
We deeply appreciate constructive and insightful comments from the reviewers.1

Reviewer #12

Computing OCE minimizers. On the one hand, we clarify that Theorems 3 and 6 apply to any approximate OCE3

minimizer, including those given by [40], and Lemma 2 applies to an arbitrary algorithm, even including those not4

minimizing OCE risks. Our results provide generalization guarantees with the same or tighter dependency for algorithms5

given by [40]. We will clarify this point in the revised version. On the other hand, we agree to the reviewer’s point6

that clearly stating the optimization-relevant properties of (inverted) OCE risks may facilitate future works in this7

direction. To this end, we will survey existing results (in the appendix) that are relevant to the optimization of standard8

risk-sensitive measures, e.g., smoothness/convexity properties of CVaR, entropic risk, and mean-variance.9

Prior work on stability & convergence. We believe that R1 refers to (Line 42), where we point to [30]. The work10

[30] considers an MDP setting that where the standard Bellman’s optimality principle cannot handle risk-sensitive11

cases. By contrast, we focus on nonsequential scenarios where such concerns do not arise. We will clarify this point in12

a separated “Related Works” section, along with detailed discussions on relevant literature.13

Reviewer #214

Apparent lack of tailored analysis for risk-sensitivity. We begin by noting that the risk-sensitivity is indeed distilled15

into the smoothness characteristics of the disutility φ(·) in our results, instead of completely disappearing from the16

analysis. The proposed OCE framework enables a deceptively simple treatment of risk-sensitivity by relating the17

problem to risk-neutral learning via contraction principles. Such strategy (similar to what [D+19] did for adversarially18

robust learning) allows us to fully utilize accumulated insights on risk-neutral learning to understand risk-sensitive19

learning, without having to resort to overly complicated machineries (e.g., adapting Dvoretzky-Kiefer-Wolfowitz20

inequality to consider data-dependent weights). Given the significance of the considered problem, we view this as an21

advantage brought by our framework, instead of a weakness. Nevertheless, we also provide several “tailored” proof22

tools, including product hypothesis space analysis (Lines 430–438) and two-sided variance-based characterization of23

OCE (Appendix A.5), may be of readers’ technical interest. We will highlight these points clearly in the main text.24

Vacuity of Rademacher-style analysis for DNNs, and realizability. We thank R2 for pointing this out. While recent25

progress [S+20, N+20] shed new light on the power of Rademacher-style uniform convergence analysis for DNNs,26

we agree to the point that the current tone of the manuscript may be too bold. We will revise the manuscript to avoid27

exemplifying DNNs to make sense of realizability conditions.28

Related works and connection to fair ML. Thank you for this valuable suggestion. We will add a standalone “Related29

Works” section to provide in-depth comparisons with existing statistical learning literature. Also, we will establish30

explicit connections to the fairness risk measures axiomatically defined in [49].31

Reviewer #332

Experiments other than CVaR (points 1&2). Although our main scope is on a theoretical side than an algorithmic33

side, we agree to the reviewer’s point that clarifying optimization properties of OCE risks may help readers grasp the34

potentials of our framework. For this purpose, we will make the following two revisions: (1) We will give a pointer35

to the concurrent work of Li et al. [L+20] (which appeared on arXiv after the submission deadline). Via large-scale36

experiments [L+20], the authors empirically observe that both entropic risk and its inverse can be optimized efficiently37

via standard mini-batch gradient descent, as R3 correctly anticipated. (2) For completeness, we will additionally survey38

existing theoretical results (in the appendix) that are relevant to the optimization for standard risk-sensitive measures.39

Vacuity of Rademacher complexities. We resonate with your concern that any argument regarding the generalization40

properties of deep neural networks requires a delicate care. We will revise the manuscript to avoid exemplifying neural41

networks to support the applicability of realizability conditions.42

Technical benefits. As R3 keenly points out, our primary focus is to establish an effective theoretical framework to43

formalize risk-sensitive learning, instead of pursuing technical exquisiteness. Nevertheless, we believe that several44

proof techniques may be of theoreticians’ interest; for details, see Lines 22–24 of this response.45

Reviewer #446

Suggestions on discussions and proofs. We express our deepest gratitude for the detailed comments, especially on the47

ideas to refine our result and the pointer to L-statistics/estimators. All these valuable comments will be incorporated.48
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