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Navigating Supplementary Material

We summarize the notation used in our work in Appendix A, including a list of frequently
used symbols and their corresponding definitions. Next, in Appendix B, we present the
proof of our main result, and organize the proofs of intermediate results in Appendix C;
additional results used are listed in Appendix D for completeness. Furthermore, we show
the detailed synthetic and real-world experimental results, along with how to reproduce
them, in Appendix E. Corresponding code with specific recommendation on the parameter
setting is available at https://github.com/srambhatla/TensorNOODL.

A Summary of Notation
In addition to the notation described in the manuscript, we use ‖M‖ and ‖M‖F for the
spectral and Frobenius norm, respectively, and ‖v‖, ‖v‖0, and ‖v‖1 to denote the `2, `0
(number of non-zero entries), and `1 norm, respectively. In addition, we use D(v) as a
diagonal matrix with elements of a vector v on the diagonal. Given a matrix M, we use
M−i to denote a resulting matrix without i-th column. Also note that, since we show that
‖A(t)

i − A∗i ‖ ≤ εt contracts in every step, therefore we fix εt, ε0 = O∗(1/ log(n)) in our
analysis. We summarize the definitions of some frequently used symbols in our analysis in
Table A.1 and A.2.

Table A.1: Frequently used symbols: Probabilities
Probabilities
Symbol Definition Symbol Definition

γ γ := αβ, where α(β) is the probability that an
element B∗(t)ij ( C∗(t)ij ) of B∗(t) (C∗(t)) is non-zero.

δ
(t)
Bi

δ
(t)
Bi

= exp(− ε2Jα
2(1+ε/3) ) for any ε > 0.

δ
(t)
T δ

(t)
T = 2m exp(− C2

O∗(ε2
t ) ) δ

(t)
β 2s exp(− 1

O(εt) )

δ
(t)
s δ

(t)
s = min(J,K) exp(−ε2αβm/2(1 + ε/3)) for

any ε > 0
δ

(t)
p δ

(t)
p = exp(− ε

2

2 L(1− (1− γ)m))

δ
(t)
IHT δ

(t)
IHT = δ

(t)
T + δ

(t)
β δ

(t)
NOODL δ

(t)
NOODL = δ

(t)
T + δ

(t)
β + δHW + δ

(t)
gi + δ

(t)
g

qi qi = Pr[i ∈ S] = Θ( sm ) qi,j qi,j = Pr[i, j ∈ S] = Θ( s
2

m2 )
pi pi = E[X∗ijsign(X∗ij)|X∗ij 6= 0] δ

(t)
HW δ

(t)
HW = exp(−1/O(εt))

δ
(t)
gi δ

(t)
gi = exp(−Ω(s)) δ

(t)
g δ

(t)
g = (n+m) exp(−Ω(m

√
log(n))
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Table A.2: Frequently used symbols: Notation and Parameters

Symbol Definition Symbol Definition
(·)∗ Used to represent the ground-truth

matrices.
(·)(t),
(̂·)

(t)
,

and (̂·)

Used to represent the estimates
formed by the algorithm.

(·)(t) The subscript “t” is used to repre-
sent the estimates at t-iteration of
the online algorithm.

X(r)(t) The r-th IHT iterate at t-th iterate
of the online algorithm.

(·)(r) The subscript “r” is used to repre-
sent the r-th IHT iterate.

X̂(t) The final IHT estimate at (r = R),
i.e., X(R)(t) at the t-th iterate of the
online algorithm.

A(t)
i i-th column of A(t) (estimate of A∗

at the t-th iteration of the online
algorithm).

B̂(t)

(Ĉ(t))
Estimate of B∗(t) (C∗(t)) at the t-th
iteration of the online algorithm.

S∗(t) Transposed Khatri-Rao structured
(sparse) matrix, S∗(t) = (C∗(t) �
B∗(t))>, its i-th row is given by
C∗(t)i ⊗B∗(t)i .

X∗(t) Sparse matrix formed by collecting
non-zero columns of S∗(t).

p Number of columns in X∗(t), also
the number of non-zero columns in
S∗(t).

Z(t)>
1 Mode-1 unfolding of Z(t), Z(t)>

1 =
A∗(C∗(t)�B∗(t))> at the t-th iter-
ation of the online algorithm.

εt Upper-bound on column-wise error
at the t-th iterate,‖A(t)

i − A∗i ‖ ≤
εt = O∗( 1

log(n) ).

µ The incoherence between the
columns of the factor A∗; see Def.
2.

µt Incoherence between the columns of
A(t), µt√

n
= µ√

n
+ 2εt.

ξ The element-wise upper bound on
the error between Ŝ(t)

ij and S∗(t)ij ,
i.e., |S∗(t)ij − Ŝ(t)

ij | ≤ ξ.
s The number of non-zeros in a col-

umn of S∗(t), also referred to as the
sparsity.

α(β) The probability that an element
B∗(t)ij ( C∗(t)ij ) of B∗(t) (C∗(t)) is
non-zero.

εB Upper-bound on column-wise `2-
error in the estimate B̂(t) at t-th it-
eration, i.e.„ ‖B̂(t)

i −B∗(t)i ‖ ≤ εB =
O( ξ

2

αβ
).

εC Upper-bound on column-wise `2-
error in the estimate Ĉ(t) at t-th it-
eration, i.e., ‖Ĉ(t)

i −C∗(t)i ‖ ≤ εC =
O( ξ

2

αβ
).

R The total number of IHT steps at
the t-th iteration of the online algo-
rithm.

T Total number of online iterations.

δR Decay parameter for final IHT step

at every t, ceil(
log( 1

δR
)

log(1− ηx) ) ≤ R,

where ηx is the step-size parameter
for the IHT step.

δT Element-wise target error tolerance
for final estimate (at t = T ) of
X∗(T ), |X̂(T )

ij − X∗(T )
ij | ≤ δT∀i ∈

supp(X∗(T )).

C Lower-bound on X∗ij , |X
∗(t)
ij | ≥ C

for (i, j) ∈ supp(X∗(t)) and C ≤ 1
L L := min(J,K)

2



B Proof of Theorem 1

In this section, we present the details of the analysis pertaining to our main result.

Theorem 1 [Main Result] Suppose a tensor Z(t) ∈ Rn×J×K provided to Algorithm 1 at
each iteration t admits a decomposition of the form (1) with factors A∗ ∈ Rn×m, B∗(t) ∈
RJ×m and C∗(t) ∈ RK×m and min(J,K) = Ω(ms2). Further, suppose that the assumptions
A.1-A.6 hold. Then, given R = Ω(log(n)), with probability at least (1−δalg) for some small
constant δalg, the coefficient estimate X̂(t) at t-th iteration has the correct signed-support and
satisfies

(X̂(t)
i,j −X∗(t)i,j )2 ≤ ζ2 := O(s(1− ω)t/2‖A(0)

i −A∗i ‖), for all (i, j) ∈ supp(X∗(t)).

Furthermore, for some 0 < ω < 1/2, the estimate A(t) at t-th iteration satisfies

‖A(t)
i −A∗i ‖2 ≤ (1− ω)t‖A(0)

i −A∗i ‖2, for all t = 1, 2, . . . .

Consequently, Algorithm 2 recovers the supports of the sparse factors B∗(t) and C∗(t) cor-
rectly, and ‖B̂(t)

i −B∗(t)i ‖2 ≤ εB and ‖Ĉ(t)
i −C∗(t)i ‖2 ≤ εC , where εB = εC = O( ζ

2

αβ ).

Here, δalg = δs + δ
(t)
p + δ

(t)
Bi

+ δNOODL. Further, δ
(t)
NOODL = δ

(t)
T + δ

(t)
β + δHW +

δ
(t)
gi + δ

(t)
g , where δ

(t)
T = 2m exp(−C2/O∗(ε2t )), δ

(t)
β = 2s exp(−1/O(εt)), δ

(t)
HW =

exp(−1/O(εt)), δ
(t)
gi = exp(−Ω(s)), δ

(t)
g = (n + m) exp(−Ω(m

√
log(n)). Furthermore,

δ
(t)
s = min(J,K) exp(−ε2αβm/2(1 + ε/3)) for any ε > 0, δ(t)

p = exp(− ε
2

2 L(1− (1− γ)m)),
and δ(t)

Bi
= exp(− ε2Jα

2(1+ε/3) ) for any ε > 0. Also, ‖A(t)
i −A∗i ‖ ≤ εt.

Proof of Theorem 1
The proof procedure relies on analyzing three main steps of Alg. 1 – 1) estimating the X∗(t)
reliably corresponding to Z(t), 2) using X(t) to estimate the factors B∗ and C∗, and 3)
making progress on the estimate of A∗ at every iteration t of the online algorithm.
Estimating the X∗(t) reliably
The sparse matrix X∗(t) is formed by collecting the non-zero columns of S∗(t) := (C∗(t) �
B∗(t))> corresponding to Z(t). The sparsity pattern of X∗(t) columns encodes the sparsity
patterns of columns of B∗(t) and C∗(t). As a result, recovering the support of X∗(t) exactly
is crucial to recover B∗ and C∗. Furthermore, recovering the signed-support is also essential
for making progress on the dictionary factor. We begin by characterizing the number of
non-zeros (s) in a column of S∗(t) (X∗(t)). The number of non-zeros in a column of S∗(t)
are dependent on the non-zero elements of B∗ and C∗. Since each element of B∗ (C∗) is
non-zero with probability α(β), the upper-bound on the sparsity (s) of S∗(t) column is given
by the following lemma.

Lemma 1 If m = Ω(log(min(J,K))/αβ) then with probability at least (1−δ(t)
s ) the number

of non-zeros s, in a column of S∗(t) are upper-bounded as s = O(αβm), where δ
(t)
s =

min(J,K) exp(−ε2αβm/2(1 + ε/3)) for any ε > 0.

In line with our intuition, the sparsity scales with the parameters α, β and m.
Next, we focus on the Iterative Hard Thresholding (IHT) phase of the algorithm; Similar
results were established in [11, Lemma 1-4]. Here, the first step includes recovering the
correct signed-support (Def. 5) of X∗(t) given an estimate A(0), which is (ε0, 2)-near to
A∗ for ε0 = O∗(1/ log(n)); see Def. 1. To this end, we leverage the following lemma, to
guarantee that the initialization step correctly recovers the signed-support with probability
at least (1− δ(t)

T ), for δ(t)
T = 2m exp(− C2

O∗(ε2
t ) ).

Lemma 2 (Signed-support recovery) Suppose A(t) is εt-close to A∗. Then, if µ =
O(log(n)), s = O∗(

√
n/µ log(n)), and εt = O∗(1/

√
log(m)), with probability at least (1 −
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δ
(t)
T ) for each random sample y = A∗x∗:

sign(TC/2((A(t))>y) = sign(x∗),

where δ(t)
T = 2m exp(− C2

O∗(ε2
t ) ).

Using Lemma 1 and 2 we also arrive at the condition that s = O(αβm) = O∗
√
n/µ log(n),

formalized as A.4. We now use the following result to ensure that each step of the IHT
stage preserves the correct signed-support. Lemma 3, states the conditions on the step
size parameter η(r)

x , and the threshold τ (r), such that the IHT-step preserves the correct
signed-support with probability δ(t)

IHT, for δ(t)
IHT = 2m exp(− C2

O∗(ε2
t ) ) + 2s exp(− 1

O(εt) ).

Lemma 3 (IHT update step preserves the correct signed-support) Suppose A(t)

is εt-close to A∗, µ = O(log(n)), s = O∗(
√
n/µ log(n)), and εt = O∗(1/ log(m)) Then,

with probability at least (1− δ(t)
β − δ

(t)
T ), each iterate of the IHT-based coefficient update step

shown in (6) has the correct signed-support, if for a constant c(r)
1 (εt, µ, s, n) = Ω̃(k2/n), the

step size is chosen as η(r)
x ≤ c(r)

1 , and the threshold τ (r) is chosen as

τ (r) = η(r)
x (tβ + µt√

n
‖x(r−1) − x∗‖1) := c

(r)
2 (εt, µ, s, n) = Ω̃(s2/n),

for some constants c1 and c2. Here, tβ = O(√sεt), δ(t)
T = 2m exp(− C2

O∗(ε2
t ) ) ,and δ

(t)
β =

2s exp(− 1
O(εt) ).

Lemma 3 establishes condition on correct signed-support recovery by the IHT stage. We
now leverage the following result, Lemma 4 to quantify the error incurred by X̂(t) at the
end of the R IHT steps, i.e., |X∗(t)ij − X̂(t)

ij | = |S
∗(t)
ij − Ŝ(t)

ij | ≤ ξ.

Lemma 4 (Upper-bound on the error in coefficient estimation) With probability
at least (1 − δ

(t)
β − δ

(t)
T ) the error incurred by each element (i1, j1) ∈ supp(X∗(t)) of the

coefficient estimate is upper-bounded as

|X̂(t)
i1j1
−X∗(t)i1j1

| ≤ O(tβ) +
(

(R+ 1)sηx µt√
n

max
(i,j)
|X(0)(t)

ij −X∗(t)ij |+ |X
(0)(t)
i1j1

−X∗(t)i1j1
|
)
δR = O(tβ)

where tβ = O(√sεt), δR := (1−ηx+ηx µt√
n

)R, δ(t)
T = 2m exp(− C2

O∗(ε2
t ) ), δ(t)

β = 2s exp(− 1
O(εt) ),

and µt is the incoherence between the columns of A(t).

Also, the corresponding expression for X̂(t), which facilitates the analysis of the dictionary
updates, is given by Lemma 5.

Lemma 5 (Expression for the coefficient estimate at the end of R-th IHT iter-
ation) With probability at least (1− δ(t)

T − δ
(t)
β ) the i-th element of the coefficient estimate,

for each i ∈ supp(x∗), is given by

x̂i := x(R)
i = x∗i (1− λ

(t)
i ) + ϑ

(R)
i .

Here, |ϑ(R)
i | = O(tβ), where tβ = O(√sεt). Further, λ(t)

i = |〈A(t)
i −A∗i ,A∗i 〉| ≤

ε2
t

2 , δ(t)
T =

2m exp(− C2

O∗(ε2
t ) ) and δ(t)

β = 2s exp(− 1
O(εt) ).

Interestingly, Lemma 4 shows that the error in the non-zero elements of X̂ only depends on
the error in the incoherent factor (dictionary) A(t), which results in the following expression
for ξ2.

ξ2 := O(s(1− ω)t/2‖A(0)
i −A∗i ‖), for all (i, j) ∈ supp(X∗). (1)

Therefore, if the column-wise error in the dictionary decreases at each iteration t, then the
IHT-based sparse matrix estimates also improve progressively.

4



Recover Sparse Factors B∗ and C∗ via Alg.2
The results for the IHT-stage are foundational for the recovery of the sparse tensor fac-
tors B∗(t) and C∗(t) since they a) ensure correct signed-support recovery, guaranteed by
Lemma 3 and b) establish an upper-bound on the estimation error in Ŝ(t). With these re-
sults, we now establish the correctness of Alg. 2 given an entry-wise ζ-close estimate of S∗(t),
|Ŝ(t)
ij − S∗(t)ij | ≤ ζ given by the IHT stage. This procedure recovers the sparse factors B∗(t)

and C∗(t), given element-wise ξ-close estimate Ŝ of S∗(t). The following lemma establishes
recovery guarantees on the sparse factors using the SVD-based Alg. 2, up to sign and scaling
ambiguity.

Lemma 6 Suppose the input Ŝ(t) to Alg. 2 is entry-wise ζ close to S∗(t), i.e., |Ŝ(t)
ij −S∗(t)ij | ≤

ζ and has the correct signed-support as S∗(t). Then with probability atleast (1 − δ
(t)
IHT −

δ
(t)
Bi

), both B̂(t)
i and Ĉ(t)

i have the correct support, and
∥∥∥∥ B∗(t)

i

‖B∗(t)
i
‖
− πi

B̂(t)
i

‖B̂(t)
i
‖

∥∥∥∥ = O(ζ2) and∥∥∥∥ C∗(t)
i
∗

‖C∗(t)
i
‖
− πi

Ĉ(t)
i

‖Ĉ(t)
i
‖

∥∥∥∥ = O(ζ2), where δ(t)
IHT = 2m exp(− C2

O∗(ε2
t ) ) + 2s exp(− 1

O(εt) ) for ‖A(t)
i −

A∗i ‖ ≤ εt, and δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3) ) for any ε > 0.

Here, we have used δ
(t)
IHT = δ

(t)
β + δ

(t)
T for simplicity.

Update Dictionary Factor A(t)

The update of the dictionary factor involves concentration results which rely on an inde-
pendent set of data samples. For this, notice that the i-th row of S∗(t) can be written as
(C∗(t)i ⊗B∗(t)i )>. Now, since B∗(t) and C∗(t) are sparse, there are a number of columns in
S∗(t) which are degenerate (all-zeros). As a result, the corresponding data samples (columns
of Z(t)>

1 ) are also degenerate, and cannot be used for learning. Furthermore, due to the de-
pendence structure in S∗(t) (discussed in section 4) some of the data samples are dependent
on each other, and at least from the theoretical perspective, are not eligible for the learn-
ing process. Therefore, we characterize the expected number of viable data samples in the
following lemma.

Lemma 7 For L = min(J,K), γ = αβ, and any ε > 0 and suppose we have

L ≥ 2
(1−(1−γ)m)ε2 log( 1

δ
(t)
p

),

then with probability at least (1− δp),

p = L(1− (1− γ)m),

where δ(t)
p = exp(− ε

2

2 L(1− (1− γ)m)).

Here, we observe that the number of viable samples increase with number of independent
samples L = min(J,K), sparsity parameter γ = αβ, and rank of the decomposition m. To
recover the incoherent (dictionary) factor A∗, we follow analysis similar to [11, Lemma 5-9].
Here, we first develop an expression for the expected gradient vector in Lemma 8.

Lemma 8 (Expression for the expected gradient vector) Suppose that A(t) is (εt, 2)-
near to A∗. Then, the dictionary update step in Alg. 1 amounts to the following for the j-th
dictionary element

E[A(t+1)
j ] = A(t)

j + ηAg(t)
j ,

where for a small γ̃, g(t)
j is given by

g(t)
j = qjpj

(
(1− λ(t)

j )A(t)
j −A∗j + 1

qjpj
∆(t)
j ± γ̃

)
,

λ
(t)
j = |〈A(t)

j − A∗j ,A∗j 〉|, and ∆(t)
j := E[A(t)

S ϑ
(R)
S sign(x∗j )], where ‖∆(t)

j ‖ =
O(
√
mqi,jpjεt‖A(t)‖).
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Since we use empirical gradient estimate, the following lemma establishes that the empirical
gradient vector concentrates around its mean, and that it make progress at each step.

Lemma 9 (Concentration of the empirical gradient vector) Given p = Ω̃(mk2)
samples, the empirical gradient vector estimate corresponding to the i-th dictionary element,
ĝ(t)
i concentrates around its expectation, i.e.,

‖ĝ(t)
i − g(t)

i ‖ ≤ o( smεt).

with probability at least (1− δ(t)
gi − δ

(t)
β − δ

(t)
T − δ

(t)
HW), where δ(t)

gi = exp(−Ω(s)).

We then leverage Lemma 10 to show that the empirical gradient vector ĝ(t)
j is correlated

with the descent direction (see Def. 7), which ensures that the dictionary estimate makes
progress at each iteration of the online algorithm.

Lemma 10 (Empirical gradient vector is correlated with the descent direction)
Suppose A(t) is (εt, 2)-near to A∗, s = O(

√
n) and ηA = O(m/s). Then, with probability at

least (1− δ(t)
T − δ

(t)
β − δ

(t)
HW− δ

(t)
gi ) the empirical gradient vector ĝ(t)

j is (Ω(k/m),Ω(m/k), 0)-
correlated with (A(t)

j −A∗j ), and for any t ∈ [T ],

‖A(t+1)
j −A∗j‖2 ≤ (1− ρ ηA)‖A(t)

j −A∗j‖2.

This step also requires closeness that the estimate A(t) and A∗ are close, both column-
wise and in the spectral norm sense, as per Def 1. To this end, we show that the updated
dictionary matrix maintain the closeness property. For this, we first show that the gradient
matrix concentrates around its mean in Lemma 11.

Lemma 11 (Concentration of the empirical gradient matrix) With probability at
least (1 − δ(t)

β − δ
(t)
T − δ

(t)
HW − δ

(t)
g ), ‖ĝ(t) − g(t)‖ is upper-bounded by O∗( sm‖A

∗‖), where
δ

(t)
g = (n+m) exp(−Ω(m

√
log(n)).

Further, the closeness property is maintained, as shown below.

Lemma 12 (A(t+1) maintains closeness) Suppose A(t) is (εt, 2) near to A∗ with εt =
O∗(1/ log(n)), and number of samples used in step t is p = Ω̃(ms2), then with probability at
least (1− δ(t)

T − δ
(t)
β − δ

(t)
HW − δ

(t)
g ), A(t+1) satisfies ‖A(t+1) −A∗‖ ≤ 2‖A∗‖.

Therefore, the recovery of factor A∗, and the sparse-structured matrix X∗ suceeds with
probability δ

(t)
NOODL = δ

(t)
T + δ

(t)
β + δHW + δ

(t)
gi + δ

(t)
g , where δ(t)

T = 2m exp(−C2/O∗(ε2t )),
δ

(t)
β = 2s exp(−1/O(εt)), δ

(t)
HW = exp(−1/O(εt)), δ

(t)
gi = exp(−Ω(s)), δ

(t)
g = (n +

m) exp(−Ω(m
√

log(n)).

Further, from Lemma 1, we have that the columns of S∗(t) are s = O(αβm) sparse with
probability (1 − δ(t)

s ), where δ(t)
s = min(J,K) exp(−ε2αβm/2(1 + ε/3)) for any ε > 0, and

that with probability at least (1 − δp), the number of data samples p = L(1 − (1 − γ)m),
where δ(t)

p = exp(− ε
2

2 L(1− (1− γ)m)) using Lemma 1. Furthermore, from Lemma 6, we
know that Alg. 2 (which only relies on recovery of X∗(t)) succeeds in recovering B∗(t) and
C∗(t) (up to permutation and scaling) with probability (1−δ(t)

Bi
), where δ(t)

Bi
= exp(− ε2Jα

2(1+ε/3) )
for any ε > 0. Combining all these results we have that, Alg. 1 succeeds with probability
(1− δalg), where δalg = δs + δ

(t)
p + δ

(t)
Bi

+ δNOODL. Also, the total run time of the algorithm
is O(mnp log(1/δR) max(log(1/εT ), log(

√
(s)/δT )) for p = Ω(ms2). Hence, our main result.

A note on independent sample requirement: Since the IHT-based coefficient operates
independently on each column of Y(t) (the non-zero columns of Z(t)

1 >), the dependence
structure of S∗(t) does not affect this stage. For the dictionary update (in theory) we
only use the independent columns of Y(t), these can be inferred using J and K, and
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corresponding induced transposed Khatri-Rao structure. In practice however, we don’t
need to throw away any samples, this is purely to ensure that the independence assumption
holds for our finite sample analysis of the algorithm.

C Proof of Intermediate Results

Lemma 1 If m = Ω(log(min(J,K))/αβ) then with probability at least (1− δ(t)
s ) the number

of non-zeros, s, in a column of S∗(t) are upper-bounded as s = O(αβm), where δ
(t)
s =

min(J,K) exp(−ε2αβm/2(1 + ε/3)) for any ε > 0.
Proof of Lemma 1 Consider a column of the transposed Khatri-Rao structured matrix
S∗(t) defined as S∗(t) = (C∗(t) �B∗(t))>. Here, since the entries of factors B∗(t) and C∗(t)

are independently non-zero with probability α and β, respectively, each entry of a column
of S∗(t) is independently non-zero with probability γ = αβ, i.e., 1|S∗(t)

ij
|>0 ∼ Bernoulli(γ).

As a result, the number of non-zero elements in a column of S∗(t) are Binomial(m, γ).

Now, let sij be the indicator for the (i, j) element of S∗(t) being non-zero, defined as

sij = 1|S∗(t)
ij
|>0.

Then, the expected number of non-zeros (sparsity) in the j-th column of S∗(t) are given by

E[
∑m
i=1sij ] = γm.

Since, γ can be small, we use Lemma 13(a) [9] to derive an upper bound on the sparsity for
each column as

Pr[
∑m
i=1 sij ≥ (1 + ε)γm] ≤ exp(− ε2γm

2(1+ε/3) ).

for any ε > 0. Union bounding over L = min(J,K) independent columns of S∗(t).

Pr[
⋃L
j=1(

∑m
i=1 sij ≤ (1 + ε)γm)] ≥ 1− L exp(− ε2γm

2(1+ε/3) ).

Therefore, we conclude that if m = Ω(log(L)/γ) then with probability (1− δs) the expected
number of non-zeros in a column of S∗(t) are O(γm), where δs = L exp(−ε2γm/2(1 + ε/3)).

Lemma 7 For any ε > 0 suppose we have

L ≥ 2
(1−(1−γ)m)ε2 log( 1

δ
(t)
p

),

for L = min(J,K) and γ = αβ, then with probability at least (1− δp),

p = L(1− (1− γ)m),

where δ(t)
p = exp(− ε

2

2 L(1− (1− γ)m)).

Proof of Lemma 7 We begin by evaluating the probability that a column of S∗(t) has
a non-zero element. Let sij be the indicator for the (i, j) element of S∗(t) being non-zero,
defined as

sij = 1|S∗
ij
|>0.

Further, let wj denote the number of non-zeros in the j-th column of S∗(t), defined as

wj =
∑m
i=1 sij .

Since each element of a column of S∗(t) is non-zero with probability γ, the probability that
the j-th column of S∗(t) is an all zero vector is,

Pr[wj = 0] = (1− γ)m.
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Therefore, the probability that the j-th column of S∗(t) has at least one non-zero element
is given by

Pr[wj > 0] = 1− (1− γ)m. (2)

Now, we are interested in the number of columns with at least one non-zero element among
the L = min(J,K) independent columns of S∗(t), which we denote by p. Specifically, we
analyze the following sum

p =
∑L
j=1 1wj>0.

Next, using (2) E[p] = L(1− (1− γ)m). Applying the result stated Lemma 13 (b),

Pr[
L∑
j=1

1wj ≤ (1− ε)E[p]] ≤ exp(− ε
2E[p]

2 ) := δ
(t)
p .

Therefore, if for any ε > 0 we have

L ≥ 2
(1−(1−γ)m)ε2 log( 1

δ
(t)
p

)

then with probability at least (1 − δp), p = L(1 − (1 − γ)m), where δ
(t)
p =

exp(− ε
2

2 L(1− (1− γ)m)).

Lemma 6 Suppose the input Ŝ(t) to Alg. 2 is entry-wise ζ close to S∗(t), i.e., |Ŝ(t)
ij −S∗(t)ij | ≤ ζ

and has the correct signed-support as S∗(t). Then with probability at least (1− δ(t)
IHT− δ

(t)
Bi

),

both B̂(t)
i and Ĉ(t)

i have the correct support, and
∥∥∥∥ B∗(t)

i

‖B∗(t)
i
‖
− πi

B̂(t)
i

‖B̂(t)
i
‖

∥∥∥∥ = O(ζ2) and∥∥∥∥ C∗(t)
i

‖C∗(t)
i
‖
− πi

Ĉ(t)
i

‖Ĉ(t)
i
‖

∥∥∥∥ = O(ζ2), where δ
(t)
IHT = 2m exp(− C2

O∗(ε2
t ) ) + 2s exp(− 1

O(εt) ) for

‖A(t)
i −A∗i ‖ ≤ εt, and δ

(t)
Bi

= exp(− ε2Jα
2(1+ε/3) ) for any ε > 0.

Proof of Lemma 6 The Iterative Hard Thresholding (IHT) results in an estimate of
X∗(t) which has the correct signed support [11]. As a result, putting back the columns of
X̂(t) at the respective non-zero column locations of Z(t)>

1 , we arrive at the estimate Ŝ(t) of
S∗(t), which has the correct signed-support, we denote this estimate by Ŝ(t). To recover the
estimates B̂(t) and Ĉ(t), we use a SVD-based procedure. Specifically, we note that,

S∗(t)>i,: = C∗(t)i ⊗B∗(t)i = vec(B∗(t)i Ci
∗(t)>)

As a result, the left and right singular vectors of the rank-1 matrix B∗(t)i C∗(t)>i are the
columns B∗(t)i and C∗(t)i , respectively (up to scaling).

Let M(i) denote the J × K matrix formed by reshaping the vector Ŝ(t)>
i,: . We choose the

appropriately scaled left and right singular vectors corresponding to the largest singular
value of M(i) as our estimates B̂(t)

i and Ĉ(t)
i , respectively.

First, notice that since Ŝ(t)>
i,: has the correct sign and support (due to Lemma 3), the support

of matrix M(i) is the same as B∗(t)i C∗(t)>i . As a result, the estimates B̂(t)
i and Ĉ(t)

i have
the correct support, and the error is only due to the scaling ambiguity on the support.
This is due to the fact that the principal singular vectors (u and v) align with the sparsity
structure of M(i) as they solve the following maximization problem also known as variational
characterization of svd,

σ2
1 = max

‖u‖=1
u>M(i)M(i)>u = max

‖v‖=1
v>M(i)>M(i)v,

where σ1 denotes the principal singular value. Therefore, since M(i) has the correct sparsity
structure as B∗(t)i Ci

∗(t)> the resulting u and v have the correct supports as well. Here,
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u and v can be viewed as the normalized versions of B̂(t)
i and Ĉ(t)

i , respectively, i.e., u =
B̂(t)
i /‖B̂(t)

i ‖ and v = Ĉ(t)
i /‖Ĉ(t)

i ‖.

Let E = M(i) − B∗(t)i C∗(t)>i , now since |Ŝ(t)
ij − S∗(t)ij | ≤ ζ and, from Lemma 3) Ŝ(t)

i,: has
the correct signed-support with probability (1 − δ(t)

IHT), where δ(t)
IHT = 2m exp(− C2

O∗(ε2
t ) ) +

2s exp(− 1
O(εt) ), and further using Claim 1, we have that the expected number of non-zeros

in Ŝ(t)
i,: are JKαβ, with probability at least (1− δ(t)

Bi
), where δ(t)

Bi
= exp(− ε2Jα

2(1+ε/3) ) for some
ε > 0, we have

‖E‖ ≤ ‖E‖F ≤
√
JKαβζ,

Then, using the result in [14], and noting that σ1(B(t)
i C(t)>

i ) = ‖B(t)
i ‖‖C

(t)
i ‖ and letting

πi ∈ {−1, 1} (to resolve the sign ambiguity), we have that∥∥∥∥ B∗(t)
i

‖B∗(t)
i
‖
− πiu

∥∥∥∥ =
∥∥∥∥ B∗(t)

i

‖B∗(t)
i
‖
− πi

B̂(t)
i

‖B̂(t)
i
‖

∥∥∥∥ ≤ 23/2(2‖B(t)
i
‖‖C(t)

i
‖+
√
JKαβζ)

√
JKαβζ

‖B(t)
i
‖2‖C(t)

i
‖2

.

Next, since E[(B(t)
ij )2|(i, j) ∈ supp(B(t))] = 1 as per our distributional assumptions Def.3,

we have

E[‖B∗(t)ji ‖
2]

= E[(B∗(t)ji )2|(j, i) ∈ supp(B∗(t))]Pr[(j, i) ∈ supp(B∗(t))] + 0.Pr[(j, i) /∈ supp(B∗(t))] = α

Similarly, E[‖C∗(t)ji ‖2] = β. Substituting,∥∥∥∥ B∗(t)
i

‖B∗(t)
i
‖
− πi

B̂(t)
i

‖B̂(t)
i
‖

∥∥∥∥ ≤ 23/2(2
√
JKαβ+

√
JKαβζ)

√
JKαβζ

JKαβ = O(ζ2).

Claim 1 Suppose J = Ω( 1
α )), then with probability at least (1− δ(t)

Bi
),∑JK

j=1 supp(S∗(i, j)) = JKαβ,

where δ(t)
Bi

= exp(− ε2Jα
2(1+ε/3) ) for any ε > 0.

Proof of Claim 1 In this lemma we establish an upper-bound on the number of non-zeros
in a row of S∗(t). The i-th row of S∗(t) can be written as vec(B∗(t)

i C∗(t)>
i ).

Since each element of matrix B∗(t) and C∗(t) are independently non-zero with probabilities
α and β, the number of non-zeros in a column B∗(t)i of B∗(t) are binomially distributed. Let
sj be the indicator for the j-th element of B∗(t)i being non-zero, defined as

si = 1|B∗(t)(j,i)|>0.

Then, the expected number of non-zeros (sparsity) in the i-th column of B∗(t) are given by

E[
∑

supp(B∗(t)i )] = E[
∑J
j=1sj ] = Jα.

Since, α can be small, we use Lemma 13(a) [9] to derive an upper bound on the sparsity for
each column as

Pr[
∑J
j=1 sj ≥ (1 + ε)Jα] ≤ exp(− ε2Jα

2(1+ε/3) ) := δ
(t)
Bi
. (3)

for any ε > 0.

Now we turn to the number of non-zeros in S∗(t)i = vec(B∗(t)
i C∗(t)>

i ). We first note that the
j-th column of B∗(t)i C∗(t)>i is given by C(j, i)∗(t)B∗(t)i . This implies that the j-th column
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can be all-zeros if C(j, i)∗(t) = 0. As a result, the expected number of non-zeros in the j-th
column of B∗(t)i C∗(t)>i can be written as,

E[
∑

supp(C∗(t)ji B∗(t)i )]

= E[
∑

supp(C∗(t)ji B∗(t)i )|C∗(t)ji 6= 0]Pr[C∗(t)ji 6= 0]

+ E[
∑

supp(C∗(t)ji B∗(t)i )|C∗(t)ji = 0]Pr[C∗(t)ji = 0]

= E[
∑

supp(C∗(t)ji B∗(t)i )|C∗(t)ji 6= 0]Pr[C∗(t)ji 6= 0] = E[
∑

supp(B∗(t)i )]Pr[C∗(t)ji 6= 0].

Now, from (3), we have that if we choose J = Ω( 1
α )) with probability at least (1 − δ(t)

Bi
),

there are Jα non-zeros in a column of B∗(t). Further since, Pr[C∗(t)ji 6= 0] = β, we have that
with probability at least (1− δ(t)

Bi
),

E[
∑

supp(C∗(t)ji B∗(t)i )] = Jαβ.

Furthermore, since there are K columns in B∗(t)i C∗(t)>i , with probability at least (1− δ(t)
Bi

),

E[
∑

supp(vec(B∗(t)i C∗(t)>i )] = E[
∑JK
j=1 supp(S∗(t)(i, j))] = JKαβ.

D Additional Theoretical Results

Lemma 13 Relative Chernoff [9] Let random variables w1, . . . , w` be independent, with
0 ≤ wi ≤ 1 for each i. Let Sw =

∑`
i=1 wi, let ν = E(Sw) and let p = ν/`, then for any

ε > 0,
(a) Pr[Sw − ν ≥ εν] ≤ exp(−ε2ν/2(1 + ε/3)),
(b) Pr[Sw − ν ≤ εν] ≤ exp(−ε2ν/2).

Lemma 14 (Specialized Theorem 4 in [14] for singular vectors) Given M, M̃ ∈
Rm×n, where M̃ = M + E and the corresponding SVD of M = UΣV> and M̃ = ŨΣ̃Ṽ>,
the sine of angle between the principal left (and right) singular vectors of matrices M and
M̃ is given by

sin Θ(U1, Ũ1) ≤ 2(2σ1+‖E‖2)(min(‖E‖2,‖E‖F)
σ2

1
,

where σ1 is the principal singular value corresponding to U1. Furthermore, there exists
π ∈ −1, 1 such that

‖U1 − πŨ1‖ ≤ 23/2(2σ1+‖E‖2)(min(‖E‖2,‖E‖F)
σ2

1
.

Theorem 1 ([11]) Suppose that assumptions A.1-A.6 hold, and Alg. 1 is provided with
p = Ω̃(mk2) new samples generated according to model (1) at each iteration t. Then for
some 0 < ω < 1/2, the estimate A(t) at (t)-th iteration satisfies

‖A(t)
i −A∗i ‖2 ≤ (1− ω)t‖A(0)

i −A∗i ‖2, for all t = 1, 2, . . . .

Furthermore, given R = Ω(log(n)), with probability at least (1−δ(t)
alg) for some small constant

δ
(t)
alg, the coefficient estimate x̂(t)

i at t-th iteration has the correct signed-support and satisfies

(x̂(t)
i − x∗i )2 = O(k(1− ω)t/2‖A(0)

i −A∗i ‖), for all i ∈ supp(x∗).
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Table E.1: Tensor factorization results α, β = 0.005 averaged across 3 trials. Here, T (supp(X̂(T ))?)
field shows the number of iterations T to reach the target tolerance, while the categorical field,
supp(X̂(T )) indicates if the support of the recovered X̂(T ) matches that of X∗(T ) (Y) or not (N).

(J,K) Method
m = 50 m = 150 m = 300

‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?)

100
NOODL 5.38e-11 2.38e-16 245 (Y) 7.04e-11 2.24e-16 257 (Y) 5.48e-11 5.14e-13 240 (Y)

Arora(b) 1.87e-06 1.14e-05 245 (N) 2.09e-03 1.41e-03 257 (N) 2.70e-03 2.41e-03 240 (N)
Arora(u) 6.78e-08 1.14e-05 245 (N) 8.94e-05 7.38e-05 257 (N) 1.72e-04 8.76e-05 240 (N))
Mairal 4.40e-03 2.00e-03 245 (N) 4.90e-03 6.87e-03 257 (N) 6.00e-03 5.10e-03 240 (N)

300
NOODL 5.72e-11 1.13e-12 61 (Y) 6.74e-11 5.44e-13 89 (Y) 9.10e-11 1.27e-12 168 (Y)

Arora(b) 2.13e-03 2.86e-03 61 (N) 5.90e-04 4.50e-04 89 (N) 1.00e-03 1.10e-03 168 (N)
Arora(u) 2.04e-04 2.70e-04 61 (N) 3.82e-05 4.26e-05 89 (N) 1.04e-04 1.09e-04 168 (N)
Mairal 2.05e-01 2.28e-01 61 (N) 1.19e-02 1.09e-02 89 (N) 1.07e-02 8.40e-03 168 (N)

500
NOODL 5.49e-11 2.34e-16 50 (Y) 8.15e-11 1.25e-12 76 (Y) 9.27e-11 1.41e-12 160 (Y)

Arora(b) 1.11e-04 1.34e-04 50 (N) 5.75e-04 5.60e-04 76 (N) 6.32e-04 2.71e-03 160 (N)
Arora(u) 9.75e-06 1.50e-05 50 (N) 4.30e-05 4.73e-05 76 (N) 5.55e-05 2.28e-03 160 (N)
Mairal 1.23e-01 1.10e-01 50 (N) 1.73e-02 1.20e-02 76 (N) 1.44e-02 5.99e-02 160 (N)

(J,K) Method
m = 450 m = 500

‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂))

100
NOODL 7.82e-11 1.79e-12 257 (Y) 8.30e-11 6.39e-13 300 (Y)

Arora(b) 3.80e-03 3.20e-03 257 (N) 2.80e-03 3.06e-03 300 (N)
Arora(u) 3.06e-04 1.82e-04 257 (N) 2.52e-04 2.76e-04 300 (N)
Mairal 7.20e-03 6.90e-03 257 (N) 8.27e-03 8.07e-03 300 (N)

300
NOODL 9.43e-11 1.56e-12 201 (Y) 9.50e-11 1.63e-12 265 (Y)

Arora(b) 9.77e-04 1.04e-03 201 (N) 1.03e-03 9.36e-04 265 (N)
Arora(u) 1.42e-04 1.68e-04 201 (N) 1.27e-04 1.23e-04 265 (N)
Mairal 1.47e-02 1.39e-02 201 (N) 9.40e-03 1.05e-02 265 (N)

500
NOODL 9.77e-11 1.60e-12 196 (Y) 9.72e-11 1.84e-12 264 (Y)

Arora(b) 5.99e-04 5.30e-03 196 (N) 6.04e-04 6.37e-03 264 (N)
Arora(u) 5.91e-05 5.30e-03 196 (N 8.08e-05 6.37e-03 264 (N)
Mairal 3.22e-01 2.87e-01 196 (N) 2.46e-02 1.70e-01 264 (N)

E Experimental Evaluation
We now detail the specifics of the experiments and present additional results corresponding
to section 5 for synthetic data experiments and real-world data experiments, respectively.
Distributed Implementations: Since the updates of X(r)(t) columns are independent of
each other, TensorNOODL is amenable for large-scale implementation in highly distributed
settings. As a result, it is especially suitable for handling the tensor decomposition appli-
cations. Furthermore, the online nature of TensorNOODL allows for life-long learning.
Note on Initialization: For synthetic data simulations, since the ground-truth factors are
known, we can initialize the dictionary factor such that the requirements of Def. 1 are met.
In real-world data setting, the ground-truth is unknown and our initialization requirement
can be met by existing algorithms, such as [1]. Consequently, in real-world experiments we
use [1] to initialize the dictionary factor A(0). Here, we run the initialization algorithm and
communicate the estimate A(0) to each worker at the beginning of the distributed operation.

E.1 Synthetic Data Simulations

E.1.1 Experimental Set-up
Overview of Experiments – As discussed in section 5, we analyze the performance of the
algorithm across different choices of tensor dimensions (J,K) for a fixed n = 300, its rank(m)
and the sparsity of factors B∗(t) and C∗(t) controlled by parameters (α, β), for recovery of
the constituent factors using three Monte-Carlo runs. For each of these runs, we analyze
the recovery performance across three choices of dimensions J = K = {100, 300, 500}, five
choices of rank m = {50, 150, 300, 450, 600}, and three choices of the sparsity parameters α =
β = {0.005, 0.01, 0.05}. The simulation results corresponding to α = β = {0.005, 0.01, 0.05}
are shown in Table E.1, E.2, and E.4, respectively.
We compare TensorNOODL with related techniques which are also agnostic to the tensor
structure for fairness. Specifically, we compare TensorNOODL with online dictionary learning
algorithms presented in [1] (Arora(b) (incurs bias) and Arora(u) (claim no bias))1, and [8],

1They conjecture that the sample complexity is similar to the biased counterpart (Arora(b)),
but leave the exact analysis to future work; see [1], Theorem 2, and footnote 2. In our experiments,
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Table E.2: Tensor factorization results α, β = 0.01 averaged across 3 trials. Here, T (supp(X̂(T ))?)
field shows the number of iterations T to reach the target tolerance, while the categorical field,
supp(X̂(T )) indicates if the support of the recovered X̂(T ) matches that of X∗(T ) (Y) or not (N).

(J,K) Method
m = 50 m = 150 m = 300

‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?)

100
NOODL 5.50e-11 5.66e-13 91 (Y) 7.59e-11 5.28e-13 112 (Y) 4.34e-11 1.62e-12 190 (Y)

Arora(b) 3.93e-03 5.80e-03 91 (N) 2.61e-03 1.58e-03 112 (N) 2.70e-03 3.00e-03 190 (N)
Arora(u) 4.35e-04 6.77e-04 91 (N) 6.87e-04 1.05e-04 112 (N) 2.98e-04 3.04e-04 190 (N)
Mairal 4.03e-02 1.26e-02 91 (N) 1.34e-02 1.25e-02 112 (N) 1.18e-02 1.25e-02 190 (N)

300
NOODL 6.78e-11 5.75e-13 51 (Y) 6.35e-11 1.54e-12 76 (Y) 8.64e-11 2.06e-12 158 (Y)

Arora(b) 4.08e-04 4.76e-04 51 (N) 1.03e-03 1.08e-03 76 (N) 1.04e-03 1.17e-02 158 (N)
Arora(u) 1.99e-05 1.46e-05 51 (N) 1.03e-04 9.59e-05 76 (N) 2.17e-04 1.17e-02 158 (N)
Mairal 1.64e-01 1.63e-01 51 (N) 2.61e-02 2.64e-02 76 (N) 2.81e-02 1.58e-01 158 (N)

500
NOODL 6.92e-11 8.78e-13 46 (Y) 8.77e-11 1.77e-12 77 (Y) 9.35e-11 2.12e-12 156 (Y)

Arora(b) 3.48e-04 3.28e-04 46 (N) 5.42e-04 6.40e-03 77 (N) 5.69e-04 2.41e-03 156 (N)
Arora(u) 2.56e-05 3.70e-05 46 (N) 4.81e-05 6.40e-03 77 (N) 1.08e-04 9.30e-03 156 ((N)
Mairal 1.56e-01 1.53e-01 46 (N) 5.28e-02 1.30e-01 77 (N) 2.53e-02 1.57e-01 156 (N)

(J,K) Method
m = 450 m = 500

‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?)

100
NOODL 9.48e-11 1.78e-12 211 (Y) 7.27e-11 1.94e-12 279 (Y)

Arora(b) 3.30e-03 4.00e-03 211 (N) 3.40e-03 3.37e-03 279 (N)
Arora(u) 8.55e-04 1.27e-03 211 (N) 6.83e-04 6.49e-04 279 (N)
Mairal 8.00e-03 6.60e-03 211 (N) 8.77e-03 9.93e-03 279 (N)

300
NOODL 9.43e-11 2.92e-12 192 (Y) 9.33e-11 2.54e-12 252 (Y)

Arora(b) 1.00e-03 1.25e-02 192 (N) 1.13e-03 1.54e-02 252 (N)
Arora(u) 2.22e-04 1.25e-02 192 (N) 2.69e-04 1.54e-02 252 (N)
Mairal 1.39e-01 2.03e-01 192 (N) 1.92e-02 1.83e-01 252 (N)

500
NOODL 9.60e-11 2.41e-12 186 (Y) 9.82e-11 2.66e-12 249 (Y)

Arora(b) 6.49e-04 1.20e-02 186 (N) 6.55e-04 1.42e-02 249 (N)
Arora(u) 1.39e-04 1.20e-02 186 (N) 1.55e-04 1.42e-02 249 (N)
Mairal 6.38e-02 1.54e-01 186 (N) 1.74e-02 1.79e-01 249 (N)

which can be viewed as a variant of `1-regularized Alternating Least Squares (ALS), taking
the matrix factorization view of the tensor decomposition task.
Data Generation – For synthetic data experiments, we circumvent using the computa-
tionally expensive initialization algorithm of [1] (running time of Õ(m2n2s)) by providing
all algorithms with perturbed ground-truth dictionary (in accordance with A.2). Specifi-
cally, for each experiment we draw entries of the dictionary factor matrix A∗ ∈ Rn×m from
N (0, 1), and normalize its columns to be unit-norm. To form A(0) in accordance with A.2,
we perturb A∗ with random Gaussian noise and normalized its columns, such that it is
column-wise 2/ log(n) away from A∗ in `2 norm sense. To form the sparse factors B∗(t)
and C∗(t), we assign their entries to the support independently with probability α and β,
respectively, and then draw the values on the support from the Rademacher distribution.
Parameters Setting: We set TensorNOODL specific IHT parameters ηx = 0.2 and τ = 0.1
for all experiments. As recommended by our main result, the dictionary step-size parameter
ηA is set proportional to m/k. Since TensorNOODL, Arora(b), and Arora(u) all rely on an
approximate gradient descent strategy for dictionary update, we use the same step-size ηA
for a fair comparison depending upon the choice of rank m, and probabilities (α, β) as per
A.5; Table E.3 lists the step-size choices. Here, Mairal does not employ such a parameter.
Evaluation Metrics: We run all algorithms till one of them achieves target tolerance (error
in the factor A, εT ) of 10−10, and report the number of iterations T for each experiment.

we find that given equal number of samples, the Arora(u) is only slightly better than Arora(b);
see Fig.5 for the convergence results.
Table E.3: Choosing the step-size (ηA) for the dictionary update step. We use the same dictionary
update step-size parameter (ηA) for TensorNOODL, Arora(b), and Arora(u) depending upon the
choice of rank m, and probabilities (α, β), as perA.5.

Rank
(m)

Step-size
(ηA)

Notes

50 20 For (α, β) = 0.005,
we use ηA = 5

150 40 –
300 40 –
450 50 –
600 50 –
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Table E.4: Tensor factorization results α, β = 0.05 averaged across 3 trials. Here, T (supp(X̂(T ))?)
field shows the number of iterations T to reach the target tolerance, while the categorical field,
supp(X̂(T )) indicates if the support of the recovered X̂(T ) matches that of X∗(T ) (Y) or not (N).

(J,K) Method
m = 50 m = 150 m = 300

‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?)

100
NOODL 8.03e-11 3.17e-12 46 (Y) 7.71e-11 4.92e-12 63 (Y) 9.66e-11 6.01e-12 110 (Y)

Arora(b) 2.90e-03 3.00e-03 46 (N) 4.60e-03 3.39e-02 63 (N) 5.50e-03 4.89e-02 110 (N)
Arora(u) 8.97e-04 8.48e-04 46 (N) 1.90e-03 3.40e-02 63 (N) 2.80e-03 4.90e-02 110 (N)
Mairal 1.57e-01 1.67e-01 46 (N) 3.63e-02 1.54e-01 63 (N) 2.32e-02 1.99e-01 110 (N)

300
NOODL 6.51e-11 3.27e-12 42 (Y) 9.05e-11 5.61e-12 60 (Y) 9.10e-11 7.01e-12 107 (Y)

Arora(b) 1.40e-03 1.95e-02 42 (N) 2.50e-03 3.55e-02 60 (N) 3.20e-03 5.04e-02 107 (N)
Arora(u) 2.48e-04 1.95e-02 42 (N) 6.35e-04 3.56e-02 60 (N) 9.48e-04 5.05e-02 107 (N)
Mairal 6.24e-02 1.11e-01 42 (N) 3.05e-02 1.59e-01 60(N) 1.91e-02 2.09e-01 107 (N)

500
NOODL 7.72e-11 3.86e-12 42 (Y) 8.44e-11 5.63e-12 59 (Y) 9.64e-11 7.34e-12 106 (Y)

Arora(b) 1.30e-03 2.02e-02 42 (N) 2.10e-03 3.55e-02 59 (N) 2.80e-03 5.03e-02 106 (N)
Arora(u) 1.39e-04 2.02e-02 42 (N) 3.82e-04 3.56e-02 59 (N) 5.66e-04 5.05e-02 106 (N)
Mairal 6.12e-02 1.10e-01 42 (N) 2.93e-02 1.58e-01 59 (N) 1.80e-02 2.11e-01 106 (N)

(J,K) Method
m = 450 m = 500

‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?) ‖A∗−A(T )‖F
‖A∗‖F

‖X∗(T )−X(T )‖F
‖X∗(T )‖F

T (supp(X̂)?)

100
NOODL 8.92e-11 7.29e-12 115 (Y) 8.71e-11 1.06e-11 131 (Y)

Arora(b) 7.50e-03 6.17e-02 115 (N) 9.16e-03 7.36e-02 131 (N)
Arora(u) 4.40e-03 6.19e-02 115 (N) 5.70e-03 7.40e-02 131 (N)
Mairal 8.79e-02 2.27e-01 115 (N) 2.81e-02 2.56e-01 131 (N)

300
NOODL 9.20e-11 8.41-12 110 (Y) 8.49e-11 9.03e-12 128 (Y)

Arora(b) 4.00e-03 6.16e-02 110 (N) 4.90e-03 7.39e-02 128 (N)
Arora(u) 1.40e-03 6.18e-02 110 (N) 1.83e-03 7.42e-02 128 (N)
Mairal 4.85e-02 2.19e-01 110 (N) 2.32e-02 2.63e-01 128 (N)

500
NOODL 8.95e-11 8.21e-12 109 (Y) 9.06e-11 9.29e-12 127 (Y)

Arora(b) 3.60e-03 6.21e-02 109 (N) 4.40e-03 7.40e-02 127 (N)
Arora(u) 8.54e-04 6.23e-02 109 (N) 1.10e-03 7.44e-02 127 (N)
Mairal 4.62e-02 2.20e-01 109 (N) 4.05e-02 2.56e-01 127 (N)

Note that, in all cases TensorNOODL achieves the tolerance first, and in some cases with
the algorithms considered in the analysis. Next, since recovery of A∗ and X∗(t) is vital
for the success of the tensor factorization task, we report the relative Frobenius error for
each of these matrices, i.e., for a recovered matrix M̂, we report ‖M̂−M∗‖F/‖M∗‖F. In
addition, since the dictionary learning task focuses on recovering the sparse matrix X∗(t),
it is agnostic to the transposed Khatri-Rao structure S∗(t). As a result, for recovering the
sparse factors B∗(t) and C∗(t) is crucial for exact support recovery of X∗(t). Therefore, we
report if the support has been exactly recovered or not.

E.1.2 Other Considerations

Reproducible Results: The code employed is made available as part of the supplementary
material. We fix the random seeds (to 42, 26, and 91) for each Monte Carlo run to ensure
reproducibility of the results shown in this work. The experiments were run on a HP Haswell
Linux Cluster. The processing of data samples for the sparse coefficients (X̂∗(t)) was split
across 20 workers (cores), allocated a total of 200 GB RAM. For Arora(b), Arora(u), and
Mairal, the coefficient recovery was switched between Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [3], an accelerated proximal gradient descent algorithm, or a stochastic-
version of Iterative Shrinkage-Thresholding Algorithm (ISTA) [4, 5] depending upon the
size of the data samples available for learning (see the discussion of the coefficient update
step below); see also [3] for details.
Sparse Factor Recovery Considerations: In [1], the authors present two algorithms
– a simple algorithm with a sample complexity of Ω̃(ms) which incurs an estimation bias
(Arora(b)), and a more involved variant for unbiased estimation of the dictionary whose
sample complexity was not established Arora(u). However, these algorithms do not provide
guarantees on, or recover the sparse coefficients. As a result, we need to adopt an additional
`1 minimization based coefficient recovery step. Further, the algorithm proposed by [8] can
be viewed as a variant of regularized alternating least squares algorithm which employs `1
regularization for the recovery of the transposed Khatri-Rao structured matrix.
To form the coefficient estimates for Arora(b), Arora(u), and Mairal ‘09 we solve the
Lasso [12] program using a stochastic-version of Iterative Shrinkage-Thresholding Algorithm
(ISTA) [4, 5] (or Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [3] if p is small)
and report the best estimate (in terms of relative Frobenius error) across 10 values of
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the regularization parameter. The stochastic projected gradient descent is necessary to
make coefficient recovery tractable since size of X∗(t) grows quickly with (α, β). For these
algorithms, coefficient estimation step the slowest step since it has to scan through different
values of the regularization parameters to arrive at an estimate. In contrast, TensorNOODL
does not require such an expensive tuning procedure, while providing recovery guarantees
on the recovered coefficients.
Note that in practice ISTA and FISTA can be parallelized as well, but tuning of the regu-
larization parameters still involves (an expensive) grid search. Arguably even if each step of
these algorithms (ISTA and FISTA) take the same amount of time as that of TensorNOODL,
the search over, say 10, values of the regularization parameters will still be take 10 times the
time. As a result, TensorNOODL is an attractive choice as it does not involve an expensive
tuning procedure.
Discussion: Table E.1, E.2, and E.4 show the results of the analysis averaged across the
three Monte Carlo runs, for α = β = {0.005, 0.01, 0.05}, respectively. We note that for
every choice of (J,K), m, and (α, β), TensorNOODL is orders of magnitude superior to
related techniques. In addition, it also recovers the support correctly in all of the cases,
ensuring that the sparse factors can be recovered correctly. Specifically, the sparse factors
B∗(t) and C∗(t) can be recovered (up to permutation and scaling) via Alg. 2.
In addition, our result also shows that for the given task, where a number of mode-1 fibers
are zero, processing only the non-zero fibers may lead to significant gains since there is no
need to solve large sparse approximation sub-problems as is the case with ALS (which also
requires additional tuning). Therefore, it seems that leveraging tensor structure for this our
model may increase the computational complexity. Nevertheless, the tensor structure can
potentially be useful in presence of noise, where this structure is not obvious.

E.2 Real-world Data Simulations

E.2.1 Analysis of the Enron Dataset

Enron Email Dataset: Sparsity-regularized ALS-based tensor factorization techniques,
albeit possessing limited convergence guarantees, have been a popular choice to analyze the
Enron Email Dataset (184×184×44) [7, 2]. We now use TensorNOODL to analyze the email
activity of 184 Enron employees over 44 weeks (Nov. ‘98 –Jan. ’02) during the period before
and after the financial irregularities were uncovered.
The Enron Email Dataset (184 × 184 × 44) consists of email exchanges between 184 em-
ployees over 44 weeks (Nov. ‘98 –Jan. ’02) which includes the period before and after the
financial irregularities were uncovered. In general, every person in an organization (like
Enron) communicates with only a subset of employees, as a result the tensor of email ac-
tivity (Employees vs. Employees vs. Time) naturally has the model analyzed in this work.
Moreover, as pointed out by [6] “. . . in 2000 Enron had a segmented culture with directives
being sent from on-high and sporadic feedback”. Meaning that different units within the
organization exhibited clustered communication structure. This motivates us to analyze the
dataset for the presence characteristic ways of communications between different business
units.
We run TensorNOODL in batch setting here, this is to showcase that in practice TensorNOODL
also works in batch settings, and also to overcome the limited size of the Enron Dataset.
Data Preparation and Parameters: For TensorNOODL and Mairal ‘09, we use the ini-
tialization algorithm of [1], which yielded 4 dictionary elements. Following this, we use these
techniques in batch setting to simultaneously identify email activity patterns and cluster
employees. We also compare our results to [7], which just aims to cluster the employees
by imposing sparsity constraint on one of the factors, and does not learn the patterns. As
opposed to [7], TensorNOODL did not require us to guess the number of dictionary elements
to be used. We use Alg. 2 to identify the employees corresponding to email activity patterns
from the recovered sparse factors.
As in case of [7], we transform each non-zero element Z(i, j, k)(t) of the dataset as

Z(i, j, k)(t) = log2(Z(i, j, k)) + 1,
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(c) Cluster Quality: False Positives/ Cluster Size

Method Legal Pipeline Executive Trading
TensorNOODL 2/13 4/11 1/14 10/24
Mairal ‘09 1/10 Not Found 8/17 3/7
Fu et al. [7] 4/16 3/15 3/30† 5/12

†The authors set the number of cluster to 5, here we combine the two clusters corresponding to “Executive”.

Figure E.1: Enron Email Analysis. The plot and the table show the recovered group email activity
patterns over time, and the cluster quality analysis, respectively. Note the increased legal team
activity before the crisis broke out internally (Oct. ‘00), to public (Oct ’01), till lay-offs.

to compress its dynamic range. Further, we also scale all elements by the magnitude of the
largest element and subtract the mean (over the temporal aspect) from the non-zero fibers.
We initialization the dictionary using the algorithm presented in [1] for TensorNOODL and
Mairal ‘09. This yielded 4 dictionary elements. As in case of the synthetic experiments,
we set ηx = 0.2, τ = 0.1 and C = 1. We set the dictionary update step-size ηA = 10, and
run TensorNOODL in batch setting for 100 iterations. We recover the sparse factors B∗(t)
and C∗(t) using our untangling Alg. 2. To compile the results, we ignore the entries with
magnitude smaller than 5% of the largest entry in that sparse factor column.

Evaluation Specifics: As in case
of [7], we use cluster purity (False
Positives/Cluster Size) as the mea-
sure of the clustering performance. To
this end, we also compare our results
with [7]. Note that [7] solves a regu-
larized least squares-based formulation for
low-rank non-negative tensor factorization,
wherein one of factor is sparse (corresponds
to employees) and the others have con-
trolled Frobenius norms. Here, the non-
zero entries of the sparse factor gives in-
sights into the employees who exhibit sim-
ilar behavior. Unlike TensorNOODL and
Mairal ‘09, this procedure however does
not recover the email patterns of interest.
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Figure E.2: Comparing the recovered signa-
tures. Panel (a) shows the recovered signatures by
TensorNOODL and (b) shows those for Mairal ‘09.

Discussion: The results of the decomposition by TensorNOODL are shown in Fig. E.1.
The Enron organizational structure has four main units, namely, ‘Legal’, ‘Traders’, ‘Execu-
tives’, and ‘Pipeline’, which coincides with the number of dictionary elements recovered by
TensorNOODL. Specifically, as opposed to [7], which take the number of clusters to be found
as an input, TensorNOODL leverages the model selection performed by initialization algo-
rithms. Fig. E.2 shows the comparison between the recovered signatures by TensorNOODL
and Mairal ‘09, respectively. Note that [7] does not recover the signatures and only focuses
on clustering. On this front, along with recovering the email activity patterns, TensorNOODL
is also superior in terms of the clustering purity as compared to other techniques as inferred
from the False Positives to Cluster-size ratio (Fig. E.1). The email activity patterns show
how different group activities changed as time unfolded. In line with Diesner and Carley
[6], we observe that during the crisis the employees of different divisions indeed exhibited
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cliquish behavior. These results illustrate that our model (and algorithm) can be used to
study organizational behavior via their communication activity.
Note that here we use TensorNOODL in the batch setting, i.e., we reuse samples. This shows
that empirically our algorithm can be used in the batch setting also, although our analysis
applies to the online setting. We leave the analysis of the batch setting to future work.

E.2.2 Analysis of the NBA Dataset

Shot Patterns Clustering of Teams Shot Patterns Clustering of Teams
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Figure E.3: Shot Patterns and Teams in the NBA dataset. Panels (a-i) to (g-i) show dictionary
factor ( A(T )) columns (elements) reshaped into a matrix to show different recovered shot patterns.
Here, the 3-point line and the rim is indicated in black. Corresponding sparse factor (B̂) representing
the Teams are shown in panels (a-ii) to (g-ii).

The online nature of TensorNOODL makes it suit-
able for learning tasks where data arrives in a
streaming fashion. In this application, we analyze
the National Basketball Association (NBA) weekly
shot patterns of high scoring players against dif-
ferent teams. In this online mining application,
our aim is to tease apart the relationships between
shot selection of different players against different
teams. Here, our model enables us to cluster the
players and the teams, in addition to recovering
the shot patterns shared by them.

n
=

12
0

sh
ot
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=

30
Teams J = 100

Players

Z(t)

Figure E.4: Structured tensor of inter-
est Z(t) ∈ Rn×J×K for the shot pattern
analysis of NBA data. There are 27 such
tensors arriving every week of the season.

We form the NBA shot pattern dataset by collecting weekly shot patterns of players for
each week (27 weeks) of the 2018 − 19 regular season of the NBA league. Each of these
tensors consists of the locations of all shots attempted by players (above 80th percentile of
the 497 active players, which gives us 100 high-scorers) against (30) opponent teams in a
week of the 2018 − 19 regular season of the NBA league. To form the tensor we divide
the half court into 10 × 12 blocks, and sum all the shots from a block to compile the shot
pattern. We then vectorize this 2-D shot pattern, which constitutes a fiber of the tensor.
Since players don’t play every other team in a week, the resulting weekly shot pattern tensor
Z(t) ∈ R100×30×120 has only a few non-zero fibers, and fits the model of interest shown in
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Players corresponding to element 1
Players Position Coefficient Value
Harrison Barnes Small forward / Power forward -0.2770
Stephen Curry Point guard -0.7620
Kevin Durant Small forward -0.0707
Nikola Jokic Center 0.5040
CJ McCollum Shooting guard -0.0771
Donovan Mitchell Shooting guard 0.0414
Jamal Murray Point guard / Shooting guard -0.1677
Jusuf Nurkic Center 0.0352
Ricky Rubio Point guard 0.0191
Klay Thompson Shooting guard -0.2128
Russell Westbrook Point guard -0.0208
Lou Williams Shooting guard / Point guard -0.0198

Players corresponding to element 2
Players Position Coefficient Value
Harrison Barnes Small forward / Power forward -0.0187
Danilo Gallinari Power forward / Small forward -0.0515
Tobias Harris Small forward / Power forward -0.2729
Donovan Mitchell Shooting guard 0.6536
Karl-Anthony Towns Center 0.5449
Andrew Wiggins Shooting guard / Small forward 0.4454

Players corresponding to element 3
Players Position Coefficient Value
LaMarcus Aldridge Power forward / Center -0.2248
Trevor Ariza Small forward / Shooting guard 0.3195
DeMar DeRozan Small forward / Shooting guard -0.6716
Bryn Forbes Shooting guard / Point guard 0.1241
Justin Holiday Shooting guard / Small forward 0.1074
Josh Richardson Shooting guard / Small forward 0.6049
Justise Winslow Point guard -0.0580

Players corresponding to element 4
Players Position Coefficient Value
Bojan Bogdanovic Small forward -0.0275
Devin Booker Shooting guard / Point guard 0.0114
Clint Capela Center -0.2256
Willie Cauley-Stein Center / Power forward -0.0150
Evan Fournier Shooting guard / Small forward 0.2032
James Harden Shooting guard / Point guard 0.1992
Buddy Hield Shooting guard -0.0198
Jeremy Lamb Shooting guard / Small forward -0.1468
Derrick Rose Point guard 0.4961
Ricky Rubio Point guard 0.0198
Pascal Siakam Power forward -0.0244
Karl-Anthony Towns Center 0.7711
Kemba Walker Point guard 0.0331
Andrew Wiggins Shooting guard / Small forward -0.0119
Thaddeus Young Power forward -0.0148
Trae Young Point guard 0.0415

Players corresponding to element 5
Players Position Coefficient Value
Devin Booker Shooting guard / Point guard 0.0104
Clint Capela Center 0.0210
Luka Doncic Guard / Small forward -0.0162
Eric Gordon Shooting guard / Small forward 0.0150
James Harden Shooting guard / Point guard 0.0678
Tobias Harris Small forward / Power forward -0.0247
Joe Ingles Small forward 0.1005
Josh Jackson Small forward / Shooting guard -0.0100
Donovan Mitchell Shooting guard 0.0984
Kelly Oubre Jr. Small forward / Shooting guard -0.0143
Derrick Rose Point guard 0.6507
Ricky Rubio Point guard 0.0488
Karl-Anthony Towns Center 0.6924
Kemba Walker Point guard 0.1670
Andrew Wiggins Shooting guard / Small forward 0.2000
Lou Williams Shooting guard / Point guard 0.0196

Players corresponding to element 6
Players Position Coefficient Value
Deandre Ayton Center / Power forward 0.0640
Eric Bledsoe Point guard 0.0527
Bojan Bogdanovic Small forward -0.1353
Devin Booker Shooting guard / Point guard 0.4668
Jimmy Butler Shooting guard / Small forward -0.0157
Kentavious Caldwell-Pope Shooting guard 0.0507
Clint Capela Center 0.6348
Willie Cauley-Stein Center / Power forward -0.0303
Jordan Clarkson Point guard / Shooting guard -0.0141
John Collins Power forward 0.0948
DeAaron Fox Point guard 0.0148
Aaron Gordon Power forward / Small forward 0.0978
Eric Gordon Shooting guard / Small forward 0.1861
James Harden Shooting guard / Point guard 0.2834
Buddy Hield Shooting guard -0.0135
Justin Holiday Shooting guard / Small forward 0.0756
Josh Jackson Small forward / Shooting guard 0.0339
LeBron James Small forward / Power forward -0.1362
Kyle Kuzma Power forward -0.0272

Players corresponding to element 6 continued ...
Players Position Coefficient Value
Jeremy Lamb Shooting guard / Small forward -0.0229
Kawhi Leonard Small forward -0.0384
Brook Lopez Center 0.0194
Lauri Markkanen Power forward / Center 0.0186
CJ McCollum Shooting guard 0.0148
Khris Middleton Shooting guard / Small forward 0.0617
Jusuf Nurkic Center 0.0121
Cedi Osman Small forward / Shooting guard -0.0260
Kelly Oubre Jr. Small forward / Shooting guard -0.1673
JJ Redick Shooting guard -0.0474
Terrence Ross Small forward / Shooting guard 0.0216
Pascal Siakam Power forward -0.0512
Ben Simmons Point guard / Forward -0.0166
Myles Turner Center -0.3469
Nikola Vucevic Center 0.0827
Thaddeus Young Power forward -0.0494
Trae Young Point guard -0.1377

Players corresponding to element 7
Players Position Coefficient Value
Harrison Barnes Small forward / Power forward 0.0330
Mike Conley Point guard 0.2633
Jae Crowder Small forward 0.0454
Stephen Curry Point guard 0.0429
Anthony Davis Power forward / Center -0.3173
Luka Doncic Guard / Small forward -0.0239
Kevin Durant Small forward -0.5214
Marc Gasol Center 0.0655
Paul George Small forward -0.6895

Players corresponding to element 7 continued...
Players Position Coefficient Value
Jerami Grant Forward -0.0767
Joe Harris Shooting guard / Small forward -0.0120
Jrue Holiday Point guard / Shooting guard -0.2258
Kyrie Irving Point guard -0.0128
Julius Randle Power forward / Center -0.0266
DAngelo Russell Point guard -0.0365
Dennis Schroder Point guard / Shooting guard 0.1013
Klay Thompson Shooting guard 0.0322
Dwyane Wade Shooting guard 0.0208
Justise Winslow Point guard 0.0431

Table E.5: Analysis of Sparse factor corresponding to Players (Ĉ)

Fig. 1. In case a player plays against a team more than once a week, we average the shot
patterns to form the weekly shot pattern tensor.
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Data Preparation and Parameters: To prepare the data, we element-wise transform
each non-zero element of the weekly shot pattern tensor (Z(t)(i, j, k)) as Z(t)(i, j, k) =
log2(Z(t)(i, j, k)) + 1 to reduce its dynamic range. We then subtract the mean along the
shot pattern axis to reduce the effect of any dominant shot locations.
We form the initial estimate of the incoherent dictionary factor (A∗) from the 2017 − 18
regular season data of the top 80th percentile players using the initialization algorithm
presented in [1]. We use ηx = 0.1, τ = 0.2, C = 1 and ηA = 10 as the TensorNOODL
parameters to analyze the data.
Evaluation Specifics: We focus on the games in the week 10 of the 2018 − 19 regular
season to illustrate the application of TensorNOODL for this sports analytics task. Our
analysis yields the shared shot selection structure of different players and teams.
Discussion: In the main paper, we analyze the similarity between two players – James
Harden and Devin Booker – who incidentally at that time were seen as having similar styles
[10, 13]. In this case, our results corroborate that the shot selection patterns of these two
players is indeed similar. This is indicated by sparse factor corresponding to the players.
In Fig. E.3, and Table. E.5 we show the recovered dictionary elements(A(T )) or the shot
patterns and the corresponding clustering of teams (B̂(T )), and the players (Ĉ(T )), respec-
tively, for week 10. For both B̂(T ) and Ĉ(T ) we show the elements whose corresponding
magnitude is greater than 10−2. These preliminary results motivate further exploration of
TensorNOODL for sports analytics applications. The theoretical guarantees coupled with its
amenability in highly distributed online processing, makes TensorNOODL especially suitable
for such application, where we can learn and make decisions on-the-fly.
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