
Appendix

We provide in the Appendix proofs for the major theoretical results. We also discuss the relaxation
for Claim 2, and show the implications from the Tukey’s factorization on unobserved factors that
leads to our final objective in (8). We present the experiment details and the complete numerical
results, including demonstrations on the adversarial training process of the two models.

A.1 Proof for Claim 1

Proof. When taking the exposure mechanism into account, minimizing fθ over the loss is implicitly
doing inffθ Lφ

(
fθ, {p(1), p(−1)}

)
, where

Lφ
(
fθ, {p(1), p(−1)}

)
= E

[
φ
(
Y · fθ(x, z;O)

)]
=

∑
o∈{0,1}

φ
(
fθ(x, z;O = o)

)
p(1)(o) + φ

(
− fθ(x, z;O = o)

)
p(−1)(o).

For any fixed exposure mechanism p(O|x, z), we have

inf
fθ
Lφ
(
fθ, {p(1), p(−1)}

)
=

∑
o∈{0,1}

inf
α

{
φ(α)p(1)(o) + φ(−α)p(−1)(o)

}
=

∑
o∈{0,1}

p(1)(o) inf
α

{
φ(α) + φ(−α)

p(−1)(o)

p(1)(o)

}
.

(A.1)

For each o ∈ {0, 1}, let µ(o) = p(−1)(o)/p(1)(o) and ∆(µ) = − infα
(
φ(α) + φ(−αµ)

)
. Notice

that ∆(µ) is a convex function of µ since the supremum (negative of the infimum) over a set of affine
functions is convex. Since ∆ is convex and continuous, we get:

inf
fθ
Lφ
(
fθ, {p(1), p(−1)}

)
= −

∑
o∈{0,1}

p(1)(o)∆
(p(−1)(o)

p(1)(o)

)
,

which is exactly the f-divergenceD∆(P (1)||P (−1)) induced by ∆. Also, up on achieving the infimum
in (A.1), the optimal fθ is given by solving a∗φ(µ) = arg minα

(
φ(α) + φ(−α)µ

)
.

A.2 Proof for Claim 2 and the relaxation

We first proved the result in Claim 2 and then show the corresponding relaxation given by (5).

Proof. For the estimation P̂ = P/Q̂ of the ideal exposure-eliminated sample, Wc(P̂ , P
∗) ≤ ρ is

equivalent to Wc

(
P/Q̂, P/Q0

)
≤ ρ. The key observation is that when P is given by the empirical

distribution that assigns uniform weights to all samples, the Wasserstein’s distance Wc

(
P/Q̂, P/Q0

)
is convex in Q̂−1 (since c is convex) and Q̂ = Q0 gives Wc

(
P/Q̂, P/Q0

)
= 0. Since we assume

that the propensity scores are all bounded away from zero, so P/Q̂ and P/Q0 exist and and have
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normal behavior. So we able to establish the duality results, since the Slater’s condition holds. Let
h = (x, z, y) ∈ X and X ′ be a copy of X . We have

sup
P̂ :Wc(P̂ ,P∗)≤ρ

∫
δ
(
y, fθ(x, z)

)
dP̂ (h)

= sup
Q̂:Wc

(
P/Q̂,P/Q0

)
≤ρ

∫
δ
(
y, fθ(x, z)

)
q̂(O = 1 |x, z)

dQ̂(h)

= inf
α≥0

sup
Q̂

{∫ δ
(
y, fθ(x, z)

)
q̂(O = 1 |x, z)

dQ̂(h)− αWc

(
P/Q̂, P/Q0

)
+ αρ

}
= inf
α≥0

sup
Q̂

{∫ δ
(
y, fθ(x, z)

)
q̂(O = 1 |x, z)

dQ̂(h)− α inf
γ∈Π

(
P/Q̂,P/Q0

) ∫ c(h,h′)dγ(h,h′) + αρ
}

= inf
α≥0

sup
Q̂

sup
γ∈Π

(
P/Q̂,P/Q0

){∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dγ(h,h′) + αρ

}
,

(A.2)

where in the last line we use the shorthand notation δfθ (h) := δ
(
y, fθ(x, z)

)
and q̂(h) := q̂(O =

1|x, z). Then notice that

sup
Q̂

sup
γ∈Π

(
P
Q̂
, PQ0

) ∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dγ(h,h′) ≤

∫
sup
h∈X

(δfθ (h)

q̂(h)
− αc(h,h′)

)
dQ0(h′),

(A.3)
and we then show that the opposite direction also holds so it is always equality. Let K be the space of
measurable conditional distributions (Markov kernels) from X to X ′, then

sup
Q̂

sup
γ∈Π

(
P
Q̂
, PQ0

) ∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dγ(h,h′)

≥ sup
K∈K

∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dK(h |h′)dQ0(h′).

(A.4)

In the next step, we consider the space of all measurable mappings h′ 7→ h(h′) from X ′ to X ,
denoted by H. Since all the mappings are measurable, the underlying spaces are regular, and δfθ
and c are at least semi-continuous, using standard measure theory arguments for exchanging the
integration and supremum, we get

sup
h(·)∈H

∫ (δfθ(h(h′)
)

q̂
(
h(h′)

) − αc(h(h′),h′
))
dQ0(h′) =

∫
sup
h∈X

(δfθ (h)

q̂(h)
− αc

(
h,h′

))
dQ0(h′),

(A.5)
where the h(·) on the LHS represents the mapping, and the h on the RHS still denotes elements from
the sample space X . Now we let the support of the conditional distribution K(h |h′) given by h(h′).
So according to (A.5), we have:

sup
K∈K

∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dK(h |h′)dQ0(h′)

= sup
h(·)∈H

∫ (δfθ(h(h′)
)

q̂
(
h(h′)

) − αc(h(h′),h′
))
dQ0(h′)

≥
∫

sup
h∈X

(δfθ (h)

q̂(h)
− αc

(
h,h′

))
dQ0(h′)

≥ sup
Q̂

sup
γ∈Π

(
P
Q̂
, PQ0

) ∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dγ(h,h′).

(A.6)
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Combining (A.6), (A.4) and (A.3), we see that

sup
Q̂

sup
γ∈Π

(
P
Q̂
, PQ0

) ∫ (δfθ (h)

q̂(h)
− αc(h,h′)

)
dγ(h,h′) =

∫
sup
h∈X

(δfθ (h)

q̂(h)
− αc(h,h′)

)
dQ0(h′).

(A.7)
Finally, notice that

sup
Q̂

sup
γ∈Π

(
P
Q̂
, PQ0

) ∫ (δfθ (h)

q̂(h)
−αc(h,h′)

)
dγ(h,h′) = sup

Q̂

∫
δfθ (h)

q̂(h)
dQ̂(h)−αWc

(
P/Q̂, P/Q0

)
,

so according to (A.2), we reach the final result:

sup
P̂ :Wc(P̂ ,P∗)≤ρ

∫
δ
(
y, fθ(x, z)

)
dP̂ (h) = inf

α≥0

{
αρ+

∫
sup
h∈X

(δfθ (h)

q̂(h)
− αc(h,h′)

)
dQ0(h′)

}
= inf
α≥0

{
αρ+ sup

Q̂

∫
δfθ (h)

q̂(h)
dQ̂(h)− αWc

(
P/Q̂, P/Q0

)}
.

(A.8)

To reach the relaxation given in (5), we use the alternate expression for the Wasserstein distance
obtained from the Kantorovich-Rubinstein duality [8]. We denote the Lipschitz continuity for a
function f by ‖f‖L≤l. When the cost function c is l-Lipschitz continuous, Wc(P1, P2) is also
referred to as the Wasserstein-l distance. Without loss of generality, we consider ‖c‖L≤1 such as the
`2 norm, and with that the Wasserstein distance is equivalent to:

Wc

(
P/Q̂, P/Q0

)
= sup
‖f‖L≤1

{
Eh∼P/Q̂f(h)− Eh∼P/Q0

f(h)
}
, (A.9)

where f : X → R. In practice, when P is the empirical distribution that assigns uniform weights to
all the samples, we have

Wc

(
Pn/Q̂, Pn/Q0

)
= sup
‖f‖L≤1

{
Eh∼Pn/Q̂f(h)− Eh∼Pn/Q0

f(h)
}

= sup
‖f‖L≤1

{
a1Eh∼Pn

f(h)

q̂(h)
− a2Eh∼Pn

f(h)

q0(h)

}
= sup
‖f‖L≤1

Eh∼Pn

[ f(h)

q̂(h) · q0(h)

(
a1q0(h)− a2q̂(h)

)]
≤ sup

h∈X

{ 1

q̂(h) · q0(h)

}
· sup
‖f‖L≤1

{
a3Eh∼Pn·Q0

f(h)− a4Eh∼Pn·Q̂f(h)
}

≤ 1

µ2
sup

‖f‖L≤max{a5,a6}

{
Eh∼Q0

f(h)− Eh∼Q̂f(h)
}

=
1

µ2
Wc̃(Q̂,Q0),

(A.10)

where the-above ai are all constants induced by using the change-of-measure with important-
weighting estimators, and the induced cost function c̃ on the last line satisfies ‖c̃‖L≤max{a5,a6}.
Therefore, we see that the Wasserstein distance between Pn/Q̂ and Pn/Q0 can be bounded by
Wc̃(Q̂,Q0). Hence, for each α ≥ 0 in (A.8),

sup
Q̂

EP
[ δ(Y, fθ(X,Z))

q̂(O = 1|X,Z)

]
− α̃Wc̃(Q̂,Q0), α̃ ≥ 0,

is a relaxation of the result in Claim 2. In practice, the specific forms of the cost functions c or c̃ do
not matter, because the Wasserstein distance is intractable and we use the data-dependent surrogates
that we discuss in Section 3.2.
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A.3 Proof for Theorem 1

Proof. Following the same arguments from the proof in Claim 2, we obtain the similar result stated
in (A.8) that

sup
gψ∈G̃(ρ)

EP
[δ(Y, fθ(X,Z))

G
(
gψ(X,Z)

) ]
≤ inf
γ≥0

{
γρ+

∫
sup
h∈X

(δfθ (h)

q̂(h)
− γc(h,h′)

)
dP (h)

}
= inf
γ≥0

{
γρ+ EP

[
∆γ

(
fθ;H

)]}
(by the definition of ∆γ)

≤ inf
γ≥0

{
γρ+ EPn

[
∆γ

(
fθ;H

)]
+ sup
fθ∈F

(
EP
[
∆γ

(
fθ;H

)]
− EPn

[
∆γ

(
fθ;H

)])}
.

(A.11)

Let Wγ = supfθ∈F
(
EP
[
∆γ

(
fθ;H

)]
− EPn

[
∆γ

(
fθ;H

)])
, then notice that

Wγ =
1

n
sup
fθ∈F

[ N∑
i=1

EP
[
∆γ

(
fθ;H

)]
−∆γ

(
fθ;Hi

)]
γ ≥ 0.

Since |δfθ (h)| ≤ µM holds uniformly, according to the McDiarmid’s inequality on bounded random
variables, we first have

p
(
Wγ − EWγ ≥ µM

√
log 1/ε

2N

)
≤ ε. (A.12)

Then let ε1, . . . , εN be the i.i.d Rademacher random variables independent of H, and H′i be the i.i.d
copy of Hi for i = 1, . . . , N . Applying the symmetrization argument, we see that

EWγ = E
[

sup
fθ∈F

∣∣∣ N∑
i=1

∆γ

(
fθ;H

′
i

)
−

N∑
i=1

∆γ

(
fθ;Hi

)∣∣∣]
= E

[
sup
fθ∈F

∣∣∣ 1

N

N∑
i=1

εi∆γ

(
fθ;H

′
i

)
− 1

N

N∑
i=1

∆γ

(
fθ;Hi

)∣∣∣]
≤ 2E

[
sup
fθ∈F

∣∣∣ 1

N

N∑
i=1

εi∆γ

(
fθ;Hi

)∣∣∣].
(A.13)

It is clear that each εi∆γ

(
fθ;Hi

)
is zero-mean, and now we show that it is sub-Gaussian as well. For

any two fθ, f ′θ, we show the bounded difference:

E
[

exp
(
λ
( 1√

N
εi∆γ

(
fθ;Hi

)
− 1√

N
εi∆γ

(
f ′θ;Hi

)))]
=
(
E
[

exp
( λ√

N
ε1
(
∆γ

(
fθ;H1

)
−∆γ

(
f ′θ;H1

)))])N
=
(
E
[

exp
( λ√

N
ε1
(

sup
h′

inf
h′′

{δfθ (h′)
q(h′)

− γc(H1,h
′)−

δf ′θ (h
′′)

q(h′′)

}
+ γc(H1,h

′′)
))])N

≤
(
E
[

exp
( λ√

N
ε1
(

sup
h′

{δfθ (h′)
q(h′)

−
δf ′θ (h

′)

q(h′)

}))])N
≤ exp

(
λ2
∥∥∥δfθ
q
−
δf ′θ
q

∥∥∥2

∞

/
2
)

(by Hoeffding’s inequality).

(A.14)

Hence we see that 1√
N
εi∆γ

(
fθ;Hi

)
is sub-Gaussian with respect to

∥∥∥ δfθq − δf′
θ

q

∥∥∥2

∞
. Therefore,

EWγ can be bounded by using the standard technique for Rademacher complexity and Dudley’s
entropy integral [7]:

EWγ ≤
24

N
J (F̃). (A.15)

Combining all the above bounds in (A.11), (A.12) and (A.15) we obtain the desired result.
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A.4 Proof for Corollary 1

Proof. To obtain the first result, let the data-dependent γn be given by

γn = max
i

sup
h′∈H

(δfθ (h′)
q(h′)

− δfθ (hi)

q(hi)

)/
c(hi,h

′).

Then according to the definition of ∆γ , we have

EPn∆γn

(
fθ;H

)
=

1

N

∑
i

sup
h′∈X

{δfθ(h′)
q(h′)

−max
j

sup
h′′∈X

{ δfθ (h′′)

q(h′′) −
δfθ (hj)

q(hj)

c(hj ,h′′)

}
c
(
hi,h

′)}.
It is easy to verify that

EPn∆γn

(
fθ;H

)
≤ 1

N

∑
i

sup
h′∈X

{δfθ(h′)
q(h′)

}
+
δfθ
(
hi
)

q(hi)
− sup

h′′∈X

{δfθ(h′′)
q(h′′)

}
=

1

N

∑
i

δfθ
(
hi
)

q(hi)
,

as well as

EPn∆γn

(
fθ;H

)
≥ 1

N

∑
i

sup
h′∈X

{δfθ(h′)
q(h′)

}
−max

j
sup

h′′∈X

{ δfθ (h′′)

q(h′′) −
δfθ (hj)

q(hj)

c(hj ,h′′)
c
(
hi,hj

)}
,

which also equals to 1
N

∑
i

δfθ

(
hi

)
q(hi)

. Therefore, when γ = γn, we have EPn
[
∆γn

(
fθ;H

)]
=

EPn
[
δfθ

(
Hi

)
q(Hi)

]
. Similarly, it can be shown that when γ > γn, the above equality also holds. Hence,

we replace EPn
[
∆γn

(
fθ;H

)]
with EPn

[
δfθ

(
Hi

)
q(Hi)

]
in Theorem 1 and obtain the first result.

To obtain the second result, we define the transportation map [8]:

Tγ
(
fθ;h

)
= arg max

h′∈X

{δfθ(h′)
q(h′)

− γc(h,h′)
}
.

Then according to (A.8), the empirical maximizer for supP̂ :Wc(P̂ ,P∗)≤ρ
∫
δ
(
y, fθ(x, z)

)
dP̂ (h) is

attained by P̂ (fθ) = 1
N

∑N
i=1 ITγ

(
fθ;hi

) where Ih assign point mass at h, since it maximizes∫
suph∈X

(
δfθ (h)

q̂(h) − γc(h,h
′)
)
dQ0(h′). Then we let ρn(fθ) = Wc(P̂ (fθ), Pn), which equals to

EPn
[
c
(
Tγ
(
fθ;H

)
,H
)]

by definition. So now we have

c1γρn(fθ) + EPn [∆γ

(
fθ;H

)
] = sup

P :Wc(P,Pn)≤ρ̃
EP
[
δ
(
fθ;H

)
/q(H)

]
,

for some ρ̃ that absorbs the excessive constant terms. We plug it into the Theorem 1 and obtain the
second result.

A.5 Implications from Tukey’s Factorization on Unobserved Factors for
Exposure

Here we discuss the Tukey’s factorization which motivates our Gβ model that accounts for the
unobserved factors in recommender system. Here we introduce the notation for the counterfactual
outcome Yu,i(o), o ∈ {0, 1}, to denote what the user feedback would be if the exposure Ou,i were
given by o. In reality, we only get to observe Yu,i for either Ou,i = 1 or Ou,i = 0, and the tuple
(Yu,i(1), Yu,i(0)) is never observed at the same time, which connects causal inference to the missing
data literature. When there is no unobserved factor, the joint distribution of (Yu,i(1), Yu,i(0)) has
simple formulation and can be estimated effectively from data using tools from causal inference.
However, when unobserved factor exists, there are confounding between (Yu,i(1) and Yu,i(0)), which
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violates the assumption of many methods. The Tukey’s factorization, on the other hand, characterizes
our missing data distribution regardless of the unobserved factors as:

pβ
(
Y (o), O|X,Z

)
= p
(
Y (o)|O = o,X,Z

)
p
(
O = o|X,Z

)
·

pβ
(
O|Y (o),X,Z

)
pβ
(
O = o|Y (o),X,Z

) , o ∈ {0, 1},
(A.16)

where
pβ

(
O|Y (o),X,Z

)
pβ

(
O=o|Y (o),X,Z

) concludes the unknown mechanism in the missing data distribution [2, 1].

To see how the counterfactual outcome is reflected in the above formulation, when O = õ := 1− o
and o = 1, we have:

pβ
(
Y (1), O = 0|X,Z

)
= p
(
Y (1)|O = 1,X,Z

)
p
(
O = 1|X,Z

)
·
pβ
(
O = 0|Y (1),X,Z

)
pβ
(
O = 1|Y (1),X,Z

) ,
which gives the joint distribution of the outcome if the item was not exposed and the observed data
where the item is exposed. Notice that both p

(
Y (o)|O = o,X,Z

)
and p

(
O = o|X,Z

)
can be

estimated from the data, since Y (o) is observed under O = o. So the only unknown mechanism in
the missing data distribution is pβ

(
O|Y (o),X,Z

)/
pβ
(
O = o|Y (o),X,Z

)
.

Hence, we see the counterfactual outcome distribution can be given by:

pβ
(
Y (o)|O = 1− o,X,Z

)
∝ pobs

(
Y (o)|O = o,X,Z

)/
Gβ
(
Y (o),X,Z

)
, o ∈ {0, 1}, (A.17)

where pobs denotes the observable distribution and Gβ
(
Y (o),X,Z

)
=

pβ

(
O=o|Y (o),X,Z

)
pβ

(
O|Y (o),X,Z

) char-

acterizes the exposure mechanism even when unobserved factors exist. We treat the unknown
Gβ
(
Y (o),X,Z

)
as a learnable objective in our setting. We have discussed in Section 3.2 that we

use gψ to characterize the role of X and Z in the exposure mechanism Gβ , and hence we reach our
formulation of δ

(
Y, fθ(X,Z)

)/
Gβ
(
Y, gψ(X,Z)

)
in (8).

It has been discussed in [5] that including Y in modelling the exposure mechanism may cause the
self-selection problem in inference. Our setting does not fall into that category since our objective is
to better learn the fθ instead of making inferences. We also show in the following ablation studies
that if the user feedback Y is not included, i.e. Gβ

(
Y, gψ(X,Z)

)
≡ σ(gψ(X,Z)), the improvements

over the original models will be less significant.

A.6 Experiment Settings and Complete Results

We provide the dataset details, preprocessing steps, train-validation-test split, simulation settings,
detailed model configuration and implementation in this part of the appendix. We visualize the
training process that reveals the adversarial nature of our proposed approach. We then provide the
full ablation study and sensitivity analysis results to demonstrate the robustness of our approach.

A.6.1 Real-world datasets

We consider three real-world datasets that covers movie, book and music recommendation.

• Movielens-1M 1. The benchmark dataset records users’ ratings for movies, which consists
of around 1 millions ratings collected from 60,40 users on 3,952 movies. The rating is from
1 to 5, and a higher rating indicates more positive feedback.

• LastFM 2. The LastFM dataset is a benchmark dataset for music recommendation. For each
of the 1,892 listeners, they tag the artists they may find fond of over time. Since the tag is
a binary indicator, the LastFM is an implicit feedback dataset. There is a total of 186,479
tagging events, where 12,523 artists have been tagged.

• GoodReads 3. The benchmark book recommendation dataset is scraped from the users’
public shelves on Goodread.com. We use the user review data on the history and biography

1http://files.grouplens.org/datasets/movielens/ml-1m.zip
2http://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-2k.zip
3https://sites.google.com/eng.ucsd.edu/ucsdbookgraph/home
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sections due to their richness. There are in total 238,450 users, 302,346 unique books, and
2,066,193 ratings in these sections. The rating range is is also from 1 to 5, a higher rating
indicates more positive feedback.

A.6.2 Data preprocessing and train-validation-test splitting

The Movielens-1M dataset has been filtered before made public, where each user in the dataset has
rated at least 20 movies. For the LastFM and Goodread datasets, we first eliminate infrequent items
(books/artists) and users that have less than 20 records. After examination, we find a small proportion
of users having an abnormal amount of interactions. Therefore, we treat the users who have more
than 1,000 interactions as spam users and not include them into our analysis.

The train-validation-test split is carried out based on the order of the user-item interactions. We adopt
the standard setting, where for each user interaction sequence, all items but the last two are used in
training, the second-to-last item is used in validation, and the last item is used in testing.

A.6.3 Simulation settings

In a modern real-world recommender system, the exposure mechanism is determined by the under-
lying recommender model as well as various other factors. In an attempt to mimic the real-world
recommender systems, we design a two-stage simulation method to generate the semi-synthetic data
that remains truthful to real-world datasets. The first stage learns the characteristic from the data, such
as the user relevance (rating) model and the partial exposure model (which may be inaccurate due to
the partial-observation of exposure status), and the second stages simulates the working method of a
real-world recommender system as well as user response. Since we wish to recover the user-item
relevance as accurate as possible, we choose to use the explicit feedback dataset for our simulation,
i.e. the Movielens-1M and Goodreads datasets.

In the first stage, given a true rating matrix, we train two hidden-factor matrix factorization models.
The first model tries to recover the rating matrix and by minimizing the mean squared loss. We
refer to this model as the relevance model. Since for the explicit feedback data the rated items must
have all been exposed, so given the output Ê[Ru,i|Ou,i = 1], we define the relevance probability as
psim1(Yu,i = 1|Ou,i = 1) = σ

(
Ê[Ru,i|Ou,i = 1] − ε1

)
, where σ(·) is the sigmoid function and ε1

reflects the perturbations brought by unobserved factors. The second model is an implicit-feedback
model trained to predict the occurrence of the rating event, where instead of the original ratings, the
non-zero entries in the rating matrix are all equal to 1. After obtaining the p̂(Ou,i = 1), we define the
simulation exposure probability as log psim1(Ou,i = 1) = log p̂(Ou,i = 1) + ε2, where ε2 also gives
the extra randomness due to the unobserved factors. Now with the simulated psim(Yu,i = 1|Ou,i = 1)
and psim(Ou,i = 1) that reflects both the relevance and exposure underlies the real data generating
mechanism as well as the effects of unobserved factors, we then generate the first-stage click data
based by psim1(Yu,i = 1) = psim1(Yu,i = 1|Ou,i = 1)psim1(Ou,i = 1).

In the first stage, we have generated an implicit feedback dataset that remains truthful to the orig-
inal real dataset. Now we add the user-defined components that gives us more control over the
exposure mechanism. Specifically, we obtain the new user and item hidden factors x, z by training
another implicit matrix factorization model using the generated click data. We generate the extra
exposure function e(x, z), and add it to the psim1 and obtain the second-stage exposure mechanism
log psim2(Ou,i = 1) = log psim1(Ou,i = 1) + e(x, z). The final click data is then generated by
psim2(Yu,i = 1) = psim1(Yu,i = 1|Ou,i = 1)psim2(Ou,i = 1).

Notice that having the second stage in the simulation is important, because the focus of the first stage
is to mimic the generating mechanism of the real-world dataset. The second stage allows us to control
the exposure mechanism. Also, we point out that retraining the implicit matrix factorization model in
the beginning of the second stage is not required, thought it helps us to better characterize the data
generated in the first stage.

A.6.4 Model configuration and implementation

For all the baseline models we consider here (other than Pop), the dimension of the user and item
hidden factors, initial learning rate and the `2 regularization strength are the basic hyperparameters.
We select the initial learning rate from {0.001, 0.005, 0.01, 0.05, 0.1}, and the `2 regularization
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strength from {0, 0.01, 0.05, 0.1, 0.2, 0.3}. The tuning parameters are selected separately to avoid
excessive computations. We fix the hidden dimension at 32 for our models in order to achieve fair
comparisons in the experiments. Also, notice that our approach has approximately twice the number
of parameters with respect to the corresponding baseline model. In practice, the hidden dimension can
be treated as a hyperparameter as well. We provide sensitivity analysis on the hidden dimension later
in this section. We use the Hit@10 on validation data as the metric for selecting hyperparameters.

To make sure that the superior performance of our approach is not a consequence of higher model
complexity, we double the hidden factor dimension of the baseline models to 64 when necessary.

Among the baseline models, the Pop, CF [6], GMF and Neural CF [3] are all standard approaches
in recommender system who have relatively simpler structures, we adopt the default settings and do
not discuss their details. We focus more on the attention-based sequential recommendation model
Attn and the propensity-score method PS. For the Attn, we adopt the model setting from [9, 4]
where the self-attention mechanism is added on top of a item embedding layer. We treat the hidden
dimension of the key, query and value matrices, and the number of dot-product attention heads as the
additional tuning parameters. For the PS method, there are two stages:

• Obtain g∗ψ by minimizing EPn
[
δ
(
Y, gψ(X,Z)

)]
;

• Implement minimize
fθ∈F,β

EPn
[

δ(Y,fθ(X,Z))

Gβ

(
g∗ψ(X,Z),Y

)].
The tuning parameters for gψ and fθ are selected in each stage separately.

The configurations for the proposed approach consists of two parts: the usual model configuration for
fθ and gψ , and the two-timescale train schema. Firstly, we find out that the tuning parameters selected
for fθ and gψ when being trained alone also gives the near-optimal performance in our adversarial
counterfactual training setting. Therefore, we directly adopt the hyperparameters (other than the
learning rate) selected in their individual training for fθ and gψ. We experiment on several settings
for the two-timescale update. Specifically, we wish to understand the impact of the relative magnitude
of the initial learning rates rθ and rψ . In practice, we care less about the learning rate discount when
using the Adam optimizer, since the learning rate is automatically adjusted. Intuitively speaking, the
smaller the rψ (relative to rθ ), the less gψ is subject to the regularization in the beginning stage, and
its adversarial behavior is less restricted. As a consequence, fθ may not learn anything useful. We
provide empirical evidence to support the-above point in Figure A.1, with the detailed discussion
shown later. Finally, the regularization parameter α for the proposed approach is selected from {0.1,
1, 2}.

In conclusion, the hyperparameters that are specific to the proposed adversarial counterfactual training
are the initial learning rates rθ and rψ , as well as the regularization parameter α.

A.6.5 Computation

All the models, including the matrix factorization models, are implemented with PyTorch on a Nvidia
V100 GPU machine. We use the sparse Adam4 optimizer to update the hidden factors, and the usual
Adam optimizer to update the remaining parameters. We use sparse Adam for the hidden factors
because both the user and item factor are relatively sparse in recommendation datasets. The Adam
algorithm leverages the momentum of the gradients from the previous training batch, which may not
be accurate for the item and user factors in the current training batch. The sparse Adam optimizer
is designed to solve the above issue for sparse tensors. We use the early-stopping training method
both for the baseline models, where we terminate the training process when the validation metric
stops improving for 10 consecutive epochs, and for our approach, where we monitor the minimax
objective value and terminate the training process if it stops changing for more than ε = 0.001 after
10 consecutive epochs.

It is straightforward to see that for a single update, the space and time complexity of our proposed
adversarial counterfactual training is exactly the summation for that of fθ and gψ (where the com-
plexity induced by Gβ is almost negligible). In general, our approach may take more training epochs
to converge depending on the rfθ/rψ in our two-timescale training schema.

4https://agi.io/2019/02/28/optimization-using-adam-on-sparse-tensors/
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A.6.6 Visualization of the adversarial training process

To demonstrate the underlying adversarial training process of the proposed adversarial counterfactual
training method, we plot the training progress under several settings in Figure A.1 and A.2. From
Figure A.1, we observe the following things.

• With a larger initial learning rate, gψ tends to fit the data quicker than fθ.
• In the beginning, when gψ has yet fit the data well, its adversarial behavior on fθ is too

strong, since both the loss value and the evaluation metric for fθ is poor during that period.
This also suggests the importance of using a larger initial learning rate for gθ.

• As the training progresses, fθ eventually catches up with and outperforms gψ in terms on the
evaluation metric. However, the loss objective for fθ is still larger, which is reasonable since
it has the extra adversarial term in EPn

[
δ
(
Y, fθ(X,Z)

)/
Gβ(Y, gψ(X,Z))

]
controlled by

gψ . This also implies that gψ is acting adversarially throughout the whole process.
• The training process gradually achieves the local minimax optimal, where either fθ and gψ

are unable to undermine the performance of each other and their performance improves at
the same pace in the later training phase.

Figure A.1: Adversarial training processes on the Goodread synthetic data using ACL (GMF / GMF)
and ACL (MLP / MLP) as respectively. The upper panel gives the training objective for fθ and gψ,

i.e. EPn
[
δ
(
Y, fθ(X,Z)

)/
Gβ(Y, gψ(X,Z))

]
and EPn

[
δ(Y, gψ(X,Z))

]
. The lower panel gives the

evaluation metric on the validation dataset.
.

We then examine the adversarial training on the real-world dataset using the sequential recommen-
dation model ACL (Attn / Attn). From Figure A.2, we first observe the same pattern as in Figure
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A.1, which shows that the above discussions also apply to the real-world data and the sequential
recommendation setting. Further, we conduct a set of experiment where the outcome is not included
in modelling the exposure mechanism Gβ . First of all, we see that the adversarial training patterns
still hold whether or not we consider the outcome in Gβ . Secondly, the performances, both in terms
of the loss value and evaluation metric, are sub-optimal when Y is not included in Gβ .

Figure A.2: The adversarial training process on the real Goodread data using ACL (Attn / Attn)
shows same pattern for the sequential recommendation setting, and demonstrates the effectiveness
of including the outcome into the Gβ for modelling the exposure mechanism. The "use outcome"
indicates whether Y is used for modelling Gβ .

A.6.7 Complete ablation study

Due to the space limitation, we provide part of the ablation study in the main paper, and leave the
rest to this part of the appendix. Firstly, we provide the complete results on using the propensity
score model in Table A.2 for the three real-world datasets. By comparing with the results in Table 2,
we see that our adversarial counterfactual training approach still outperforms their propensity score
counterparts, which again emphasizes the importance of having the adversarial process between
fθ and gψ. Secondly, we provide the full set of results for the baseline models trained with our
adversarial counterfactual approach on the real-world dataset (Figure A.2). As we mentioned in
Section 5, models trained with our approach uniformly outperforms their counterparts. Notice that
the superior performances of our approach do not benefit from a larger model complexity, since we
have doubled the hidden factor dimension of the corresponding baseline models such that the number
of parameters are approximately the same for all models.

A.6.8 Sensitivity analysis

We provide the sensitivity analysis for the proposed adversarial counterfactual approach, mostly focus
on the user/item hidden factor dimension size and the regularization parameter α. We show the results
of on the real-world datasets. The sensitivity analysis on user/item hidden factor dimension size is
shown in Figure A.3, where we see that larger dimensions most often lead to better outcome (within
the range we consider), which is in accordance with the common consensus in the recommender
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MLP MLP GMF GMF NCF NCF Attention Attention
config Pop MLP Pop GMF Pop NCF Pop Attention

MovieLens-1M
Hit@10 61.93 (.2) 60.85 (.1) 64.21 (.3) 62.19 (.1) 63.78 (.4) 61.28 (.2) 81.97 (.1) 81.05 (.2)

NDCG@10 33.37 (.1) 31.90 (.2) 34.96 (.1) 32.53 (.2) 34.05 (.1) 30.98 (.3) 54.51 (.1) 52.33 (.1)
Last-FM

Hit@10 82.06 (.3) 81.32 (.1) 82.64 (.3) 81.87 (.1) 82.29 (.3) 80.35 (.2) 72.71 (.2) 70.98 (.1)
NDCG@10 57.55 (.2) 58.16 (.1) 58.83 (.2) 57.92 (.3) 58.40 (.1) 57.02 (.3) 60.13 (.2) 59.33 (.2)

Goodreads
Hit@10 62.59 (.1) 60.03 (.3) 64.92 (.2) 64.43 (.2) 63.75 (.2) 61.44 (.3) 73.39 (.3) 71.37 (.2)

NDCG@10 38.01 (.2) 37.32 (.1) 39.21 (.1) 38.45 (.1) 38.85 (.2) 38.03 (.1) 49.99 (.1) 49.18 (.2)
Table A.2: Standard evaluations on the real-world data using the propensity-score models.

ACL variant ACL-MLP ACL-GMF ACL-NCF ACL-Attention
Metric Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10 Hit@10 NDCG@10

MovieLens-1M 62.04 (.2) 33.59 (.2) 64.32 (.2) 33.70 (.1) 63.97 (.2) 34.81 (.1) 83.64 (.1) 55.71 (.2)
Last-FM 82.88 (.2) 57.43 (.2) 83.64 (.2) 59.11 (.1) 83.09 (.2) 58.93 (.2) 72.02 (.2) 59.45 (.1)

Goodreads 62.90 (.2) 38.57 (.1) 64.57 (.2) 39.54 (.1) 63.95 (.2) 38.72 (.1) 73.82 (.3) 49.99 (.1)
Table A.2: Standard evaluations on the real-world data considering all ACL base model.

system domain. This also suggests that our approach inherits some of the properties from the fθ and
gψ , so the model understanding diagnostics also become easier if fθ and gψ are well-studied.

The sensitivity analysis on the regularization parameter α is provided in Figure A.4. We do not
experiment on a wide range of α; however, the results we have at hand already tells the patterns, that
our approach achieves the best performances when α is neither too big nor too small. As a matter of
fact, this phenomenon on regularization parameters is widely acknowledged in the machine learning
community. In terms of our context, when α is too small, the regularization on gψ becomes relatively
weak compared with the loss objective of fθ, so gψ does not fit the data well. As a consequence,
fθ also suffers from the under-fitting issues of gψ. On the other hand, when α gets too large, the
minimax game will focus more on fitting gψ to the data and overlooks fθ.

A.6.9 Online experiment settings

The online experiments provide valuable evaluation results that reveal the appeal of our approach for
real-world applications. All the online experiments were conducted for a content-based item page
recommendation module under the implicit feedback setting where the users click or not click the
recommendations. A list of ten items is shown to the customer on each item page, e.g. items that are
similar or complementary to the anchor item on that page. The recommendation is personalized, so
the user id and user features are included in the model as well.

In each iteration, new item features and user features are added into the previous model. The main
architecture of the recommendation model is unchanged, which makes it favorable for examining
our approach. By the time we write this paper, there have been four online experiments (AB tests)
conducted for eight models that are trained offline using our proposed adversarial counterfactual
training and then evaluated using the implicit feedback data. Unobserved factors such as the real-time
user features, page layout and same-page advertisements are continually changing and not included
in the analysis. The metric that we used to compare the different offline evaluation methods with
online evaluation is the click-through rate.
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Figure A.3: Sensitivity analysis of hidden factor dimension for the content-based ACL(GMF / GMF)
model and the sequential ACL(Attn / Attn) model together with their corresponding baseline models,
on the three real-world datasets. Recall that the hidden dimensions for the corresponding baselines
are doubled from what is shown in the plots to achieve fair comparisons. From the top to bottom are
results for the Movielens-1M, LastFM and Goodread.com data
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Figure A.4: Sensitivity analysis on the regularization parameter α for the content-based ACL (GMF
/ GMF) model and the sequential ACL(Attn / Attn) model for their fθ and gψ components, on the
three real-world datasets (from the top to bottom are results for the Movielens-1M, LastFM and
Goodread.com data).
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