
A Novel Approach for Constrained Optimization in
Graphical Models
(Extended Version)

Sara Rouhani, Tahrima Rahman and Vibhav Gogate
The University of Texas at Dallas

{sara.rouhani,tahrima.rahman,vibhav.gogate}@utdallas.edu

Abstract

We consider the following constrained maximization problem in discrete proba-
bilistic graphical models (PGMs). Given two (possibly identical) PGMsM1 and
M2 defined over the same set of variables and a real number q, find an assignment
of values to all variables such that the probability of the assignment is maximized
w.r.t.M1 and is smaller than q w.r.t.M2. We show that several explanation and
robust estimation queries over graphical models are special cases of this problem.
We propose a class of approximate algorithms for solving this problem. Our algo-
rithms are based on a graph concept called k-separator and heuristic algorithms for
multiple choice knapsack and subset-sum problems. Our experiments show that
our algorithms are superior to the following approach: encode the problem as a
mixed integer linear program (MILP) and solve the latter using a state-of-the-art
MILP solver such as SCIP.

1 Introduction

This paper is about solving the following combinatorial optimization problem: given a set of discrete
random variables X and two possibly identical probabilistic graphical models (cf. [8, 21]) or log-linear
models defined over X, find the most likely assignment to all variables w.r.t. one of the log-linear
models such that the weight (or probability) of the assignment is smaller than a real number q w.r.t.
the second model. We call this task constrained most probable explanation (CMPE) problem. CMPE
is NP-hard in the strong sense and thus it cannot have a fully polynomial time approximation scheme
(or FPTAS) unless P = NP. However, it is only weakly NP-hard when the log-linear models exhibit
certain properties such as their features are conditionally independent of each other (e.g., Naive Bayes,
Logistic Regression, etc.) or all connected components in the two models have bounded number of
variables (e.g., small-world graphs [34]) or both given a small subset of variables. We exploit this
weak NP-hardness property to develop approximation algorithms for CMPE.

We are interested in solving the CMPE problem because several estimation, prediction and explanation
tasks can be reduced to CMPE. For example, the nearest assignment problem (NAP) [31]—a problem
that is related to the nearest neighbors problem—which requires us to find an assignment of values
to all variables such that the probability of the assignment is as close as possible to an input value
q, can be reduced to CMPE. Similarly, the problem of computing the most likely assignment to all
unobserved variables given evidence such that a log-linear model makes a particular (single class or
multi-label) classification decision can be reduced to CMPE. This problem is the optimization analog
of the same decision probability problem [6, 7, 30]. Other problems that reduce to CMPE include
finding diverse m-best most probable explanations [2, 13], the order statistics problem [33] and the
adversarial most probable explanation problem.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

We propose a novel approach that combines graph-based partitioning techniques with approximation
algorithms developed in the multiple choice knapsack problem (MCKP) literature [23, 28, 32] for
solving CMPE. MCKP is a generalization of the 0/1 knapsack problem in which you are given a
knapsack with capacity q and several items which are partitioned into bins such that each item is
associated with two real numbers which denote its profit and cost respectively; the problem is to find
a collection of items such that exactly one item from each bin is selected, the total cost of the selected
items does not exceed q and the total profit is maximized. We show that when the combined primal
graph, which is obtained by taking a union of the edges of the primal graphs of the two graphical
models, has multiple connected components and each connected component has a constant number
of variables, CMPE is an instance of bounded MCKP. We exploit the fact that such bounded MCKPs
are weakly NP-hard and can be solved efficiently using approximate algorithms with guarantees [20].

n graphical models in which the number of variables in each connected component is not bounded by
a constant, we propose to condition on variables, namely remove variables from the combined primal
graph, until the number of variables in each connected component is bounded (above) by a constant k.
We formalize this conditioning approach using a graph property called k-separator [3]. A k-separator
of a graph G is a subset of vertices which when removed from G yields a graph G′ such that the
number of vertices in each connected component of G′ is at most k. Our proposed conditioning (local
search) algorithm solves the sub-problem over the k-separator via local/systematic search and the
sub-problem over the connected components given an assignment to all variables in the k-separator
using MCKP methods. Our algorithm yields a heuristic approximation scheme with performance
guarantees when the size of the k-separator is bounded. In practice, it is likely to yield high quality
estimates when the size of the k-separator is small (e.g., in small-world networks [34]).

We performed a detailed experimental evaluation comparing the impact of increasing k on the quality
of estimates computed by our proposed method. As a strong baseline, we encoded CMPE as a mixed
integer linear program (MILP) and used a state-of-the-art open source MILP solver called SCIP
[14]. We used various benchmark graphical models used in past UAI competitions [12, 17]. Our
experiments show that somewhat counter intuitively most CMPE problems are easy in that our method
yields close to optimal solutions within seconds even when k is small (we expect our method to be
more accurate when k is large). Hard instances of CMPE arise when q is close to the unconstrained
maximum or when the parameters of the graphical model are extreme. Such hard instances do benefit
from using a large value of k while easy instances do not. Our experiments clearly show that our
proposed algorithm is superior to SCIP.

2 Preliminaries and Notation

Let X = {X1, . . . , Xn} denote a set of discrete random variables andDi = {1, . . . , d} be the domain
of Xi, namely we assume that each variable Xi takes values from the set Di. A graphical model
or a Markov network denoted byM is a triple 〈X, f, G〉 where: (1) f = {f1, . . . , fm} is a set of
log-potentials where each log-potential fi is defined over a subset S(fi) ⊆ X called the scope of
fi, and (2) G(V,E) is an undirected graph called the primal graph where V = {V1, . . . , Vn} and
E = {E1, . . . , Et} denote the set of vertices and edges in G respectively. G has (exactly) one vertex
Vi for each variable Xi in X and an edge Ej = (Va, Vb) if the corresponding variables Xa and Xb

appear in the scope of a function f in f.M represents the following probability distribution:

PM(x) =
1

ZM
exp

∑
f∈f

f(xS(f))

 where ZM =
∑

x

exp

∑
f∈f

f(xS(f))

where x = (x1, . . . , xn) is an assignment of values to all variables in X and xS(f) denotes the
projection of x on the set S(f). Note that x ∈ D where D = D1 × . . .×Dn is the Cartesian product
of the domains. ZM is normalization constant called the partition function. For brevity, henceforth,
we will write f(xS(f)) as f(x).

Given an assignment x of values to all variables in X of a graphical modelM = 〈X, f, G〉, we call∑
f∈f f(x) the weight of x w.r.t.M. We focus on the following constrained optimization problem,

which we call the constrained most probable explanation problem (CMPE). Given two graphical
modelsM1 = 〈X, f1, G1〉 andM2 = 〈X, f2, G2〉 and a real number q, find an assignment X = x

2

such that the weight of x w.r.t.M1 is maximized and is bounded above by q w.r.t.M2. Formally,

max
x

∑
f∈f1

f(x) s.t.
∑
g∈f2

g(x) ≤ q (1)

2.1 Multiple Choice Knapsack and Subset Sum Problems

Given n items where each item i has an associated cost ci and profit pi, and a container/knapsack
having capacity q, the Knapsack problem (KP) is to select a subset of the items such that the total
cost does not exceed q and the total profit is maximized. Let the items be denoted by the integers 1,
2,. . ., n, and let Xi be a Boolean variable taking the value 1 if item i is selected and 0 otherwise. Let
x = (x1, . . . , xn) denote a 0/1 assignment to all the Boolean variables. Then, the Knapsack problem
can be mathematically stated as: maxx

∑n
i=1 pixi s.t

∑n
i=1 cixi ≤ q. The subset-sum problem (SSP)

is a special case of the knapsack problem where profit pi equals the cost ci for all items i.

The multiple choice Knapsack problem (MCKP) is a generalization of KP in which the items are
partitioned into bins and the constraint is that exactly one item from each bin must be chosen. Let m
be the number of bins and N1, . . . , Nm denote the number of items in each bin. Let i = 1, . . . ,m
index the bins and j = 1, . . . , Ni index the items in bin i. Let cij and pij denote the cost and profit
respectively of the j-th item in the i-th bin. Let Xij be a Boolean variable taking the value 1 if j-th
item in the i-th bin is selected and 0 otherwise. Let xij denote the 0/1 assignment to the Boolean
variable Xij and x denote a 0/1 assignment to all the Boolean variables. Then, the MCKP is given by

max
x

m∑
i=1

∑
j∈Ni

pijxij s.t.
m∑
i=1

∑
j∈Ni

cijxij ≤ q and
∑
j∈Nj

xij = 1, i = 1, . . . ,m (2)

The multiple choice subset-sum problem (MCSSP) is a special case of MCKP where pij equals cij
for all i, j. We focus on a bounded version of MCKP where Ni is bounded by a constant for all i.

All of the aforementioned problems, KP, SSP, MCKP and MCSSP are NP-hard. However, they can be
solved in pseudo-polynomial time via a dynamic programming algorithm if the profits and weights
are integers. There exists a vast literature on algorithms for solving these problems with specific
interest from the operations research community. The different types of algorithms presented in
literature include branch and bound algorithms [10, 11, 27, 32], local search algorithms, dynamic
programming algorithms [10, 19, 28], heuristic algorithms with performance guarantees [11, 15] and
fully polynomial time approximate schemes (FPTAS) [5, 23]. The purpose of this paper is to show
that these algorithms can be leveraged, in addition to graph-based methods to solve the CMPE task.

3 Applications of CMPE

In this section, we show that the nearest assignment problem and the problem of computing the most
probable assignment for a decision can be reduced to CMPE.

3.1 Nearest Assignment/Explanation Problem

Given a graphical modelM = 〈X, f, G〉 and a real number q, the nearest assignment problem (NAP)
is to find an assignment x to all variables in X such that |q−

∑
f∈f f(x)| is minimized. We can express

NAP as CMPE using the following transformation. For each function f ∈ f, let g be a function
defined as follows: g(y) = f(y)− q/m, where y is an assignment of values to all variables Y = S(f)
and m is the number of log-potentials. Let xl and xu be two assignments defined as follows:

xl = max
x

m∑
i=1

gi(x) s.t.
m∑
i=1

gi(x) ≤ 0 and xu = max
x

m∑
i=1

−gi(x) s.t.
m∑
i=1

−gi(x) ≤ 0

We can show that:
Proposition 1. minx |q −

∑
f∈f f(x)| where x ∈ {xl, xu} is the nearest assignment.

3

Proof. Given a graphical modelM = 〈X, f, G〉 and a real number q, the nearest assignment problem
(NAP) can be mathematically stated as

min
x
|

m∑
i=1

fi(x)− q| (3)

We can remove the absolute value requirement in the objective function using the following standard
approach: convert the unconstrained minimization problem given above into a constrained minimiza-
tion problem. In particular, we can define two nearest assignments xl and xu such that xl maximizes∑

f∈f f(x)− q under the constraint that the value of the objective function is smaller than or equal to
0 while xl minimizes the same objective function under the constraint that the value of the objective
function is larger than or equal to 0. Formally, Eq. (3) can be rewritten as:

min
x
|

m∑
i=1

fi(x)− q| = min
x∈{xl,xu}

|
m∑
i=1

fi(x)− q| (4)

where xl and xu are given by:

xl = max
x

(
m∑
i=1

fi(x)− q

)
s.t.

m∑
i=1

fi(x)− q ≤ 0 (5)

xu = min
x

(
m∑
i=1

fi(x)− q

)
s.t.

m∑
i=1

fi(x)− q ≥ 0 (6)

Given gi(y) = fi(y) − q/m, where y is an assignment of values to all variables Y = S(fi) and
replacing minimization as maximization (via negation), we can rewrite Eqs. (5) and (6) as:

xl = max
x

m∑
i=1

gi(x) s.t.
m∑
i=1

gi(x) ≤ 0 (7)

xu = max
x

m∑
i=1

−gi(x) s.t.
m∑
i=1

−gi(x) ≤ 0 (8)

Eqs. (4), (7) and (8) prove the proposition.

By inspection, the expressions for xl and xu are CMPE tasks. Thus NAP can be solved by solving
two CMPE tasks. Rouhani et al.[31] describe an approximation algorithm that uses a 0-cutset [4] to
solve NAP. Our work differs from the work of Rouhani et al. [31] in three ways:

• 0-cutsets are equivalent to 1-separators. Thus, our general-purpose algorithm can be seen as
a generalization of Rouhani et al.’s approach to arbitrary k-separators. Our approach allows
us to define more sophisticated approximation algorithms as a result of this generalization,
including FPTAS algorithms for a more general class of graphical models (see section ??).

• Rouhani et al.’s approach is not applicable to variables having non-binary domains while
our proposed approach does not have such limitations.

• Rouhani et al.’s approach can be used if and only if the graphical model in the objective
function is identical to the graphical model in the cost constraint. Our approach allows
different graphical models to be present in the objective and cost constraint.

It turns out that NAP instances are one of the hardest CMPE problems. This is because NAP has
subset-sum type constraints; it is well known that most pruning and bounding techniques (e.g.,
dominating items [20], linear programming relaxations) perform poorly on subset-sum problems.

4

3.2 Most Probable Assignment for a Decision

Consider the following problem from robust estimation or decision theory that is useful in the
interactive setting for solving human-machine tasks. You are given a log-linear model with a few
observed variables E and a decision variable C (or a small subset C ⊆ X) that takes values from
the domain {0, 1}. Suppose that you have made the decision C = c given evidence E = e because
the weight of the partial assignment (c, e) is higher than that of (1 − c, e). Your task is to find the
most probable assignment to all unobserved variables H such that the same decision will be made.1
Formally, given a graphical modelM = 〈X, f, G〉 where X = {C} ∪ E ∪H, we have to solve

max
h

∑
f∈f

f(h, c, e) s.t.
∑
f∈f

f(h, c, e) ≥
∑
f∈f

f(h, 1− c, e) (9)

Let g = {f(h, 1− c, e)− f(h, c, e)|f ∈ f}. Then, we can rewrite Eq. (9) as:

max
h

∑
f∈f

f(h, c, e) s.t.
∑
g∈g

g(h, e) ≤ 0 (10)

By inspection, it is clear that Eq. (10) is an instance of the CMPE problem.

The generated assignment h can then be sent to an expert (human in the human-machine task) for
analyzing the robustness of the decision. As mentioned earlier, the problem just described is an
optimization analog of the same decision probability problem [6, 7] where one seeks to find the
probability that the same decision will be made after observing all the unobserved variables.

4 Our Approach

4.1 CMPE with Multiple Connected Components

We show that if the combined primal graph associated withM1 andM2 has multiple connected
components and the number of variables in each connected component is bounded by a constant k,
then CMPE can be encoded as a bounded MCKP. We begin by defining a combined primal graph.
Definition 4.1. A combined primal graph of two graphical modelsM1 = 〈X, f1, G1〉 andM2 =
〈X, f2, G2〉 is a graph G(V,E) such that G has a vertex Vk for each variable Xk in X and an edge
Et = (Va, Vb) if the corresponding variables Xa and Xb appear in the scope of fi ∈ f1 or fj ∈ f2.

Let G denote the combined primal graph ofM1 andM2. Let c denote the number of connected
components of G. Let Xi denote the set of variables (corresponding to the set of vertices) in the i-th
connected component of G (1 ≤ i ≤ c). Let g1, . . . , gc and h1, . . . , hc denote the functions obtained
fromM1 andM2 s.t. for i = 1, . . . , c

gi(xi) =
∑

f∈f1:S(f)⊆Xi

f(xi) and hi(xi) =
∑

f∈f2:S(f)⊆Xi

f(xi)

Encoding 4.2. Given a collection of functions g = {g1, . . . , gc}, h = {h1, . . . , hc} such that no two
functions in g (and h) share any variables and S(gi) = S(hi) for 1 ≤ i ≤ c, and a real number q,
we can construct a MCKP, denoted by P as follows. We start with an empty MCKP. Then we create
an item for each entry j in each function gi (or hi). For each component indexed by i, we add a bin
(indexed by i) to P (thus there are c bins) and add all items corresponding to the entries in function
gi (or hi) to the i-th bin. We attach a knapsack with capacity q to P . The profit and cost of each item
(i, j) in P equals the value of corresponding j-th entry in the functions gi and hi respectively.

Fig. 1 illustrates the process of converting a given CMPE problem to MCKP using Encoding 4.2. It is
easy to show that Encoding 4.2 is correct, namely we can construct a (feasible or optimal) solution to
the CMPE problem from a solution of the corresponding MCKP. Formally,

1Note that this is not the same as computing the most probable assignment H = h∗ given e and c. For
example, if

∑
f∈f f(h

∗, c, e) <
∑

f∈f f(h
∗, 1− c, e) then (h∗, e) will flip the decision from c to 1− c. In terms

of complexity, computing the most probable explanation (MPE) given evidence can be solved in polynomial
time on bounded treewidth networks. CMPE, on the other hand, is NP-hard on bounded treewidth networks
(reduction from MCKP).

5

Proposition 2. (Equivalence) Let P be a MCKP constructed from a CMPE problem, denoted by
R using Encoding 4.2. Then there exists a one-to-one mapping between every feasible (or optimal)
solution of P and R. Moreover, a feasible (or optimal) solution to R can be constructed from a
feasible (or optimal) solution to P in time that scales linearly with the size ofM1 andM2.

Proof. For convenience, we restate the definition of CMPE and express it as MCKP task. Given two
graphical modelsM1 = 〈X, f1, G1〉 andM2 = 〈X, f2, G2〉 and a real numbers q, find an assignment
an assignment x of values to all variables in X such that the weight of x w.r.t.M1 is maximized and
is bounded above by q w.r.t.M2.

max
x

∑
f∈f1

f(x) s.t.
∑
t∈f2

t(x) ≤ q

Let G be the combined primal graph ofM1 andM2 with c connected components where Xi is
the set of variables in i-th connected component and xi is an assignment to all variables of Xi. Let
g1, . . . , gc and h1, . . . , hc denote the functions obtained fromM1 andM2 s.t. for i = 1, . . . , c,

gi(xi) =
∑

f∈f1:S(f)⊆Xi

f(xi) and hi(xi) =
∑

t∈f2:S(t)⊆Xi

t(xi)

then, the CMPE problem can be mathematically stated as:

max
x

c∑
i=1

gi(xi) s.t.
c∑

i=1

hi(xi) ≤ q′ (11)

Without loss of generality, let Mi denote the number of entries in the functions gi and hi. Let Yij
denote a Boolean variable which takes the value 1 if Xi = xi where j ∈ {1, . . . ,Mi}. Because,
Xi has to be assigned exactly one value (and cannot take multiple values simultaneously), we have∑Mi

j=1 yij = 1 where yij is a 0/1 value assigned to Yi. Let sij and rij denote the value of the j-th
entry in gi and hi respectively. Then we can rewrite gi and hi as:

gi(xi) =

Mi∑
j=1

yijsij s.t.
Mi∑
j=1

yij = 1 (12)

hi(xi) =
Mi∑
j=1

yijrij s.t.
Mi∑
j=1

yij = 1 (13)

Substituting Eqs. (12) and (13) in Eq. (11), we can define the CMPE problem as follows:

max
y

c∑
i=1

Mi∑
j=1

yijsij s.t.
c∑

i=1

Mi∑
j=1

yijrij ≤ q′ and
Mi∑
j=1

yij = 1, i = 1, . . . , c (14)

Comparing the equation for CMPE given in Eq. (11) with the equation for MCKP given in Eq. (??),
it is easy to see that the two problems are equivalent under the following substitutions: c = m (the
number of components equals the number of bins), xij = yij (one-to-one mapping between the
Boolean variables), rij = pij (each entry in gi corresponds to the profit of an item), sij = cij (each
entry in hi corresponds to the cost of an item), and q′ = q. Under this substitution, it is easy to see
that a (feasible) solution to the CMPE problem can be recovered from a solution to the MCKP in
O(n) time where n is the number of variables inM1 (andM2).

Since the number of items in each bin i equals the number of entries in gi, the number of items in
bin i is exponential in the number of variables in the scope of gi, namely it equals exp(|Xi|). Thus
Encoding 4.2 will yield a bounded MCKP if |Xi| is bounded by a constant for all i.

6

X1 X2

X3

X4

X5

X1 X2 X3 g1 h1

0 0 0 5 1
0 0 1 5 5
0 1 0 9 4
0 1 1 3 3
1 0 0 9 8
1 0 1 2 3
1 1 0 6 7
1 1 1 2 9

X4 X5 g2 h2

0 0 1 8
0 1 9 8
1 0 4 4
1 1 6 1

j p1j c1j
1 5 1
2 5 5
3 9 4
4 3 3
5 9 8
6 2 3
7 6 7
8 2 9

j p2j c2j
1 1 8
2 9 8
3 4 4
4 6 1

M1,M2 g1, h1 g2, h2 bin1 bin2

q = 10 capacity = 10

(a) (b) (c)
Figure 1: (a) Combined primal graph of two graphical modelsM1,M2 having 5 binary variables {X1, . . . , X5}.
The graph has two connected components {X1, X2, X3} and {X4, X5}. (b) CMPE problem overM1 andM2

with q = 10, example log-potentials g1, g2 computed fromM1, and example log-potentials h1, h2 computed
fromM2. Values of the two potentials are generated randomly. (c) Multiple choice knapsack problem (MCKP)
encoding of the CMPE problem given in (b) (see Encoding 3.2). The MCKP has 2 bins; the first bin has 8 items
while the second has 4 items with capacity = q = 10. Optimal solution to the MCKP and the corresponding
optimal solution to the CMPE problem is highlighted in red.

4.2 A Conditioning Algorithm Based on k-separators

Graphical models typically encountered in practice will have just one connected component and
therefore the approach presented in the previous subsection will be exponential in n (number of
variables). To address this issue, we propose to condition on variables until the size of each bin in
the encoded MCKP is bounded by a constant. We formalize this approach next using the concept of
k-separators.
Definition 4.2. Given a graph G(V,E) and an integer k ≥ 1, a k-separator of a graph is a set of
vertices S ⊂ V such that each connected component of a graph G′ obtained from G by removing
S has at most k vertices. A k-separator S is minimal when no proper subset of S is a k-separator. A
k-separator S is optimal if there does not exist a k-separator S′ such that |S′| < |S|.

In practice, we want k-separators that are optimal. Unfortunately, finding optimal k-separators is a
NP-hard problem [3] and therefore we will use greedy algorithms that yield minimal k-separators.2
One such greedy algorithm is to iteratively remove a vertex having the maximum degree from each
connected component having more than k vertices until all components have at most k vertices.

Given a k-separator S ⊆ X obtained from the combined primal graph ofM1 andM2, we can use
the following conditioning algorithm to yield a solution to CMPE. For each assignment of values s to
S, we get a CMPE sub-problem Rs such that the MCKP encoding of Rs, denoted by Ps is bounded.
Specifically, Ps is such that the number of items in each bin is bounded by exp(k) while the number
of bins equals the number of components c which in turn is bounded above by (|X| − |S|). We can
either explore the space of assignments to S systematically using branch and bound search or via
simulation techniques such as random sampling and local search. Both approaches will yield anytime
algorithms whose performance improves with time. As before, we can solve each MCKP sub-problem
using advanced MCKP algorithms presented in literature on knapsack problems (cf. [20]).

The above setup and discussion yields Algorithm 1, which is an anytime algorithm for approximately
solving the CMPE problem. The algorithm begins by heuristically selecting a minimal k-separator S
of the combined primal graph G (line 1). Then it searches, either via random sampling or local search
or systematic enumeration, over the assignments s of S (lines 4–16). To perform local search, it selects
a neighbor of the current state having the highest value of the objective function or makes a random
move if the algorithm is stuck in local maxima. A neighbor of an assignment s is an assignment s’
that differs from s in assignment to only one variable. Then, in lines 6-10, it converts the CMPE
sub-problem obtained after conditioning on the assignment S = s to MCKP, as detailed in Encoding
4.2. The CMPE sub-problem is constructed by updating q appropriately (line 6) and computing the

2Note that the number of vertices in the optimal k-separator of a graph can be quite large even if its treewidth
is bounded by k. For instance, a complete binary tree has treewidth of 1 but the number of vertices in its
1-separator is bounded by O(2h−1) where h is the height of the tree.

7

Algorithm 1 ANYTIME-CMPE (M1,M2, q, k)
Input: Two Markov networksM1 = 〈X, f1, G1〉 M2 = 〈X, f2, G2〉, a real number q and an integer k
Output: An estimate of the CMPE problem defined over (M1,M2, q, k).
Begin:
1: Heuristically select a minimal k-separator S ⊂ X using the combined primal graph G
2: G′ = graph obtained by removing S from G. Let c denote the number of connected components of G′ and

let Xi denote the set of variables in the i-th connected component of G′

3: best = −∞
4: repeat
5: Generate an assignment s of S via random sampling or local search or systematic enumeration
6: qs = q −

∑
f∈f2:S(f)⊆S f(s)

7: for i = 1 to c do
8: Compute gi(xi) =

∑
f∈f1:S(f)⊆Xi

f(xi, s)
9: Compute hi(xi) =

∑
f∈f2:S(f)⊆Xi

f(xi, s)
10: Construct a MCKP Ps from {g1, . . . , gc}, {h1, . . . , hc} and qs using Encoding 4.2
11: Use the Greedy MCKP method of [15] to solve Ps and store the objective function value in currentg
12: current = currentg +

∑
f∈f1:S(f)⊆S f(s)

13: if Ps is feasible and current > best then
14: best = current
15: until there is time
16: return best

End.

functions gi and hi for each component i of G′ (the graph obtained by removing S from the combined
primal graph G) (lines 7-9). The algorithm solves the MCKP using a greedy approach (see [15, 20]
for details) (line 11) and updates the best solution computed so far if the current solution has a higher
value for the objective function. The algorithm stops when a user specified time bound is reached and
returns the best value of the objective function found so far (line 16).

4.3 Computational Complexity of ANYTIME-CMPE

Since the size of each function gi and hi is bounded exponentially by k, the time complexity of lines
7-10 of Algorithm ANYTIME-CMPE is O(c exp(k)). Since the time complexity of the greedy MCKP
method [15] is linear in the number of items, and the number of items is bounded by O(c exp(k)), the
time complexity of line 11 is also bounded by O(c exp(k). Thus, the overall time complexity of lines
4-14 is O(n+ c exp(k)). If a systematic enumeration method is used for generating the assignment of
values to S then the worst case time complexity of ANYTIME-CMPE is O((n+ c exp(k))× exp(|S|)).
Since the greedy algorithm of Gens and Levner [15] has a performance factor of 4/5, ANYTIME-CMPE
with systematic enumeration yields a polynomial time approximation scheme with a performance
factor of 4/5 when k and |S| are bounded by a constant (e.g., in some small-world graphs [34]).
Algorithm ANYTIME-CMPE can also be used to yield a fully polynomial time approximation scheme
(FPTAS) by using a FPTAS algorithm for MCKP [16, 22] in lieu of the greedy algorithm in line 11
(when k and |S| are bounded by a constant). Note that these guarantees are the best we can hope for
because CMPE is strongly NP-hard and is unlikely to have an FPTAS algorithm unless P=NP.

We summarize the discussion above in the following proposition and two corollaries.
Proposition 3. If there exists an algorithm for solving MCKP with approximation factor 0 ≤ α ≤ 1
having time complexity O(t) then Algorithm ANYTIME-CMPE has approximation factor α and has
time complexity O((n+ cexp(k) + t)× exp(|S|)) under the assumption that systematic enumeration
is used to search over value assignments to S (and the algorithm is terminated after all assignments
to S are enumerated).

Proof. Without loss of generality, let {s1, . . . , sa} denote the set of feasible solutions of CMPE
projected over the set S. For each feasible solution si, let

f i =
∑

f∈f1:S(f)⊆S

f(si)

8

and

gi = max
y

c∑
j=1

∑
f∈f1:S(f)∩Xj 6=∅

f(y, si)

Then, the optimal value of the objective function for the CMPE problem is given by

OPT = max
1≤i≤a

{
f i + gi

}
(15)

Given an algorithm A for MCKP having approximation factor 0 ≤ α ≤ 1, let si ≥ αgi denote the
solution output by A. We have:

max
1≤i≤a

{f i + si} ≥ max
1≤i≤a

{
f i + αgi

}
≥ α max

1≤i≤a

{
f i + gi

}
= αOPT

Since the time complexity of the given algorithm is O(t) and the time complexity of constructing the
MCKP and retrieving its solution is O(n+ c exp(k)), the overall time complexity of lines 6–14 given
an assignment to S is O(n+ c exp(k) + t). Thus, the overall time complexity is O((n+ c exp(k) +
t)× exp(|S|)).

We can derive the following two corollaries from Proposition 3.
Corollary 1. Given a constant k ≥ 1, there exists a polynomial time algorithm (polynomial in n)
having an approximation factor 4/5 for solving the CMPE problem under the assumption that the
size of the k-separator for the combined primal graph ofM1 andM2 is bounded by a constant.

Proof. Proof follows from Gens and Levner [15] and Proposition 3.

Corollary 2. Given a constant k ≥ 1 and 0 ≤ ε ≤ 1, there exists a FPTAS which produces a (1− ε)
approximate solution and runs in polynomial time in n and 1/ε for solving the CMPE problem under
the assumption that the size of the k-separator for the combined primal graph ofM1 andM2 is
bounded by a constant.

Proof. Proof follows from Bansal et al. [1] and Proposition 3.

5 Experiments

5.1 Setup

We compared the performance of Algorithm ANYTIME-CMPE with SCIP [14], a state-of-the-art open
source mixed integer linear programming (MILP) solver.3 We evaluated the impact of increasing k
and time on the performance of ANYTIME-CMPE. We experimented with the following five values of
k: {1, 3, 5, 7, 9}. For each k, we ran our algorithm on each probabilistic network for 1200 seconds.
SCIP was also run for 1200 seconds on each network.

Implementation Details. We used restart-based local search to perform search over the value as-
signments to S. Specifically, our implementation makes locally optimal moves if it improves the
evaluation score. Otherwise, the local search is stuck in local maxima and we make a random move.
We implemented the greedy MCKP algorithm of [15] to solve Ps. We improve the greedy solution
further by performing local search over Ps until a local maxima is reached. We used the max-degree
heuristic outlined in section 4.2 to select a minimal k-separator.

Benchmarks and Methodology. We experimented with the following benchmark graphical models,
available from the UAI 2010 and 2014 competitions [12, 17]: (1) Large Dynamic Bayesian Networks,
(2) Ising models and (3) Image Segmentation networks. For each benchmark network, we selected
ten q values as follows. We generated a million assignments uniformly at random and divided their
weights into 10 quantiles (deciles). Then, we selected a random weight from each of the 10 quantiles
as a value for q. We found that most CMPE problems generated this way were easy problems in
that the maximum value of the objective function (or close to it) was reached quickly by all of our
local search algorithms. Similar observations have been made in the literature on knapsack problems

3It is straight forward to encode CMPE as MILP (cf. [21]). We also experimented with Gurobi [18]. Its
performance was inferior to SCIP because of precision problems.

9

100 300 500 700 900 1100
Time in Seconds

10 8

10 6

10 4

10 2

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −27.0269

100 300 500 700 900 1100
Time in Seconds

10 10
10 9
10 8
10 7
10 6
10 5
10 4
10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = −0.008

-195.0 -11.0 5.0 27.0
q

10 13

10 11

10 9

10 7

10 5

10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) Time = 1200 seconds

Figure 2: Easy problems: Results on DBN_16 Markov network having 44 variables and 528 potentials.

100 300 500 700 900 1100
Time in Seconds

10 9
10 8
10 7
10 6
10 5
10 4
10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −34.287

100 300 500 700 900 1100
Time in Seconds

10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = 0.015

-191.0 -21.0 10.0 52.0
q

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) Time = 1200 seconds

Figure 3: Easy problems: Results on Grids_11 Markov network having 100 variables and 300 potentials.

100 300 500 700 900 1100
Time in Seconds

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −365.795

100 300 500 700 900 1100
Time in Seconds

10 9

10 8

10 7

10 6

10 5

10 4

10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = −19.484

-366.0 -41.0 20.0 99.0
q

10 10

10 9

10 8

10 7

10 6

10 5

10 4

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) Time = 1200 seconds

Figure 4: Easy problems: Results on Grids_12 Markov network having 100 variables and 280 potentials.

[29]. Therefore, in order to generate hard CMPE problems, we made the following modifications: (1)
for each network, we kept the network structure the same but changed the parameters by sampling
each parameter from the range [0, 10000]; (2) we selected values of q that are close to the weight of
the (unconstrained) most probable assignment; and (3) we focused on multiple choice subset sum
problems, namely we choseM1 =M2. We use the quantity q − o, which we call error to measure
performance whenM1 =M2 where o is value of the objective function output by the competing
algorithms. Note that the maximum value of the objective function is bounded by q (since we are
solving hard subset sum type problems) and therefore smaller the error, better the algorithm. We used
the value of the objective function o as our performance measure for knapsack-type problems (since
M1 6=M2, the value of the objective function is not upper bounded by q). Thus for knapsack-type
problems, higher the value of the performance measure, better the algorithm.

5.2 Results on Subset-Sum Type Problems (M1 =M2)

We present results for two classes of problems: (1) relatively easy subset-sum type problems on
the original networks; and (2) hard subset-sum type problems on the modified networks (only the

10

100 300 500 700 900 1100
Time in Seconds

10 9

10 8

10 7

10 6

10 5

10 4

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −559.495

100 300 500 700 900 1100
Time in Seconds

10 4

10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = 0564.392

-559.0 -64.0 31.0 155.0
q

10 10
10 9
10 8

10 7
10 6

10 5
10 4
10 3

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) Time = 1200 seconds

Figure 5: Easy problems: Results on Grids_14 Markov network having 100 variables and 300 potentials.

100 300 500 700 900 1100
Time in Seconds

10 9

10 7

10 5

10 3

10 1

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −642.153

100 300 500 700 900 1100
Time in Seconds

10 9
10 8
10 7
10 6
10 5
10 4
10 3
10 2

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = −531.726

-642.0 -571.0 -555.0 -532.0
q

10 11
10 10
10 9
10 8
10 7
10 6
10 5
10 4

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) Time = 1200 seconds

Figure 6: Easy problems: Results on Segmentation_12 Markov network with 229 variables and 851 potentials.

100 300 500 700 900 1100
Time in Seconds

10 9

10 7

10 5

10 3

10 1

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −561.619

100 300 500 700 900 1100
Time in Seconds

10 8

10 6

10 4

10 2

100

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = −551.510

-636.0 -567.0 -552.0 -530.0
q

10 10

10 9

10 8

10 7

10 6

10 5

10 4
Er

ro
r

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) Time = 1200 seconds

Figure 7: Easy problems: Results on Segmentation_14 Markov network with 226 variables and 845 potentials.

100 300 500 700 900 1100
Time in Seconds

102

103

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(a) q = 6684822.85

100 300 500 700 900 1100
Time in Seconds

100

101

102

103

104

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(b) q = 4845547.43

100 300 500 700 900 1100
Time in Seconds

100

101

102

103

104

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(c) q = 4733941.8

Figure 8: Hard problems: Results on (a) Grids_17 Markov network with 400 variables and 1160 potentials, (b)
Segmentation_12 Markov network with 229 variables and 851 potentials, and (c) Segmentation_14 Markov
network with 226 variables and 845 potentials.

11

100 300 500 700 900 1100
Time in Seconds

105

8 × 104

9 × 104

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(a) q = 1776053.1

100 300 500 700 900 1100
Time in Seconds

105

9 × 104

9.5 × 104

1.05 × 105

1.1 × 105

1.15 × 105

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(b) q = 1909632.500

100 300 500 700 900 1100
Time in Seconds

3 × 104

4 × 104

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(c) q = 1843210.50

Figure 9: Hard problems: Results on (a) Grids_12 Markov network with 100 variables and 200 potentials, (b)
Grids_13 Markov network with 100 variables and 300 potentials, and (c) Grids_14 Markov network with 100
variables and 300 potentials.

100 300 500 700 900 1100
Time in Seconds

5.5 × 105

5.6 × 105

5.7 × 105

5.8 × 105

5.9 × 105

6 × 105

6.1 × 105

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(a) q = 7298109.35

100 300 500 700 900 1100
Time in Seconds

100

101

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(b) q = 6194193.65

100 300 500 700 900 1100
Time in Seconds

104

105

Er
ro

r

K = 1
K = 3

K = 5
K = 7

K = 9

(c) q = 4997112.63

Figure 10: Hard problems: Results on (a) Grids_16 Markov network with 400 variables and 1160 potentials, (b)
Grids_18 Markov network with 400 variables and 1160 potentials, and (c) Segmentation_15 Markov network
with 232 variables and 853 potentials.

parameters are modified as described above) with a value of q that is close to the unconstrained
maximum.

Fig. 2-7 show the results for easy problems. For each network, the first two plots (in sub-figures (a)
and (b)) show the impact of increasing time for two randomly chosen q values and the last plot (in
sub-figure (c)) shows the impact of increasing q for a given time bound. The results are averaged
over 10 runs. We observe that smaller values of k, specifically k = 3, 5 perform the best overall.
The performance of k = 1 is only slightly inferior to k = 3, 5 on average while the performance
of k = 7, 9 is 1-2 orders of magnitude inferior to k = 3, 5. We also observe that the performance
of higher values of k improves with time while the performance of smaller values of k does not
significantly improve with time. SCIP is substantially worse than our proposed algorithms.

Fig. 8-10 show the results for hard problems for different (network, q) pairs. To avoid clutter, we have
excluded SCIP (since its performance is much worse than our algorithm). We observe that higher
values of k, specifically k = 7, 9 perform the best overall. k = 1 is the worst performing scheme. As
before, we see that the performance of higher values of k improves with time while the performance
of smaller values of k does not significantly improve with time.

The discrepancy between the results for easy and hard problems can be “explained away” using
the following intuitive arguments. As k increases the number of nodes explored goes down which
negatively impacts the performance (because the complexity of constructing the MCKP sub-problem
is exponential in k). However, assuming that the MCKP solution obtained using greedy MCKP
algorithms is close to optimal, as k increases, we have access to a high quality solution to an
exponentially increasing sub-problem. This positively impacts the performance. In other words, k
helps us explore the classic “exploration versus exploitation” trade off. When k is small, the algorithm
focuses on exploration while when k is large, the algorithm spends more time on each state, exploiting
good performing schemes having high computational complexity. Exploration is more beneficial on
easy problems since there are many close to optimal solutions. On the other hand, for hard problems,

12

100 300 500 700 900 1100
Time in Seconds

103.70

103.65

103.60

103.55

103.50

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −103.774

100 300 500 700 900 1100
Time in Seconds

4.500
4.475
4.450
4.425
4.400
4.375
4.350
4.325
4.300

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = −4.861

100 300 500 700 900 1100
Time in Seconds

194.7

194.6

194.5

194.4

194.3

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) q = −194.589

Figure 11: Knapsack-type problems: Results on (a) DBN_11 Markov network with 40 variables and 440
potentials, (b) DBN_15 Markov network with 42 variables and 483 potentials, and (c) DBN_16 Markov network
with 44 variables and 528 potentials.

100 300 500 700 900 1100
Time in Seconds

99.5

99.4

99.3

99.2

99.1

99.0

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −99.437

100 300 500 700 900 1100
Time in Seconds

18.10

18.05

18.00

17.95

17.90

17.85
O

bj
ec

tiv
e

V
al

ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = −18.417

100 300 500 700 900 1100
Time in Seconds

102

104

106

108

110

112

114

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) q = 113.928

Figure 12: Knapsack-type problems: Results on DBN_12 Markov network with 42 variables and 483 potentials.

100 300 500 700 900 1100
Time in Seconds

120.65

120.60

120.55

120.50

120.45

120.40

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(a) q = −120.721

100 300 500 700 900 1100
Time in Seconds

80

90

100

110

120

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(b) q = 122.003

100 300 500 700 900 1100
Time in Seconds

190.54

190.52

190.50

190.48

190.46

190.44

190.42

O
bj

ec
tiv

e
V

al
ue

K = 1
K = 3

K = 5
K = 7

K = 9
SCIP

(c) q = −190.835

Figure 13: Knapsack-type problems: (a), (b): Results on DBN_13 Markov network with 44 variables and 528
potentials, and (c) Results on Grids_11 Markov network with 100 variables and 300 potentials.

exploitation is more beneficial because there are very few close to optimal solutions and it is easy to
miss them or spend exponential time exploring them.

5.3 Results on Knapsack Type Problems (M1 6=M2)

To demonstrate the performance of Algorithm ANYTIME-CMPE on MCKP-type problems, (where
M1 6= M2) we designed and performed another set of experiments. To generate MCKP-type
problems, we made a copy of each benchmark network and randomly perturbed each parameter by
±ε where ε is sampled uniformly at random from (0, 1]; we used the same network structure as the
original one. We used the same approach as the one used in subset-sum problems for generating
values of q. As mentioned earlier, we used the value of the objective function output by the competing
algorithms as our performance measure; higher the value better the algorithm.

We used the same setup as subset-sum problems: k ∈ {1, 3, 5, 7, 9} and for each k, we ran our
algorithm on each pair of network and q for 1200 seconds. Also, we used SCIP as a baseline and

13

compared the output of ANYTIME-CMPE with it. We evaluated the impact of increasing k value and
the running time on the performance of our algorithm.

Fig. 11-13 show the results of our experiments for knapsack-type problems. Each figure plots the
value of the objective function as a function of time and shows the impact of increasing k and time
for a given q values. Each figure also shows the impact of increasing time on the performance of
SCIP. The plots are averaged over 10 runs.

Similar to easy subset-sum type problems, we observe that the difference between the values of
objective function computed by various algorithms is small (notice the range on the Y-axis of the
figures, it varies between 0.1 − 0.3 for most plots). Our experiments show that in problems with
relatively large objective values, different k values perform the same and SCIP is far worse than our
algorithm. On the other hand, in problems with relatively small objective values, where potential
values are more close to each other, large values of k (e.g., k = 7) are superior to SCIP and small
values of k.

6 Conclusion and Future Work

In this paper, we presented a novel approach for solving the constrained most probable explanation
(CMPE) problem in probabilistic graphical models. This problem is strongly NP-hard in general. We
showed that developing advanced solvers for this problem is important because several explanation
and estimation tasks can be reduced to it. The key idea in our approach is to condition on a subset of
variables such that the remaining sub-problem can be encoded as a multiple choice knapsack (subset
sum) problem, a weakly NP-hard problem that admits several efficient approximation algorithms.
We showed that we can reason about the optimal subset of variables to condition on using a graph
concept called k-separator. This allowed us to define powerful heuristic approximations to CMPE
and analyze their computational complexity. Experiments on several benchmark networks showed
that our algorithm is superior to SCIP, a state-of-the-art open source MILP solver. Our experiments
also showed that when time is limited, higher values of k are beneficial for hard CMPE problems
while smaller values are beneficial for easy CMPE problems.

Future work includes: developing approximate dynamic programming algorithms; developing branch
and bound algorithms by leveraging the mixed networks framework [26] and AND/OR search
[9, 24, 25]; developing techniques for solving the constrained marginal most probable explanation
problem; extending our approach to solve the same decision probability task [6], etc.

Acknowledgments

This work was supported in part by the DARPA Explainable Artificial Intelligence (XAI) Program
under contract number N66001-17-2-4032, and by the National Science Foundation grants IIS-
1652835 and IIS-1528037. Any opinions, findings, conclusions or recommendations expressed in
this paper are those of the authors and do not necessarily reflect the views or official policies, either
expressed or implied, of DARPA, NSF or the US government.

References
[1] M. Bansal and V. Venkaiah. Improved fully polynomial time approximation scheme for the

0-1 multiple-choice knapsack problem. International Institute of Information Technology Tech
Report, 2004.

[2] D. Batra, P. Yadollahpour, A. Guzman-Rivera, and G. Shakhnarovich. Diverse m-best solutions
in markov random fields. In European Conference on Computer Vision, pages 1–16. Springer,
2012.

[3] W. Ben-Ameur, M. Mohamed-Sidi, and J. Neto. The k-separator problem: polyhedra, complexity
and approximation results. Journal of Combinatorial Optimization, 29(1):276–307, 2015.

[4] B. Bidyuk and R. Dechter. On finding minimal w-cutset. In Proceedings of the Twentieth
Conference on Uncertainty in Artificial Intelligence, pages 43–50, Arlington, Virginia, United
States, 2004. AUAI Press.

14

[5] A. K. Chandra, D. S. Hirschberg, and C.-K. Wong. Approximate algorithms for some generalized
knapsack problems. Theoretical Computer Science, 3(3):293–304, 1976.

[6] S. J. Chen, A. Choi, and A. Darwiche. Algorithms and applications for the same-decision
probability. Journal of Artificial Intelligence Research, 49:601–633, 2014.

[7] A. Choi, Y. Xue, and A. Darwiche. Same-decision probability: A confidence measure for
threshold-based decisions. International Journal of Approximate Reasoning, 53(9):1415 – 1428,
2012.

[8] A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,
2009.

[9] R. Dechter and R. Mateescu. AND/OR Search Spaces for Graphical Models. Artificial
Intelligence, 171(2-3):73–106, 2007.

[10] K. Dudziński and S. Walukiewicz. Exact methods for the knapsack problem and its generaliza-
tions. European Journal of Operational Research, 28(1):3–21, 1987.

[11] M. Dyer, N. Kayal, and J. Walker. A branch and bound algorithm for solving the multiple-choice
knapsack problem. Journal of computational and applied mathematics, 11(2):231–249, 1984.

[12] G. Elidan and A. Globerson. The 2010 UAI approximate inference challenge. Available online
at: http://www.cs.huji.ac.il/project/UAI10/index.php, 2010.

[13] N. Flerova, R. Marinescu, and R. Dechter. Searching for the m best solutions in graphical
models. Journal of Artificial Intelligence Research, 55:889–952, 04 2016.

[14] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse, P. Gemander,
A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny, T. Koch, P. L. Bodic, S. J. Ma-
her, F. Matter, M. Miltenberger, E. Mühmer, B. Müller, M. Pfetsch, F. Schlösser, F. Ser-
rano, Y. Shinano, C. Tawfik, S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig. The
SCIP Optimization Suite 7.0. Technical report, Optimization Online, March 2020. URL
http://www.optimization-online.org/DB_HTML/2020/03/7705.html.

[15] G. Gens and E. Levner. An approximate binary search algorithm for the multiple-choice
knapsack problem. Information Processing Letters, 67(5):261–265, 1998.

[16] G. V. Gens and E. V. Levner. Computational complexity of approximation algorithms for
combinatorial problems. In J. Bečvář, editor, Mathematical Foundations of Computer Science
1979, pages 292–300, Berlin, Heidelberg, 1979. Springer Berlin Heidelberg. ISBN 978-3-540-
35088-0.

[17] V. Gogate. Results of the 2014 UAI competition. http://www.hlt.utdallas.edu/ vgogate/uai14-
competition/index.html, 2014.

[18] L. Gurobi Optimization. Gurobi optimizer reference manual, 2020. URL http://www.
gurobi.com.

[19] E. Horowitz and S. Sahni. Computing partitions with applications to the knapsack problem.
Journal of the ACM (JACM), 21(2):277–292, 1974.

[20] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin, Germany,
2004.

[21] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

[22] B. Korte and R. Schrader. On the existence of fast approximation schemes. In O. L. Mangasar-
ian, R. R. Meyer, and S. M. Robinson, editors, Nonlinear Programming 4, pages 415 – 437.
Academic Press, 1981.

[23] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of Operations
Research, 4(4):339–356, 1979.

[24] R. Marinescu and R. Dechter. AND/OR Branch-and-Bound Search for Combinatorial Opti-
mization in Graphical Models. Artificial Intelligence, 173(16-17):1457–1491, 2009.

[25] R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial optimization
in graphical models. Artificial Intelligence, 173(16-17):1492–1524, 2009.

[26] R. Mateescu and R. Dechter. Mixed deterministic and probabilistic networks. Annals of
Mathematics and Artificial Intelligence, 54(1-3):3–51, 2008.

15

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.gurobi.com
http://www.gurobi.com

[27] R. M. Nauss. The 0–1 knapsack problem with multiple choice constraints. European Journal of
Operational Research, 2(2):125 – 131, 1978. ISSN 0377-2217. doi: https://doi.org/10.1016/
0377-2217(78)90108-X.

[28] D. Pisinger. Dynamic programming on the word ram. Algorithmica, 35(2):128–145, 2003.
[29] D. Pisinger. Where are the hard knapsack problems? Computers & Operations Research, 32(9):

2271 – 2284, 2005.
[30] S. Renooij. Same-decision probability: Threshold robustness and application to explanation. In

M. Studený and V. Kratochvíl, editors, International Conference on Probabilistic Graphical
Models, PGM 2018, 11-14 September 2018, Prague, Czech Republic, volume 72 of Proceedings
of Machine Learning Research, pages 368–379. PMLR, 2018.

[31] S. Rouhani, T. Rahman, and V. Gogate. Algorithms for the nearest assignment problem. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence,
IJCAI 2018, Stockholm, Sweden, July 13-19, 2018, pages 5096–5102, 2018.

[32] P. Sinha and A. A. Zoltners. The multiple-choice knapsack problem. Operations Research, 27
(3):503–515, 1979.

[33] D. B. Smith, S. Rouhani, and V. Gogate. Order statistics for probabilistic graphical models. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, Melbourne, Australia, August 19-25, 2017, pages 4625–4631, 2017.

[34] D. J. Watts and S. H. Strogatz. Collective dynamics of ’small-world’networks. nature, 393
(6684):440, 1998.

16

	Introduction
	Preliminaries and Notation
	Multiple Choice Knapsack and Subset Sum Problems

	Applications of CMPE
	Nearest Assignment/Explanation Problem
	Most Probable Assignment for a Decision

	Our Approach
	CMPE with Multiple Connected Components
	A Conditioning Algorithm Based on k-separators
	Computational Complexity of Anytime-cmpe

	Experiments
	Setup
	Results on Subset-Sum Type Problems (M1=M2)
	Results on Knapsack Type Problems (M1 =M2)

	Conclusion and Future Work

