
Supplementary Material:
Does Unsupervised Architecture Representation

Learning Help Neural Architecture Search?

Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, Mi Zhang
Michigan State University

{yanshen6,zhengy30,aowei,zengxia6,mizhang}@msu.edu

A Pre-training and search details on each search space

As described in §3, we use adjacency matrix and operation matrix as inputs to our neural architecture
encoder (§3.1). In this section, we present the search details for NAS-Bench-101 [1], NAS-Bench-201
[2] and DARTS [3] search spaces.

A.1 NAS-Bench-101

We followed the encoding scheme in NAS-Bench-101 [1]. Specifically, a cell in NAS-Bench-101 is
represented as a directed acyclic graph (DAG) where nodes represent operations and edges represent
data flow. A 7× 7 upper-triangular binary matrix is used to encode edges. A 7× 5 operation matrix
is used to encode operations, input, and output, with the order as {input, 1 × 1 conv, 3 × 3 conv, 3 ×
3 max-pool (MP), output}. For cells with less than 7 nodes, their adjacency and operator matrices are
padded with trailing zeros. Figure 1 shows an example of a 7-node cell in NAS-Bench-101 search
space and its corresponding adjacency and operation matrices.

For RL-based search, we use REINFORCE [4] as the search strategy. We use a one-layer LSTM with
hidden dimension 128 as the controller and output a 16-dimensional output as the mean vector to
the Gaussian policy with a fixed identity covariance matrix. The controller is optimized using Adam
optimizer [5] with learning rate 1× 10−2. The number of sampled architectures in each episode is set
to 16 and the discount factor is set to 0.8. The baseline value is set to 0.95. The maximum estimated
wall-clock time for each run is set to 1× 106 seconds.

For BO-based search, we use DNGO [6] as the search strategy. We use a one-layer fully connected
network with hidden dimension 128 to perform adaptive basis function regression. We randomly
sample 16 architectures at the beginning, and select the top 5 best-performing architectures and then
add them to the architecture pool in each architecture sampling iteration. The network is optimized
using selected architecture samples in the pool using Adam optimizer with learning rate 1×10−2 and
trained for 100 epochs in each architecture sampling iteration. The best function value of expected
improvement (EI) is set to 0.95. We use the same time budget used in RL-based search.

A.2 NAS-Bench-201

Different from NAS-Bench-101, NAS-Bench-201 [2] employs a fixed cell-based DAG representation
of neural architectures, where nodes represent the sum of feature maps and edges are associated
with operations that transform the feature maps from the source node to the destination node. To
represent the architectures in NAS-Bench-201 with discrete encoding that is compatible with our
neural architecture encoder, we first transform the original DAG in NAS-Bench-201 into a DAG with
nodes representing operations and edges representing data flow as the ones in NAS-Bench-101. We
then use the same discrete encoding scheme in NAS-Bench-101 to encode each cell into an adjacency

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Figure 1: An example of the cell en-
coding in NAS-Bench-101 search
space. The left panel shows the
DAG of a 7-node cell. The top-
right and bottom-right panels show
its corresponding adjacency matrix
and operation matrix respectively.

matrix and operation matrix. An example is shown in Figure 2. The hyperparameters we used for
pre-training on NAS-Bench-201 are the same as described in §4.

For RL-based search, the search is stopped when it reaches the time budget 1.2 × 104, 5 × 105,
1.4×106 seconds for CIFAR-10, CIFAR-100, and ImageNet-16-200, respectively. For CIFAR-10, we
follow the same implementation established in NAS-Bench-201 by searching based on the validation
accuracy obtained after 12 training epochs with converged learning rate scheduling. The discount
factor and the baseline value is set to 0.4. All the other hyperparameters are the same as described in
§A.1.

For BO-based search, we initially sample 16 architectures and select the best-performing architecture
to the pool in each iteration. The best function value of EI is set to 1.0 for all datasets. We use
the same search budget as used in RL-based search. All the other hyperparameters are the same as
described in §A.1.

Figure 2: An example of the cell en-
coding in NAS-Bench-201 search
space. The top-left and top-right
panels show the original and trans-
formed representations of a cell.
The bottom-left and bottom-right
panels show its corresponding adja-
cency matrix and operation matrix
respectively.

A.3 DARTS Search Space

The cell in the DARTS search space has the following property: two input nodes are from the output
of two previous cells; each intermediate node is connected by two predecessors, with each connection
associated with one operation; the output node is the concatenation of all of the intermediate nodes
within the cell [3].

2



Based on these properties, a 11 × 11 upper-triangular binary matrix is used to encode edges and
a 11 × 11 operation matrix is used to encode operations, with the order as {ck−2, ck−1, zero, 3
× 3 max-pool, 3 × 3 average-pool, identity, 3 × 3 separable conv, 5 × 5 separable conv, 3 × 3
dilated conv, 5 × 5 dilated conv, ck}. An example is shown in Figure 3. Following [7], we use the
same cell for both normal and reduction cell, allowing roughly 109 DAGs without considering graph
isomorphism. We randomly sample 600,000 unique architectures in this search space following the
mobile setting [3]. The hyperparameters we used for pre-training on DARTS search space are the
same as described in §4.

We set the computational budget to 100 architecture queries in this search space. In each query, a
sampled architecture is trained for 50 epochs and the average validation accuracy of the last 5 epochs
is computed. All the other hyperparamers we used for RL-based search and BO-based search are the
same as described in §A.1.

Figure 3: An example of the cell encoding in DARTS search space. The top panel shows the cell. The
bottom-left and bottom-right panels show its corresponding adjacency matrix and operation matrix
respectively.

B More details on pre-training evaluation metrics

We split the the dataset into 90% training and 10% held-out test sets for arch2vec pre-training on
each search space. In §4.1, we evaluate the pre-training performance of arch2vec using three metrics
suggested by [8]: 1) Reconstruction Accuracy (reconstruction accuracy of the held-out test set) which
measures how well the embeddings can errorlessly remap to the original structures; 2) Validity (how
often a random sample from the prior distribution can generate a valid architecture) which measures
the generative ability the model; and 3) Uniqueness (unique architectures out of valid generations)
which measures the smoothness and diversity of the generated samples.

To compute Reconstruction Accuracy, we report the proportion of the decoded neural architectures of
the held-out test set that are identical to the inputs. To compute Validity, we randomly pick 10,000
points z generated by the Gaussian prior p(Z) =

∏
iN (zi|0, I) and then apply z = z � std(Ztrain)

+ mean(Ztrain), where Ztrain are the encoded means of the training data. It scales the sampled
points and shifts them to the center of the embeddings of the training set. We report the proportion of
the decoded architectures that are valid in the search space. To compute Uniqueness, we report the
proportion of the unique architectures out of valid decoded architectures.

The validity check criteria varies across different search spaces. For NAS-Bench-101 and NAS-Bench-
201, we use the NAS-Bench-1011 and NAS-Bench-2012 official APIs to verify whether a decoded

1https://github.com/google-research/nasbench/blob/master/nasbench/api.py
2https://github.com/D-X-Y/NAS-Bench-201/blob/v1.1/nas_201_api/api.py

3

https://github.com/google-research/nasbench/blob/master/nasbench/api.py
https://github.com/D-X-Y/NAS-Bench-201/blob/v1.1/nas_201_api/api.py


NAS Methods Params (M) Mult-Adds (M) Top-1 Test Error (%) Comparable Search Space
NASNet-A [11] 5.3 564 26.0 Y

AmoebaNet-A [12] 5.1 555 25.5 Y
PNAS [12] 5.1 588 25.8 Y
SNAS [14] 4.3 522 27.3 Y
DARTS [3] 4.7 574 26.7 Y

arch2vec-RL 4.8 533 25.8 Y
arch2vec-BO 5.2 580 25.5 Y

Table 1: Transfer learning results on ImageNet.

c_{k-2}

0

sep_conv_3x3

1
max_pool_3x3

2

skip_connect 3

sep_conv_3x3

c_{k-1}

dil_conv_3x3

dil_conv_3x3

sep_conv_3x3

dil_conv_5x5 c_{k}

(a) arch2vec-RL

c_{k-2} 0
max_pool_3x3

1
skip_connect

2sep_conv_3x3

3
sep_conv_3x3

c_{k-1}

sep_conv_5x5

dil_conv_3x3

sep_conv_5x5

dil_conv_5x5

c_{k}

(b) arch2vec-BO

Figure 4: Best cell found by arch2vec using (a) RL-based and (b) BO-based search strategy.

architecture is valid or not in the search space. For DARTS search space, a decoded architecture has
to pass the following validity checks: 1) the first two nodes must be the input nodes ck−2 and ck−1;
2) the last node must be the output node ck; 3) except the two input nodes, there are no nodes which
do not have any predecessor; 4) except the output node, there are no nodes which do not have any
successor; 5) each intermediate node must contain two edges from the previous nodes; and 6) it has
to be an upper-triangular binary matrix (representing a DAG).

C Best found cells and transfer learning results on ImageNet

Figure 4 shows the best cell found by arch2vec using RL-based and BO-based search strategy. As
observed in [9], the shapes of normalized empirical distribution functions (EDFs) for NAS design
spaces on ImagetNet [10] match their CIFAR-10 counterparts. This suggests that NAS design spaces
developed on CIFAR-10 are transferable to ImageNet [9]. Therefore, we evaluate the performance of
the best cell found on CIFAR-10 using arch2vec for ImageNet. In order to compare in a fair manner,
we consider the mobile setting [11, 12, 3] where the number of multiply-add operations of the model is
restricted to be less than 600M. We follow [13] to use the exactly same training hyperparameters used
in the DARTS paper [3]. Table 1 shows the transfer learning results on ImageNet. With comparable
computational complexity, arch2vec-RL and arch2vec-BO outperform DARTS [3] and SNAS [14]
methods in the DARTS search space, and is competitive among all cell-based NAS methods under
this setting.

D More visualization results of each search space

NAS-Bench-101. In Figure 5, we visualize three randomly selected pairs of sequences of architec-
ture cells decoded from the learned latent space of arch2vec (upper) and supervised architecture
representation learning (lower) on NAS-Bench-101. Each pair starts from the same point, and each
architecture is the closest point of the previous one in the latent space excluding previously visited
ones. As shown, architecture representations learned by arch2vec can better capture topology and
operation similarity than its supervised architecture representation learning counterpart. In particular,

4



Figure 5 (a) and (b) show that arch2vec is able to better cluster straight networks, while supervised
learning encodes straight networks and networks with skip connections together in the latent space.

NAS-Bench-201. Similarly, Figure 6 shows the visualization of five randomly selected pairs of
sequences of decoded architecture cells using arch2vec (upper) and supervised architecture represen-
tation learning (lower) on NAS-Bench-201. The red mark denotes the change of operations between
consecutive samples. Note that the edge flow in NAS-Bench-201 is fixed; only the operator associated
with each edge can be changed. As shown, arch2vec leads to a smoother local change of operations
than its supervised architecture representation learning counterpart.

DARTS Search Space. For the DARTS search space, we can only visualize the decoded architecture
cells using arch2vec since there is no architecture accuracy recorded in this large-scale search space.
Figure 7 shows an example of the sequence of decoded neural architecture cells using arch2vec.
As shown, the edge connections of each cell remain unchanged in the decoded sequence, and the
operation associated with each edge is gradually changed. This indicates that arch2vec preserves the
local structural similarity of neighborhoods in the latent space.

5



(a) arch2vec (upper) and supervised architecture representation learning (lower).

(b) arch2vec (upper) and supervised architecture representation learning (lower).

(c) arch2vec (upper) and supervised architecture representation learning (lower).

Figure 5: Visualization of decoded neural architecture cells on NAS-Bench-101.

6



(a) arch2vec (upper) and supervised architecture representation learning (lower).

(b) arch2vec (upper) and supervised architecture representation learning (lower).

(c) arch2vec (upper) and supervised architecture representation learning (lower).

(d) arch2vec (upper) and supervised architecture representation learning (lower).

(e) arch2vec (upper) and supervised architecture representation learning (lower).

Figure 6: Visualization of decoded neural architecture cells on NAS-Bench-201.

7



Figure 7: Visualization of decoded neural architecture cells using arch2vec on DARTS search space.
It starts from a randomly sampled point. Each architecture in the sequence is the closest point of the
previous one in the latent space excluding previously visited ones.

8



References
[1] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter.

NAS-Bench-101: Towards reproducible neural architecture search. In ICML, 2019.

[2] Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the scope of reproducible neural
architecture search. In ICLR, 2020.

[3] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. In
ICLR, 2019.

[4] R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. In Machine Learning, 1992.

[5] Diederick P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR,
2015.

[6] Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable bayesian optimization using deep
neural networks. In ICML, 2015.

[7] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei,
Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In
ECCV, 2018.

[8] Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. In NeurIPS, 2019.

[9] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network
design spaces for visual recognition. In ICCV, 2019.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009.

[11] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In CVPR, 2018.

[12] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolution for
image classifier architecture search. In AAAI, 2019.

[13] Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
In UAI, 2019.

[14] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas: Stochastic neural architecture
search. In ICLR, 2019.

9


	Pre-training and search details on each search space
	NAS-Bench-101
	NAS-Bench-201
	DARTS Search Space

	More details on pre-training evaluation metrics
	Best found cells and transfer learning results on ImageNet
	More visualization results of each search space

