Online learning with dynamics:
A minimax perspective

Kush Bhatia Karthik Sridharan
EECS, UC Berkeley CS, Cornell University
kush@cs.berkeley.edu sridharan@cs.cornell.edu
Abstract

We study the problem of online learning with dynamics, where a learner interacts
with a stateful environment over multiple rounds. In each round of the interaction,
the learner selects a policy to deploy and incurs a cost that depends on both the
chosen policy and current state of the world. The state-evolution dynamics and the
costs are allowed to be time-varying, in a possibly adversarial way. In this setting,
we study the problem of minimizing policy regret and provide non-constructive
upper bounds on the minimax rate for the problem.

Our main results provide sufficient conditions for online learnability for this setup
with corresponding rates. The rates are characterized by: 1) a complexity term
capturing the expressiveness of the underlying policy class under the dynamics
of state change, and 2) a dynamic stability term measuring the deviation of the
instantaneous loss from a certain counterfactual loss. Further, we provide matching
lower bounds which show that both the complexity terms are indeed necessary.

Our approach provides a unifying analysis that recovers regret bounds for several
well studied problems including online learning with memory, online control
of linear quadratic regulators, online Markov decision processes, and tracking
adversarial targets. In addition, we show how our tools help obtain tight regret
bounds for a new problems (with non-linear dynamics and non-convex losses) for
which such bounds were not known prior to our work.

1 Introduction

Machine learning systems deployed in the real-world interact with people through their decision
making. Such systems form a feedback loop with their environment: they learn to make decisions
from real-world data and decisions made by these systems in turn affect the data that is collected. In
addition, people often learn to adapt to such automated decision makers in an attempt to maximize
their own utility rendering any assumption on the data generation process futile. Motivated by these
aspects of decision making, we propose the problem of online learning with dynamics which involves
repeated interaction between a learner and an environment with an underlying state. The decisions
made by the learner affect this state of the environment which evolves as a dynamical system. Further,
we place no distributional assumptions on the learning data and allow this to be adversarial.

Given such a setup, a natural question to ask is how does one measure the performance of the learner?
Classical online learning studies one such notion of performance known as regret. This measure
compares the performance of the learner to that of a fixed best policy in hindsight, when evaluated on
the same states which were observed by the learner. Such a measure of performance clearly does not
work for the above setup: if we would have deployed a different policy, we would have observed
different states of the environment. To overcome this, we study a counterfactual notion of regret,
called Policy Regret, where the comparator term is the performance of a policy on the states one
would have observed if this policy was deployed from the beginning of time.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Such a notion of regret has been studied in the online learning literature for understanding memory
based adversaries [20, 4, 5] and more recently, for the study of specific reinforcement learning
models [11, 1, 10]. However, a vast majority of these works have focused on known and fixed models
of state evolution, often restricting the scope to linear dynamical systems. Further, these works have
focused on simplistic policy classes as the comparators in their notion of policy regret. Contrast this
with the vast literature on statistical learning [28, 6] and classical online learning [22] which study
the question of learnability in full generality; for arbitrary losses and general function classes.

Our work is a step towards addressing this gap. We study the problem of learnability for a class
of online learning problems with underlying states evolving as a dynamical system in its full gen-
erality. Our main results provide sufficient conditions (along with non-asymptotic upper bounds)
on when such problems are learnable, that is, can have vanishing policy regret. Our approach is
non-constructive and provides a complexity term that provides upper bounds on the minimax rates
for these problems. Further, we provide lower bounds showing that for a large class of problems, our
upper bounds are tight up to constant factors. By studying the problem in full generality, we show
how several well-studied problems in the literature comprising online Markov decision processes [1 1],
online adversarial tracking [1], online linear quadratic regulator [10], online control with adversarial
noise [2], and online learning with memory [5, 4] can be seen as specific examples of our general
framework. We recover the best known rates for a majority of these problems, often times even
generalizing these setups. We also provide examples where, to the best of our knowledge, previous
techniques are not able to obtain useful bounds on regret; however using our minimax tools, we are
able to provide tight bounds on the policy regret for these examples.

Formally, we consider the setup where X denotes an arbitrary set of states, II an arbitrary class of
policies and Z an arbitrary instance space. Given this, the interaction between the learner and nature
can be expressed as a T  round protocol where on each round ¢ € [T], the learner picks a policy m; € I1,
the adversary simultaneously picks instance (z¢,(;) € Z. The learner suffers loss ¢( 7, x¢, 2;) and
the state of the system evolves' as z4,1 < & (x4, 7, (), where @ is known to the learner. The goal
of the learner is to minimize policy regret

T T
Regf;’l = Zﬁ(ﬂ't,mt,zt) — inf Zﬁ(ﬂ,xt[ﬂ'(t*l),gzt_l],zt) ,
t=1

mell ¢=1

where x; are the states of the system based on learners choices of policies and z; [W(t_l), Cri-1]
represents the state of the system at time ¢ if the policy 7 was used the previous ¢ — 1 rounds. We refer
to the loss £(r, z: [ ¢1..1], z¢) as the counterfactual loss of policy . Notice that dynamics ®
being fixed or known in advance to the learner is not really restrictive since an adversary can encode
arbitrary state dynamics mapping in (;’s and ® can just be seen as an applicator of these mapping.

Our contributions. We are interested in the following question: for a given problem instance
(I, Z,®, ¢), is the problem learnable, that is, does there exists a learning algorithm such that policy

regret is such that Reg?lf" =0o(T). Below we highlight some of the key contributions of this paper.

1. We show that the minimax policy regret for any problem specified by (II, Z, ®, £) can be
upper bounded by sum of two terms: i) a sequential Rademacher complexity like term for
the class of counterfactual losses of the policy class, and ii) a term we refer to as dynamic
stability term for the Empirical Risk Minimizer (ERM) (or regularized ERM) algorithm.

2. We analyze the problem in the dual game. While in most cases ERM does not even have
low classical regret let alone policy regret, we show that ERM like strategy in the dual game
can lead to the two term decomposition of minimax policy regret we mention above.

3. Ours is the first work that studies arbitrary online dynamical systems, and provides an
analysis for general policy classes and loss functions (possibly non-convex).

4. We provide lower bounds that show that our sufficient conditions are tight for a large class
of problem instances showing that both the terms in our upper bounds are indeed necessary.

5. We delineate a number of previously studied problems including online linear quadratic
regulator, and online learning with memory for which we recover rates. More importantly, we
provide examples of new non-convex and general online learning with dynamics problems
and obtain tight regret bounds. For these examples, none of the previous methods are able to
obtain any non-degenerate regret bounds.

while we consider deterministic dynamics here, Section 2 considers general dynamics with stochastic noise



Related work. The classical online learning setup [8] considers a repeated interactive game between
a learner and an environment without any notion of underlying dynamics. Sequential complexity
measures were introduced in [22] to get tight characterization of minimax regret rates for the classical
online learning setting. They showed that for the class of online supervised learning problems, one
can upper and lower bound minimax rate in terms of a sequential Rademacher complexity of the
predictor class. The works [18, 7] provided an analog of VC theory for online classification and the
sequential complexity measures in work [22] provided such a theory for general supervised online
learning. This paper can be seen as deriving such characterization of learnability and tight rates
for the problem of online learning with dynamics. In the more general setting we consider, while
the main mathematical tools introduced in [22] are useful, they are not by themselves sufficient
because of the complexities of policy regret and the state dynamics. This is evident from our upper
bound which consists of two terms (both of which we show are necessary) and only one of them is a
sequential Rademacher complexity type term.

Another line of work closes related ours is that on the theory of optimal control (see [17] for a review).
Linear dynamical systems with simple zero mean noise models like Gaussian noise for state dynamics
have been extensively studied (see the surveys [19] and [14] for an extensive review). While majority
of the work in control have focused on linear dynamics with fixed noise models, H., control (and
more generally robust control) literature has aimed at extending the setting to worst case perturbations
(see [26]). However these works focus on cumulative costs and are often not practical for machine
learning scenarios where such algorithms tend to be overly conservative.

There has been recent work dealing with adversarial costs and linear dynamics with either stochastic
or adversarial noise. Online Markov decision processes [1 1], Online Adversarial Tracking [1] and
Online Linear Quadratic Regulator [10, 25] are all examples of such work that deal with specific
form of possibly adversarially chosen cost functions, albeit the loss functions in these problems are
very specific and the dynamics are basically linear with either fixed stochastic noise or no noise.
Perhaps the closest comparison to our work is the work by Agarwal et. al [2] (and also [3, 12]) where
adversarial but convex costs, linear policies and linear dynamics with an adversarial component
are considered. In contrast, we consider arbitrary class of policies, both adversarially chosen costs
(possibly non-convex) and dynamics that are presented on the fly and arbitrary state space.

2 Online learning with dynamics

We now formally define the online learning with dynamics problem. We let X’ represent the state
space, I denote the set of learner polices, and Z = Z, x Zg denote the space of adversary’s moves.

2.1 Problem setup

The problem of online learning with dynamics proceeds as a repeated game between a learner and
an adversary played over 7" rounds. The state of the system at time ¢, denoted by z; € X, evolves
according to a stochastic dynamical system as x;1 = ®(xy, 7, () + wy, where @ : X x[Ix Zg - X
is the transition function and w; ~ D,, is a zero-mean additive noise. The transition function & is
allowed to depend on adversary’s action (; allowing the dynamics to change across time steps. We
assume that the dynamics function ® and distribution D,, are fixed apriori and are known to the
learner before the game begins.

Given these dynamics, the repeated online game between the learner and the adversary starts at an
initial state 1 proceeds via the following interactive protocol:

Onroundt=1,...,T,
o the learner picks policy 7 € IT, adversary simultaneously selects instance (2;,(;) € Z

* the learner receives payoff (loss) signal £(my, x¢, z¢)
* the state of the system transitions to x¢+1 = ®(x¢, 7, (t) + Wy

We consider the full information version of the above game: the learner gets to observe the instances
(2t, () at time ¢. The objective of the learner is to minimize, in expectation, the policy regret

T T
RengOI = ZE[f(ﬂt,xt[m:t—l,wlzt—l,Cl:t—1]72t)] —inf E Zé(ﬂ'>xt[7r(t71)7wl:t—hCl:t—lL 2t) (1)

t=1w mwell w [ ¢=1



with respect to a policy class II and dynamics model ®. In the above definition, the notation
Z¢[T1:-1, W1:e-1, C1:4-1 | makes the dependence of the state x; explicit on the previous policies, noise
and adversarial actions. For notational convenience, we will often drop dependencies on the noise
variables w and adversarial actions ( when it is clear from context.

Observe that in the definition of policy regret, the loss depends on the state of the system at that
instance which can be potentially very different for the learner and a comparator policy 7. This lends
an additional source of complexity to the interactive game, and can make the problem much harder
than its counterpart without a dynamics.

The problem of online learning with dynamics generalizes the online learning problem where the
loss functions ¢(m,x,z) = £(m, z) are independent of the underlying state variables. Indeed, our
notion of policy regret in equation (1) reduces to the notion of external regret studied in the online
learning literature. Also, the problem of online learning with memory involves adversaries which
have bounded memory of length m and thus the loss incurred by the learner at any time is a function
of its past m moves. By setting the state variable x; = [7t_m, ..., 7t-1], the dynamics function
&(zy,m) = [T4—ms1,---,7t], and the noise disturbances w; = 0, we can see that the bounded
memory adversaries can be seen as a special case of our problem with dynamics.

2.2 Minimax Policy Regret

Given the setup of the previous section, we study the online learning with dynamics game between
the learner and the adversary through a minimax perspective. Studying this minimax value allows
one to understand the limits of learnability for a tuple (II, Z, ®, ¢): upper bounds on this value imply
existence of algorithms with corresponding rates while lower bounds on this values represent the
information-theoretic limits of learnability. In the following lemma, we formally define the value
Vr(I1, Z, ®, £) of the minimax policy regret for a given problem which informally is the policy regret
of best learning algorithm against the worst case adversary.

Proposition 1 (Value — Dual Game). Let Q and P denote the sets of probability distributions over
the policy class 11 and the adversarial actions Z respectively, satisfying the necessary conditions for
the minimax theorem to hold. Then, we have that*

Vr(I1, Z,®,¢0) := << inf . sup E >>T [Regfﬁ"] - << supinf E »T [Regf;"] ‘ ?)

qt€Q (z¢,Ce)eZ me~at |l ,_q PteP 7t (2¢,6e)~pell 4_q

The proof of the proposition is deferred to Appendix A. The proof proceeds via a repeated application
of von Neumann’s minimax theorem (for instance see [23, Appendix A]). Notice that the minimax
theorem changes the order of the online sequential game defined in the setup above: at every time step
t, the adversary proceeds first and outputs a distribution p, over instances and the learner responds
back with 7; after having observed the distribution. The actual loss instance (z¢, (;) is then sampled
from the revealed distribution p,. On the other hand, the comparator remains the same as before: the
best policy 7 € II in hindsight. This reversed game, termed the Dual Game, forms the basis of our
analysis and allows us to study the complexity of the online learning with dynamics problem.

3 Upper bounds on value of the game

Our main result in this section concerns an upper bound on the value of the sequential game
Vr(1I, Z,®,¢) relating it to the study of certain stability properties of empirical minimizers and
stochastic processes associated with them. Before we proceed to describe the main result, we revisit
some preliminaries and setup notation which would be helpful in describing the main result.

Sequential Rademacher complexity. The notion of Sequential Rademacher Complexity, intro-
duced in [22], is a natural generalization of the Rademacher complexity for online learning. However,
observe that the loss of the comparator term in the definition of policy regret in equation (1) depends
on the adversarial actions (y:;—1 through the dynamics and z; through the loss function ¢. We define
the following version of sequential Rademacher complexity for such dynamics based losses.

(.. ))?:1 denotes interleaved application of the sequence of operator inside. For example, for T' = 2,

. 2 . .
«suppt infg, >>t:1 [-] = sup,, infy, sup,, infg,[-]



Definition 1. The Sequential Rademacher Complexity of a policy class 11 with respect to loss function
01D x X x Zp = R and dynamics ® : X x Il x 25 - X is defined as

T
i)‘{sz‘f‘?l(fol'[)::(sup)IE6 sugZetﬁ(mxt[Cl(e),...,Ct_l(e)],zt(e)) ,
z,¢ mell ¢=1

where the outer supremum is taken over Z = Zy x Zg-valued trees > of depth T and € = (e1, ..., er)
is a sequence of i.i.d. Rademacher random variables.

A similar definition was also used by Han et al. [13] in the context of online learning with strategies
where the notion of regret was defined w.r.t. a set of strategies rather than a fixed action. As compared
with the classical online learning problem, the above comprises problems where the loss at time ¢
depends on the complete history (1, ...,(;—1) of the adversarial choices along with z;. As noted
by [13], such dependence on the the adversary’s history can often make the online learning problem
harder to learn compared with the online learning problem.

Empirical Risk Minimization (ERM). Given a sequence of loss functions ¢; : F — R for ¢ € [T],
the ERM with respect to a function class F is defined to be the minimizer of the cumulative loss
with ferm,7 € argmin ¢z Zthl £.(f). In the statistical learning setup, the problems of supervised
classification and regression are known to be learnable with respect to a function class F if and only
if the empirical risks uniformly converge over this class F to the population risks. In contrast, our
results provide sufficient conditions for learnability in terms of certain stability properties of such
empirical risk minimizers.

Dynamic stability. We introduce the notion of dynamic stability which captures the stability of
an algorithm’s interaction with the underlying dynamics ®. In order to do so, we define a notion of
counterfactual loss E? of a policy 7 as the loss incurred by a learner which selects 7 for time 1 : £.

Definition 2 (Counterfactual Losses). Given a sequence of adversarial actions (1.4-1, 2¢, dynamics
function ®, and noise distribution D,,, the counterfactual loss of a policy 7 at time t is

0 (m,Cree1,2¢) i= B [5(71',17t[7T(t71),w1:t—17C1:t—1],Zt)] :

wWs~Dy

With this definition, observe that the comparator term in the value Vr in equation (2) is in fact a
cumulative sum of counterfactual losses for a policy 7. Any algorithm A that plays a sequence of
policies {; } in the online game incurs an instantaneous loss ¢(my, z¢[m1:4-1, C1:4-1], 2¢) at time ¢. In
comparison, the counterfactual loss % (¢, C1:¢-1, 2¢ ) represents a scenario where the algorithm com-
mits to the policy m; from the beginning of the game. Our notion of dynamic stability of an algorithm
is precisely the deviation between these two types of losses: instantaneous and counterfactual.
Definition 3 (Dynamic Stability). An algorithm A is said to be {B; }-dynamically stable if for all
sequences of adversarial actions [(21,(1),- .., (zr,(r)] and time instances t € [T]

|]Ew1;t,1 [(7re, Te[T1:0—1, Wit—1, Crit=1], 22 ) ] —fq)(m, Ciee-1, Zt)‘ < B: where w=A((21:t-1,C1:t-1)).

It is interesting to note that if that loss functions are independent of the underlying states, that is

{(m,x,2) = {(, ), then any algorithm is dynamically stable in a trivial manner with the stability
parameters (3; = 0 for all time instances ¢.

With these definitions, we now proceed to describe our main result. Recall that Proposition 1 translates
the problem of studying the value of the game Vr (I, Z, @, ¢) to that of studying the policy regret in
a dual game. In this dual game, the learner has access to the set of adversaries distribution {ps}%_; at
time ¢ and the policy 7, can be a function of these. For a regularization function 2 : IT —» R, we
denote the regularized ERMs with respect to function class IT and counterfactual losses £® by

t
TRerm,¢ € argmin Y B [0% (7, Crso1, 25) |+ A Q1) (3)
mell s=1Zs
where \ > 0 is the regularization parameter. The following theorem provides an upper bound on
the value Vr in terms of the dynamic stability parameters of the regularized ERMs above as well a
sequential Rademacher complexity of the effective loss class £* o Il := {¢®(7,-) : weIl}.

A Z-valued tree z of depth d is defined as a sequence (z1, . . ., z4) of mappings z; : {1}~ > Z (see [21])



Theorem 1 (Upper bound on value). For any online learning with dynamics instance (I, Z, @, (),
consider the set of regularized ERMs given by eq. (3) with regularization function §) and parameter
A > 0 having dynamic stability parameters { ﬁRERM’t}il. Then, we have that the value of the game

T
Vr(IL Z,®,0) < " Brerm,e + 2850 (£ o IT) + 2X - sup Q(7r) . 4)

t=1 mell

The complete proof of the above theorem can be found in Appendix B. A few comments on Theorem 1
are in order. The theorem provides sufficient conditions to ensure learnability of the online learning
with dynamics problem. In particular, the two terms Term (I) = Zthl Brerm,: and Term (II) =
R (¢% oTI) contain the main essence of the upper bound. Term (T) concerns the dynamic mixability
property of the regularized ERM in the dual game. If there exist approximate minimizers (regularized)
of the sequence of counterfactual losses within the policy class II such that mrgrm,¢ 1s uniformly
close to mrerm,¢+1 the dynamic stability parameters can be made to be small. Term (II) comprises of
the sequential Rademacher complexity of the loss class £® o IT which involves the underlying policy
class IT as well as the counterfactual loss ¢®. This measure of complexity can be seen as one which
corresponds to an effective online game where the the loss at time ¢ depends on the adversarial actions
up to time ¢. Compare this to the instantaneous loss £(7y, [ 7m1:4-1, (1:4-1], 2¢) Which depends on
both the policies as well as the adversarial actions up to time ¢. Observe that for the classical online
learning setup without dynamics, the dynamic stability parameters Srerm,+ = 0. On setting the value
of regularization parameter A\ = 0, we recover back the learnability result of Rakhlin et al. [22].

We would like to highlight that the complexity-based learnability guarantees of Theorem 1 are
non-constructive in nature. In particular, the theorem says that any non-trivial upper bounds on
the stability and sequential complexity terms would guarantee the existence of an online learning
algorithm with the corresponding policy regret. Our minimax perspective on the problem allows us
to study the problem in full generality without making assumptions with respect to the policy class II,
adversarial actions Z and the underlying (possibly adversarial) dynamics ®, and provide sufficient
conditions for learnability.

Given the upper bound on the value V1 (II, Z, ®, ¢), one can observe that there is a possible tension
between the two complexity terms: while dynamic stability term promotes using policies which are
“similar" across time steps, the regularized complexity term seeks policies which are minimizers of
cumulative losses and might vary across time steps. In order to balance similar trade-offs, a natural
Mini-Batching Algorithm has been proposed in various works on online learning with memory [5]
and online learning with switching costs [9]. The key idea is that the learner divides the time 7" into
intervals of length 7 > 0 and commits to playing the same strategy over this time period.

Let us denote any such mini-batching algorithm by A, and the corresponding minimax value
restricted to this class of algorithms by Vr . (II, Z, ®, ) where the infimum in equation 2 is taken
over all mini-batching algorithms .4 ,. Similar to the regularized ERM of equation (3), we define the
following mini-batched ERMs:

; &)

. | merm(t) fort =0 mod 7
ERM,t ~ merm(T[£])  otherwise

where we have used the notation mgrm (t) : = mgrm,; In the following proposition, we prove an upper

bound analogous to that of Theorem 1 for this class of mini-batching algorithms*.

Proposition 2 (Mini-batching algorithms.). For any online learning with dynamics game (11, Z, ®, £),
consider the set of mini-batch ERMs given by equation (5) having dynamic stability parameters
{ﬂERM,t}g;l‘ Then, we have that the value of the game

T
VT(H7 Z7 @76) < lng VT,T(H7 Z? ®7‘€) < ll’lg (Z BERM,t +27- sup m’sl?‘(/t—(éf o H)) I (6)
> >0\ se[r]

where (2 is the counterfactual loss for the s batch.

We defer the proof of the above proposition to Appendix B. In comparison with the upper bound of
Theorem 1, this bound concerns the dynamic stability of the mini-batched ERMS as compared to

*For this class of mini-batching algorithms, we consider an oblivious adversary which cannot adapt to the
randomness of the learner.



their regularized counterparts. Often times, obtaining bounds on the stability parameters { ﬁgRM’t}thl
can be much easier than the ones for regularized ERMS. For instance, it is easy to see that for
the problem of online learning with memory with adversaries having memory m, one can bound
Yi Berm,t = O(mTT) whenever the losses are bounded, providing a natural trade-off between the
two complexity terms.

4 Lower bounds on value of the game

Having established sufficient conditions for the learnability of the online learning with dynamics
problem in the previous section, we now turn to address the optimality of these conditions. Recall
that Theorem 1 and Proposition 2 established upper bounds on the value V- (II, Z, ®, ¢) for instances
of our problem. The following theorem shows that both the upper bounds of equations (4) and (6)
are indeed tight upto constant factors.

Theorem 2 (Lower Bound). For the online learning with dynamics problem, there exist problem
instances {(I1, Z,®,0;)}?_,, a regularization function Q) and a universal constant c¢ > 0 such that

Vr(IL 2,8, 6,) > c- R5((F o T0) (7a)
T
VT(HaZ7q)7€2) Zcing(z /BRERM,t+)\'SupQ(ﬂ-)) (7b)
>0\ =1 mell
z o]
VT(Ha Za (1)763) 2cC: }I_Ilg (; IBERM,t + QTmT;]T(é?) ° H)) ) (7C)

where Srerm,+ and BERM,t are the dynamic mixability parameters of the regularized ERM w.r.t. {5
(eq. (3)) and mini-batching ERM w.r.t. {3 (eq. (5)) respectively.

A few comments on Theorem 2 are in order. The theorem exhibits that the sufficiency conditions
from Theorem 1 and Proposition 2 are indeed necessary by exhibiting instances whose value is lower
bounded by these terms. In particular, equation (7a) shows that the sequential Rademacher term is
necessary, (7b) establishes necessity for the dynamic stability of the regularized ERM, while (7¢)
shows that the mini-batching upper bound is also tight. It is worth noting that these lower bounds
are not instance dependent but rather construct specific examples to demonstrate the tightness of our
upper bound from the previous section. We next present the key idea for the proof of the theorem and
defer the complete details to Appendix C.

Proof sketch. We now describe the example instances which form the crux of the proof for
Theorem 2. Consider the online learning with dynamics game between a learner and an adversary with
the state space X' = {x € R? | |z] < 1} and the set of adversarial actions Zt™ = {z e R? | |z < 1}.
Further, we consider the constant policy class ITjj, = {7 | 7() = f for all states « with f € B4(1)},
consisting of policies 7wy which select the same action f at each state x. With a slight abuse of
notation, we represent the policy m; played by the learner at time by the corresponding d-dimensional
vector f;. Further, we let the dynamics function ®\in (x4, ft,(¢) = fi- We now define the loss
function which consists of two parts, a linear loss and a L-Lipschitz loss involving the dynamics:

EL(ft,mt,Zt):<ft72t)+0(ft,$t) where U(ft,l”t):{Llft_xt'Q for||ft—xt||2£%

1 otherwise
Observe that this example constructs a family of instances one for each value of the Lipschitz constant
of L of the function o. For this family of instances, we establish that the value

VT — for0O<L<1
Vr(Iiin, Z, ®uin, £2) 2 {VIT for1< L < (4T)5 .
25T for L > (4T)3
The proof finally connects these lower bounds to the upper bounds of Theorem 1 and Proposition 2.4

.8

With the lower bounds given in Theorem 2, it is natural to ask whether the sufficient conditions in
Theorem 1 and Proposition 2 are indeed necessary for every instance of the online learning with
dynamics problem. The answer to this question is unsurprisingly No given the generality in which we
study this problem. Consider the following simple instance of the problem:

M=X, Umaxz)=0mz)+[r=2], and x¢q=m,



for any non-negative bounded loss (7, z) € [0,1] for all 7w € II, z € Z,. Consider any policy class
for which 71 (¢® o II) > 0. Both bounds (4) and (6) suggest that the problem is learnable with
rate at least R (¢® o II). However, observe that the indicator term in the loss is quite severe on
the comparator; it ensures that the comparator term is at least 7". Thus, any algorithm which selects
a policy from II at every instance can ensure that the policy regret is at most 0! While the above
example establishes that the sufficient conditions are not necessary in an instance dependent manner,
our next proposition establishes that they are indeed tight for large class of problems instances.

Proposition 3 (Instance-dependent lower bound). a) Given any online learning problem (F, Z;, ()
with a bounded loss function £ : F x Z; — [—1,1], there exists an online learning with dynamics

problem (I1z, Z; x {-1,1},®,0) and a universal constant ¢ > 0 such that
_ T
VT(H]:a Zpx {_lv 1}7<I)7£) 2c Hgg (; BERM,t + 27—%5;?7—([1) ° H)) )

where gy , are the dynamic mixability parameters of the mini-batching ERM w.r:t. € (eq. (5)).

b) Given a policy class 11 and dynamics function ®, there exists an online learning with dynamics
problem (11, Z, ®,{) and a universal constant ¢ > 0 such that

Vr(IL Z,®,0) > c- R (° o IT).

We defer the proof of the proposition to Appendix C. This proposition can be seen as a strengthening
of the lower bounds (7a) and (7c) showing that for a very large class of problems, the upper bound
given by the mini-batching algorithm and the sequential complexity terms are in fact necessary.

5 Examples

In this section, we look at specific examples of the online learning with dynamics problem and obtain
learnability guarantees for these instances using our upper bounds from Theorem 1. For clarity of
exposition, our focus in this section on the scaling of the value V- (I1, Z, ®, £) with the time horizon
T. The proofs in Appendix D explicitly detail out all the problem dependent parameters.

Example 1: Online Isotron with dynamics. Single Index Models (SIM) are class of semi-
parametric models widely studied in the econometric and operations research community. Kalai and
Sastry [16] introduced the Isotron algorithm for learning SIMs and Rakhlin et al [23] established that
the online version of this problem is learnable. Here, we introduce a version of this problem with a
state variable that requires a component of the model to vary slowly across time:

X =R, F={f=(o,w=(w1,w)|o:[-1,1] = [~1,1] 1-Lipschitz, w ¢ R*"" jw;| < 1, |w]2 < 1} ,
Ir={n;|meF, np(z) = forallz e X}, Z, = [-1,1]"" x [-1,1], Za = ¢,
E(Tl'f,:E,Z = (217X7 y)) = (y - O'((X,U))))2 + (251 - w1)2 + ("lj - w1)27 ‘b(ib,ﬂ'(o_’w), C) = W1, Dy =0. (9)
The following corollary establishes the learnability of the online Isotron problem with dynamics.

Corollary 1. For the online Isotron problem with dynamics given by (ILx, Z, ®,¢) in equation (5),
we have that the minimax value

VlSO,T(H]:a Z,9, E) = 6(ﬁ)

It is important to note that as with the online learning problem [23], it is not clear whether a
computationally efficient method attaining the above guarantee exists. »

Example 2: Online Markov decision processes [11]. This example considers the problem of
Online Markov Decision Processes (MDPs) studied in Even-Dar et al. [11]. The setup consists of a
finite state space |X| = S, a finite action space [U/| = A, and

Zi={z]z¢€]0, 1]SXA}, Ze=¢, Uupp ={m | m: X = AU)}, (7, x,2) = 2(z,7(x)),

® given by P: X xU = A(U) with 2’ ~ P(z,7(z)). (10)
With this setup, we now provide a bound on the minimax value V¥DP , assuming, as in [11], that the

underlying MDP is unichain and satisfies a mixability assumption (see Appendix D for details).

Corollary 2. For the online MDP problem given by (Ilypp, Z, ®,£) in equation (5), we have that
the minimax value
Vwop. 7 (vpp, Z,8,0) = O(VT).

The above corollary helps one recover the same O(\/T ) regret bound that was obtained by [11]. #



Example 3: Online Linear Quadratic Regulator [10]. The online Linear Quadratic Regulator
(LQR) setup studied in this section was first studied in Cohen et al. [10]. The setup consists of a LQ
system - with linear dynamics and quadratic costs - where the cost functions are chosen adversarially.
The comparator class consists of a set of strongly stable linear policies (see Appendix D).

X=R% Z,={(Q,R)| Q,R >0, tr(Q),tr(R) < C}, Miqr = {K ¢ R | K is (x,~) - strongly stable},
Zp =@, U(m,x,2) =2 Qu+ (Kz) R(Kz), ®(x,K) = (A+ BK)z, Dy =N (0,1). (11)
With this setup, we now establish the learnability of this problem in the following corollary.

Corollary 3. For the online LOR problem given by (11, qr, Z,®, ¢) in equation (5), we have that the
minimax value _
Vigrr(Migr, Z,®,£) = O(VT).

Note that [10] obtained a similar policy regret bound of O(~+/T') but their analysis only worked for
an oblivious adversary whereas the guarantee of Corollary 3 holds for an adaptive adversary. »

Example 4: Online Control with Adversarial Disturbances [2]. In this example, we consider
a simplified version of the setup from Agarwal et al. [2] where the adversary is allowed to perturb
the dynamics at each time instance along with the loss functions. We consider the LQ version of
the problem where the dynamics are linear and the cost functions quadratic. Similar to the example
above, the comparator class consists of a set of strongly stable linear policies (see Appendix D).

xX=R% Z,={(Q,R) |Q,R>0, tr(Q),tr(R) <C}, Hiqr={K ¢ R4 | K is (k,~y) — strongly stable},
Zs = {C| ¢z < W}, €(m,2,2) =2'Qx + (Kz) R(Kz), ®(x,K,() = (A+ BK)x+(, Dy = ¢. (12)
With this setup, we now establish the learnability of this problem in the following corollary.
Corollary 4. For the Online Control with Adversarial Disturbances problem instance
(I qr, Z, D, ¢) detailed in equation (5), we have that the minimax value
Vaav,r (iR, 2,8, £) = O(VT).

In contrast to Example 3 above, the disturbances in the dynamics are actually controlled by the
adversary instead of being random. Our result above shows that this harder version of the problem is

also learnable at /T rate. *

In addition to these four examples, in Appendix D we consider additional examples of the framework
including online adversarial tracking [1] and a non-linear generalization of the LQ problem [10, 2]
which we call online non-linear control.

Broader Impact

This work is mainly theoretical in nature and hopes to provide theoretical foundations for learning
under dynamical systems. The work is expected to have a broader impact in the future by opening up
research on learning and non-linear dynamical systems with complex policy classes. In the future, we
hope that our work will enable ML systems to be deployed reliably in more reactive environments.
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