

P̃t[α]
(21)

Since P̃t[α] ≥ (1− ε)Pin
t [α], then from Equation (21) we have that:

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

]
≤ `(α, rt(α), yt)

1− ε
(22)

Additionally, since P̃t[α] ≤ (1 + ε)Pin
t [α], then from Equation (21) we have that:

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

]
≥ `(α, rt(α), yt)

1 + ε
(23)

23

We turn our attention to the second moment now, for which we will only need an upper bound.

E
αt∼Dt

[
ˆ̀(α, rt(α), yt)

2
]

=

∫
A
ft (α′)

`(α, rt(α), yt)
2
1 {α ∈ Nout(α′)}

P̃t[α]2
dα′ =

`(α, rt(α), yt)
2Pin

t [α]

P̃t [α]
2

≤ 1

(1− ε)2Pin
t [α]

(24)

Lemma B.4 still holds without any change, as it is not affected by the exact definition of ˆ̀(·), and so
does Lemma B.6. Taking expectations in Lemma B.6 we obtain the following:

T∑
t=1

∑
p∈Pt+1

qt(p)E
[
ˆ̀(p, rt(p), yt)

]
−

T∑
t=1

E
[
ˆ̀(α?, rt(α

?), yt)
]

≤ η

2

T∑
t=1

∑
p∈Pt+1

qt(p)E
[
ˆ̀(p, rt(p), yt)

2
]

+
1

η
log

(
λ (A)

λ(p)

)
Applying Equations (22), (23) and (24) on the latter we obtain:

1

1 + ε

T∑
t=1

∫
A
qt(α)`(α, rt(α), yt)dα−

1

1− ε

T∑
t=1

`(α?, rt(α
?), yt)

≤ η

2

1

(1− ε)2

T∑
t=1

∫
A

qt(α)dα

Pin
t [α]

+
1

η
log

(
λ (A)

λ(p)

)
In the latter, applying Lemma B.4, multiplying both sides by 1 − ε and using the fact that ε ≤ 1/2
we obtain the result. �

Lemma B.8. Provided access to algorithms for computing the volume of a polytope and to an
in-probability oracle, GRINDER has runtime complexity O(T d).

Proof of Lemma B.8. With access to algorithms that compute the volume of a polytope and to an
in-probability oracle, the complexity of GRINDER is dependent solely on the number of polytopes
that get activated in the worst case. The latter depends on the number of new boundary hyperplanes
that we introduce in the action space A at each round.

If the sequence of real feature vectors {xt}Tt=1 is chosen adversarially, the number of new hyper-
planes added in each round in A is 2. So, in the worst case, after T rounds we have 2T hyperplanes
in general position in a d-dimensional space, which from Zaslavsky [34], Stanley et al. [33] are:

|Pt| = O

(
d∑
i=0

(
2T

i

))
= O

(
T d

d!

)
�

C Appendix for Section 5

Lemma C.1. Fix a r = x = (u)d, where by (u)d we denote the d-dimensional vector with u ∈
[1/4, 3/4] in every dimension. There exists a utility model for the agents, and a pair of adversarial
environments U and L such that rt(α) = xt = x,∀α ∈ A,∀t ∈ [T], and the sequence of y1, . . . , yT
is i.i.d. conditional on the choice of the adversary, such that:

max
ν∈{U,L}

min
α?∈A

E
ν

∑
t∈[T]

`(αt, rt(αt), yt)−
∑
t∈[T]

`(α?, rt(α
?), yt)

 ≥ 1

9
√

2

√
T

Proof. We are going to show this for the case where the agents ∀t ∈ [T] are truthful, i.e., they decide
to report rt(α) = xt,∀α ∈ A,∀t ∈ [T]. Of course, the learner does not know (and cannot infer)
that, so fix a δ > 0 for the δ-boundedness of the agents’ utility function. We will prove the lemma

24

only for deterministic strategies for the learner. As is customary, the claim for general strategies can
be concluded by averaging over the learner’s internal randomness and Fubini’s theorem.

Fix an ε > 0, and a scalar u ∈ [1/4, 3/4], and define the adversarial environments as follows: U is
such that yt = +1 with probability 1/2 + ε and yt = −1 with probability 1/2 − ε, and L is such
that yt = −1 with probability 1/2 + ε and yt = +1 with probability 1/2− ε. This means that under
U , the majority of times the label is +1, and under L, the majority of times the label is −1. As a
result, under U , any action α such that 〈α,x〉 ≥ 2δ is optimal and under L, any action α such that
〈α,x〉 ≤ −2δ is optimal.

Take a sequence of actions α1, . . . , αT and let T≥δ denote the number of rounds for which 〈αt, r〉 ≥√
dδ, and T≤−δ the number of rounds for which 〈αt, r〉 ≤ −

√
dδ. Since T≤−δ + T≥δ ≤ T we get

that:

E
U

[R(T)] ≥ E
U

[R(T≤−δ)]

≥
∑

t∈[T≤−δ]

[
1 ·
(

1

2
+ ε

)
− 1 ·

(
1

2
− ε
)]

≥ 2εE
U

[T≤−δ] (25)

where the first inequality is due to the fact that `(αt,x, yt) = 0 = `(α∗U ,x, yt),∀t ∈ [T≥δ] and
any optimal action α∗U under U as we reasoned before. The second inequality uses the following
two facts: first, that `(α∗U ,x, yt) = 1,∀t ∈ [T≤−δ], i.e., the best fixed action in hindsight when one
encounters adversarial environment U is an action that estimates the label of x to be 1. Second, that
when playing against environment U , a learner incurs loss of 1 every time that she predicted the
label of x to be −1 (which happens in at least all T≤−δ rounds), and the actual label was 1 (which
happens with probability 1/2 + ε). Similarly, we also see that

E
L

[R(T)] ≥ 2εE
L

[T≥δ] (26)

Let PU ,PL the distributions of T≤−δ, T≥δ for adversarial environments U,L respectively, and let
Pm be the distribution of rounds when yt = +1 with probability 1/2. From Pinsker’s inequality,
and denoting by KL(p, q) the KL-divergence between distributions p, q, we have the following:

E
U

[T≤−δ] ≥ E
m

[T≤−δ]− T
√

KL(PU ,Pm)

2
(27)

and

E
L

[T≥δ] ≥ E
m

[T≥δ]− T
√

KL(PU ,Pm)

2
(28)

Then, from the data processing inequality for the KL-divergence we get:

KL
(
P
U
, P
m

)
≤ TKL

(
Bern

(
1

2
+ ε

)
, Bern

(
1

2

))
≤ 4Tε2 (29)

and

KL
(
P
L
, P
m

)
≤ TKL

(
Bern

(
1

2
+ ε

)
, Bern

(
1

2

))
≤ 4Tε2 (30)

Plugging in Equations (29) and (30) in Equations (27) and (28) we get:

E
U

[T≤−δ] ≥ E
m

[T≤−δ]− Tε
√

2T

and
E
L

[T≥δ] ≥ E
m

[T≥δ]− Tε
√

2T

Finally, averaging Equations (25) and (26) and using the latter two Equations we get:

max
ν∈{U,L}

E
ν

[R(T)) ≥ EU [R(T)] + EL [R(T)]

2
≥ ε

(
T − 2εT

√
2T
)

(31)

Tuning ε = 1
3
√

2T
gives the result. �

25

Proof of Theorem 5.1. We now assume without loss of generality that 2κ = λ(A)/λ(p̃δ) for some
constant κ. Let Φ, such that Φ = log

(
λ(A)
λ(p̃δ)

)
, be a set of phases created from T

Φ consecutive rounds
in T . We create the following problem instance described for clarity in 2 dimensions, and using
truthful15 agents.

First focus on phase φ = 1 with feature vector xt = u = (1/2, 1/2), and specify the adversarial
environments U and L exactly as in Lemma C.1. Then, after T/Φ rounds one of the two adversarial

environments must have caused regret of at least
√

T
162Φ (Lemma C.1). If that environment was U ,

then it means that the majority of the labels for u is +1 and hence, the best-fixed action in hindsight
is α∗U such that 〈α∗U ,u〉 ≥ 2δ. So fix the next phase’s feature vector to be xt = u = (1/2, 5/8).
Otherwise, if that environment was L, then it means that the majority of the labels for u is −1 and
hence, the best-fixed action in hindsight is α∗L such that 〈α∗L,u〉 ≥ 2δ and you should fix the next
feature vector to be xt = u = (1/2, 3/8). The reason for making this seemingly arbitrary choice is
that we need to guarantee that one of the best-fixed actions for all previous phases, has survived and
is still in the active set of actions in the current phase.

The general pattern that we follow is the following. At phase φ ∈ [Φ], choose feature vector
xφ =

(
1
2 ,

1
4

(
1 + κφ · 2φ

))
, where κφ is a phase-specific constant defined as follows. If at phase φ,

the adversarial environment incurring Stackelberg regret
√

T
162Φ was environment U , then, κφ+1 =

2κφ+ 1, else κφ+1 = 2κφ−1. This is enough to establish that at any phase φ, there exists an action
that would have been the best-fixed for all previous phases despite which sequence of adversarial
environmentsU,L occurred. Another way to view this is similar to the polytope partitioning outlined
in Figure 3; presenting these feature vectors, we can guarantee that the polytope that held the best-
fixed action so far, is still active. As a result, the regret for all Φ phases is equal to the sum of
regrets of each phase. Additionally, the Lebesgue measure of the smallest polytope is p

δ
(φ) and is a

non-increasing function of the phases, even if it is announced to the learner that δ = 0. As a result,

E

∑
t∈[T]

`(αt, rt(αt), yt)

−min
α?∈A

E

∑
t∈[T]

`(α?, rt(α
?), yt)

 ≥ log

(
λ(A)

λ(p̃δ)

)
1

9
√

2

√√√√ T

log
(
λ(A)
λ(p̃δ)

)
�

D Appendix for Section 4.1

D.1 Implementing GRINDER for Continuous Action Spaces

In order to implement GRINDER, we used the polytope library16, which is part of the TuLiP python
package. Other than some rounding-error fixes, we did not intervene with the core methods of the
package.

In order to implement the 2-stage action draw method, we first chose a polytope (according to
the probability function prescribed by GRINDER) and then, by using rejection sampling from the
bounding box around the polytope, we chose the action associated with it. Note that this is equivalent
to the theoretical 2-stage draw.

In order to speed up our algorithm’s performance, we also used the heuristic of bounding the allow-
able volume of any polytope to be greater than or equal to 0.01, but in all the simulations that we
tried, we saw comparable regret results even without the heuristic.

D.2 Logistic Regression Oracle

In this subsection, we will outline our implementation of the logistic regression algorithm on the
agents’ past data, which serves as an estimate of the in-probability for each action. For ease of

15This way we establish the creation of the σ-t induced polytopes from the way that we construct the sequence
of datapoints.

16https://github.com/tulip-control/polytope/tree/master/requirements

26

https://github.com/tulip-control/polytope/tree/master/requirements

Figure 6: GRINDER vs. EXP3 for utility function from Eq. (32). From left to right: discrete A
(accurate and regression oracle), continuous A with δ = 0.05, 0.10, 0.15 and continuous A with
δ = 0.05, 0.3, 0.5. Solid lines correspond to average regret/loss, and opaque bands correspond to
10th and 90th percentile.

exposition, we provide the description of the oracle for the case of a predefined action set, and
subsequently, we outline the way it generalizes to the continuous implementation.

Before we embark on this, allow us first to observe that we already have a very crude (but potentially
useful) lower bound for every action j ∈ A. Indeed, each action always updates itself, and actions
that belong in the upper and lower polytope sets are always updated by all actions within these sets.
The latter is due to the fact that for any hyperplane chosen within these sets, there is no possible
manipulation from the perspective of the agent. We denote this crude lower bound for each action
j ∈ A by cj .

Labels are defined as lji = 0 if action j was not updated at round i17, and 1 otherwise. As a first step,
this oracle computes for each action j ∈ A the probability that each action from A updates j, by
using a logistic regression18 with feature vectors the set H1:t, and Lj1:t as the labels. Let pji , i ∈ A
correspond to the output probabilities, i.e., pji encodes the probability that action j will be updated
by action i. The in-probability of action j is ultimately defined as:

in

P[j] = max

{∑
i∈A

pjiπt[i], c
j

}

At a high-level, it is not hard to see how this can generalize to the continuous grinding case; instead
of actions, one now uses whole polytopes. The implementation, however, becomes significantly
messier, as we need to propagate the history of past data for each polytope to its grinded sub-
polytopes.

D.3 Different Utility Function and Distribution of Datapoints

The utility function that we assume for the agents at this subsection, is similar to the one studied by
Dong et al. [17], specifically:

ut(αt, rt(αt), yt) = δ · 〈αt, rt(αt)〉 − ‖xt − rt(αt)‖2 (32)

for values of δ = 0.05, 0.10, 0.15, 0.3, 0.5. Similarly to the paper’s main body, we run GRINDER
against EXP3 for a horizon T = 1000, where each round was repeated for 30 repetitions.

Fig. 6 presents the results for the case where the +1 labeled points are drawn as
xt ∼ (N (0.7, 0.3),N (0.7, 0.3)) and the −1 labeled points are drawn from xt ∼
(N (0.4, 0.3),N (0.4, 0.3)). The performance of GRINDER compared to EXP3 is similar to the one
that we saw in Sec. 4.1 for the case of the different utility function. GRINDER outperforms EXP3,
and its performance degrades as the power of the agent (i.e., δ) increases. We also see that in this
case, the regression oracles are performing slightly worse that the regression oracles for the case of
the utility function analyzed in Sec. 4.1.

17In other words, action was at a distance less than 2δ from the best-response of the round.
18Technically, we run a different logistic regression for every action in A.

27

Figure 7: GRINDER vs. EXP3 for “harder” distribution of labels. From left to right: discrete A
(accurate and regression oracle), continuous A with δ = 0.05, 0.10, 0.15 and continuous A with
δ = 0.05, 0.3, 0.5. Solid lines correspond to average regret/loss, and opaque bands correspond to
10th and 90th percentile.

Finally, in Fig. 7 we present the results of our simulations of running GRINDER against EXP3, when
the agents’ utility function is defined by Equation (32), and the distribution of labeled points is
the following: the +1 labeled points are drawn as xt ∼ (N (0.6, 0.4),N (0.4, 0.6)) and the −1
labeled points are drawn from xt ∼ (N (0.4, 0.6),N (0.6, 0.4)). We note that while GRINDER still
outperforms EXP3 its performance has become worse than what we saw in Fig. (6). This is due to
the fact that in this new distribution of points creates much higher overlap of labels and there are
fewer points for which a perfect linear classifier exists. This is also exhibited by the fact that EXP3’s
performance is getting better in the horizon of T rounds compared to any single fixed action.

28

