
A Evidential Theory

A.1 Supplementary Background

Evidential theory diverges from Bayesian probability theory by modifying Kolmogorov’s definition
of a probability measure [20], as follows:
Definition A.1. Given a finite set Z = {z1, . . . , zK} and the power set 2Z , the evidential belief
function Bel : 2Z → [0, 1] satisfies the following conditions:

1. Bel(∅) = 0

2. Bel(Z) = 1

3. For every positive integer n and every collection A1, . . . , An of subsets of Z,

Bel(A1 ∪An) ≥
∑
i

Bel(Ai)−
∑
i<j

Bel(Ai ∩Aj + . . . (11)

+ (−1)n+1Bel(A1 ∩ . . . ∩An).

The conditions for an evidential belief function are identical to those in Bayesian theory, with the
exception that the third condition is relaxed to a lower bound rather than an equality [20]. The
evidential belief assigned to a set A ⊆ Z as defined above includes the belief committed to any subset
of A, as well. If we want to consider the belief assigned to exactly the set A, we use the concept of a
basic probability assignment or a belief mass function [20], as follows:
Definition A.2. Given a finite set Z = {z1, . . . , zK} and the power set 2Z , the basic probability
assignment or evidential belief mass function m : 2Z → [0, 1] satisfies the following conditions:

1. m(∅) = 0

2.
∑

A⊆Z m(A) = 1.

The belief function, which is also referred to as a lower probability of A, can also be expressed in
terms of the mass function, as follows:

Bel(A) =
∑
B⊆Z

m(B). (12)

In parallel, the upper probability of A, or the plausibility of A [20], is defined as follows:

Pl(A) = 1−Bel(A). (13)

The existence of upper and lower probabilities differentiates evidential theory from Bayesian methods.
Evidential theory is able to distinguish between lack of evidence towards a hypothesis and evidence
against a hypothesis. Thus, the belief function indicates the total belief committed to the set A and its
subsets [18], whereas plausibility is the amount of evidence not against A [18].

A.2 Illustrative Example

To provide better intuition for evidential theory, we outline an example here. Consider a region
in space that may be occupied by an obstacle. Let z1 correspond to the hypothesis that the region
is occupied, z2 to the hypothesis that the region is free, and Z = {z1, z2}. Then, we have 2Z =
{∅, {z1} , {z2} , Z}. The belief mass assigned to the set Z is an indication of uncertainty or lack of
evidence. Thus, when there are no sensor measurements, we do not have any information, and can
assign the entirety of the mass to the unknown set Z. Suppose, we then receive many conflicting
measurements of whether the region is occupied or free (for instance due to moving obstacles entering
and leaving the region). The mass from the uncertainty set Z will then move to the hypotheses
{z1} and {z2}, respectively. Hence, the belief will transition from lack of information to conflicting
information. In the classic Bayesian counterpart scenario, we would have a uniform prior before
a measurement is received, and we would approach the same probability mass distribution when
equally many occupied and free sensor measurements are received. As illustrated by this example,
evidential theory is able to distinguish lack of information from conflicting information.
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A.3 Evidence Fusion

Two independent sources of evidence represented by belief masses can be combined through Demp-
ster’s rule to generate a fused mass function as follows [17],

(m1 ⊕m2)(A) =
1

1− κ
∑

B∩C=A

m1(B)m2(C),

∀A ⊆ Z,A 6= ∅ and (m1 ⊕m2)(∅) = 0

(14)

where κ =
∑

B∩C=∅m1(B)m2(C) is the degree of conflict between two belief mass functions. Two
belief mass functions can be combined through Dempster’s rule only if for at least one pair A ⊆ Z
and B ⊆ Z, m(A) 6= 0, m(B) 6= 0, and A ∩B 6= ∅ [18]. Dempster’s rule reduces to Bayes’ rule in
the special case of the combination of a vacuous mass function and a mass function with non-zero
elements only over singleton sets [18].

B DST-Softmax Equivalence Satisfaction

The constraint required to ensure that the DST combination is equivalent to the softmax transformation
is:
∑J

j=1 αjk = β̂0k + c0 for some constant c0. Computing, we have:

J∑
j=1

αjk =

J∑
j=1

 1

J

β0k +

J∑
j=1

βjkφj(xi)

− βjkφj(xi)
 (15)

=

J∑
j=1

1

J

β0k +

J∑
j=1

βjkφj(xi)

− J∑
j=1

βjkφj(xi) (16)

=
1

J

β0k +

J∑
j=1

βjkφj(xi)

 J∑
j=1

1−
J∑

j=1

βjkφj(xi) (17)

=
1

J

β0k +

J∑
j=1

βjkφj(xi)

 J −
J∑

j=1

βjkφj(xi) (18)

=

β0k +

J∑
j=1

βjkφj(xi)

− J∑
j=1

βjkφj(xi) (19)

= β0k (20)

= β̂0k −
1

K

K∑
l=1

β̂0`. (21)

The last line follows from the result in Eq. (8). Therefore, we have shown that the new αjk parameters
meet the required constraint for DST-softmax equivalence as posed by Denoeux [19].

C MNIST, Fashion MNIST, and NotMNIST Image Generation
Experimental Details

We chose the following class reassignment scheme for Fashion MNIST: tops and bottoms/accessories.
For the MNIST and Fashion MNIST experiments, we use a hidden unit dimensionality of 30 for
p(z | y) and 256 for p(z | x, y) and p(x′ | z) within the architecture in Fig. 1. We chose the 256
dimension following the example from: https://github.com/timbmg/VAE-CVAE-MNIST. We
use the ReLU nonlinearity with stochastic gradient descent and Adam [42] optimizers and a learning
rate of 0.001 for the MNIST [25] and Fashion MNIST [27] datasets respectively. We train for 20
epochs with a batch size of 64.

To investigate a similar image generation task on a more complicated dataset, we consider the
NotMNIST benchmark, which requires a more expressive architecture. We consider the task of
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generating letters with and without a horizontal bar in the center. The convolutional architecture for
the NotMNIST experiments is depicted in Fig. 5. Similar to the network for (Fashion) MNIST, during
training, the encoder consists of two network blocks. One fully-connected block takes as input the
query label y, and outputs a softmax probability distribution that parameterizes the prior distribution
p(z | y), where z is a discrete latent variable that can take on K values. The second block takes as
input the stacked feature vector x and query label y, and outputs the softmax distribution for the
posterior q(z | x, y) after a series of convolutional layers. The z value is sampled from the posterior
distribution q during training and the prior distribution p at test time. It is then passed through the
decoder convolutional network block to predict the image output x′. As before, the Gumbel-Softmax
distribution is used to backpropagate loss gradients through the discrete latent space [7, 29]. We use
the ReLU nonlinearity with the stochastic gradient descent optimizer and a learning rate of 0.00001.
We train for 1000 epochs with a batch size of 256.

For the MNIST, FashionMNIST, and NotMNIST experiments, the standard conditional evidence
lower bound (ELBO) was maximized to train the model [16]:

L(x, y; θ) = E[log(pD(x | z; θ))]− KL[q(z | x, y; θ) || p(z | y; θ)], (22)

where pD is the distribution output by the decoder and θ are the network parameters.
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Figure 5: The CVAE architecture used for NotMNIST image generation. The last layer in each encoder network
block is the softmax layer. At test time, p(z | y) is used to sample the latent space; thus, only the input query y
serves as input to the encoder.

D MNIST CVAE Test-Time Performance Comparison

Fig. 6 shows a comparison of the generated images sampled from the softmax discrete latent
distribution versus our proposed filtered distribution for the even input query. The softmax distribution
often samples visually incorrect latent classes given the even input query. Our method improves the
test time sampling performance of the CVAE by pruning the majority of the erroneous latent classes,
while keeping the correct ones. When considering 25 samples for the even input, softmax produces
eight incorrect samples, while our method produces only three (the incorrect 9 image).
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Figure 6: Samples from the CVAE at test time for the even input using the softmax distribution and our proposed
distribution. Our distribution results in samples that are more accurate with the exception of the sampled 9 digit.
The filtered even distribution no longer includes the incorrect latent classes for the 1 and 3 digits.
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Figure 7: Our proposed distribution (green) extracts more accurate information across fewer training examples
on the MNIST dataset as compared to the softmax (blue) and sparsemax (orange) baselines. Lower is better for
the distance metrics. The results are over 25 different random seeds.

E Reduced Data Performance for MNIST

We investigate whether evidential latent space sparsification is able to extract more accurate informa-
tion than softmax and sparsemax when the learned model is hindered by a smaller training set. Fig. 7
summarizes the performance of the proposed filtered distribution for a network trained on a reduced
MNIST dataset. We use 0.1, 0.5, 0.75, and 1.0 fractions of the dataset for training, maintaining the
class balance and evaluating after 20 training epochs. The filtered distribution largely outperforms
softmax outside of standard error across both metrics on the MNIST dataset. Our method also
outperforms the sparsemax baseline when the latter is hindered by its generation of false negative
latent classes (e.g., for the odd input query).

F Results on Fashion MNIST

F.1 Qualitatitive Results

We investigate the qualitative performance of our proposed methodology on the Fashion MNIST
dataset. The network learns a more accurate softmax distribution than that for the MNIST dataset as
shown in Fig. 8. The more effective softmax distribution learned for the Fashion MNIST dataset than
that for MNIST is likely due to the more distinct features across the dataset’s categories. Nevertheless,
our filtered distribution still provides further improvement for the latent class distribution by filtering
out incorrect probability masses completely. We note that the filtered distribution makes two mistakes
in keeping the first latent class (a boot) for the tops input query and keeping the sixth latent class
(a shirt) for the bottoms input query. Nevertheless, we emphasize that these are false positives. As
with MNIST, sparsemax results in aggressive filtering that removes valid latent classes for each
query, such as the dress from the tops category, and a boot as well as two purses from the accessories
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Figure 8: Our proposed filtered distribution (green) is compared to the softmax (blue) and sparsemax (orange)
distributions on the Fashion MNIST dataset. The horizontal axis depicts decoded latent classes. Our method
reduces the size of the relevant latent sample space without removing valid latent classes.
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Figure 9: Our filtered distribution (green) outperforms the softmax (blue) and sparsemax (orange) baselines
across training iterations on the Fashion MNIST dataset. Lower is better for distance metrics. The results are
over 25 different random seeds.

category. Qualitatively, our filtered distribution outperforms the baselines on the Fashion MNIST
dataset, providing a sparser, more accurate distribution than softmax, while avoiding false negatives,
which would be undesirable for safety critical applications.

F.2 Training Evolution Results

Fig. 9 shows that when the underlying network learns the latent space successfully, as is the case
for Fashion MNIST data, our filtered distribution performs no worse (and even slightly better) than
the original softmax distribution. The sparsemax distribution once again filters out valid latent
classes from both binary queries, resulting in poor performance across our metrics. Thus, for the
Fashion MNIST benchmark dataset, the proposed latent class distribution provides a more robust
representation, retrieving richer information from the learned neural network weights with fewer
training iterations.

F.3 Reduced Data Performance for Fashion MNIST

Fig. 10 summarizes the performance of the filtered distribution on a network trained on a reduced
Fashion MNIST dataset. Due to the more effectively learned encoder weights, our filtered distribution
maintains the performance of the original softmax distribution. Our proposed distribution significantly
outperforms the sparsemax baseline due to the aggressive sparsemax filtering that results in false
negatives. Sparsemax continues to select a subset of more likely encodings, at the cost of removing
valid latent classes, making it undesirable for applications where false negatives are safety critical.
We note that the difference between the Wasserstein and Bhattacharyya metrics in Fig. 10 are due to
the latter favoring sparse distributions by definition.
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Figure 10: Filtered distribution performance across fewer training samples on the Fashion MNIST dataset.
Our filtered distribution (green) demonstrates more robust performance than the softmax (blue) and sparsemax
(orange) on our metrics. The results are over 25 different random seeds.
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Figure 11: Our proposed filtered distribution (green) is compared to the softmax (blue) and sparsemax (orange)
distributions on the NotMNIST dataset. The horizontal axis depicts decoded latent classes. Our method reduces
the size of the relevant latent sample space without removing valid latent classes.
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Figure 12: Our filtered distribution (green) outperforms sparsemax (orange) and softmax (blue) over training
iterations when the network weights have been trained sufficiently on the NotMNIST dataset. Lower is better for
distance metrics. The results are over 5 different random seeds.

G NotMNIST Image Generation Results

G.1 Qualitative Performance

Fig. 11 shows a comparison of our proposed method, the original softmax distribution, and sparsemax
for the with middle bar and no middle bar letter queries on the NotMNIST dataset. Once again,
although the CVAE architecture proposed in Fig. 5 successfully learns a multimodal latent encoding,
the learned softmax probability distribution has non-negligible probability masses associated with the
incorrect latent classes zk for each query class y.

We observe that our filtered distribution selects a plausible set of correct latent classes given an input
query as shown in Fig. 11. Since NotMNIST is a more difficult dataset, the decoded latent classes
are, at times, an unrecognizable combination of features which scores high for both input queries.
Outside of these cases, we successfully sparsify the latent space analytically for each query class
without knowledge of or comparison to the other query. As before, sparsemax continues to generate
excessive false negatives, for instance, filtering out the ‘I’ for the without middle bar query. Thus, our
more conservative, yet effective, filtration is a compelling latent space reduction technique.

G.2 Quantitative Performance

Training Evolution Fig. 12 shows the performance of our filtered distribution on the NotMNIST
dataset at different training iterations. For the with middle bar input query, we continue to demonstrate
the robustness of our filtered distribution to fewer training iterations. Our method extracts more
accurate encoding information from the neural network earlier in the training process than the
softmax and sparsemax baselines. However, we note that both our filtered distribution and sparsemax
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underperform the softmax baseline at the beginning of training for the without middle bar query. Since
the NotMNIST dataset is substantially bigger and more difficult than (Fashion) MNIST, the neural
network weights governing the latent distribution can take longer to become meaningful. Hence, we
observed that for these early iterations, it is not possible for a method with an implicit threshold, such
as our filtration or sparsemax, to accurately filter the distribution. As in other experiments, our filtered
distribution can only perform as well as the learned network. However, our distribution continues to
consistently outperform sparsemax due to the latter’s aggressive filtration which incorrectly filters out
potentially valid latent classes.

H VQ-VAE Experimental Details

We train the VQ-VAE [2] network on miniImageNet [26] data randomly cropped to 128× 128 and
normalized to [−1, 1]. The miniImageNet dataset consists of 38, 400 examples in the training set,
9, 600 in the validation set, and 12, 000 in the test set. miniImageNet was designed for few-shot
learning tasks, thus the classes do not overlap between the dataset splits. There are 64 classes in the
training set. We use miniImageNet to test the algorithm due to its more computationally feasible
size for training on a single NVIDIA GeForce GTX 1070 GPU. We train the VQ-VAE with the
default parameters from: https://github.com/ritheshkumar95/pytorch-vqvae. We use a
batch size of 128 for 100 epochs, K = 512 for the number of classes for each of the 32× 32 latent
variables, a hidden size of 256, and a β of one. The network was trained with the Adam optimizer
and a starting learning rate of 2× 10−4. We use the best model according to the validation loss. To
sanity check that the VQ-VAE latent space reasonably captures the data, we demonstrate example
input and output images from the miniImageNet test set in Fig. 13. Since miniImageNet is meant for
one-shot learning, the classes in the training set do not match those in the validation and test sets.
Thus, the data distribution in the test set is different than that of the training set. The trained VQ-VAE
is able to reasonably reconstruct these out-of-distribution images. We then train the PixelCNN [31]
prior over the latent space with 20 layers, hidden dimension of 128, a batch size of 32 for 100 epochs.
The network was trained with the Adam optimizer and a starting learning rate of 3× 10−4.

We generate a new dataset by sampling from the trained prior, and decoding the images using the
VQ-VAE decoder. We sample 25 latent encodings from the prior for each of the 64 miniImageNet
training classes to build the dataset. We perform the sampling using the original softmax, sparsemax,
and our proposed latent distributions. We extract equivalent linear layer weights and biases for the
last 1D convolutional layer in PixelCNN to pass as input to our proposed distribution and sparsemax.
Examples of the sampled images are shown below in Fig. 14. Our proposed sparse latent distribution
visually maintains the same performance as the softmax distribution. Images sampled using the
sparsemax distribution are not depicted as they degenerate to single color blocks due to sparsemax
severely collapsing the distributional multimodality in the PixelCNN prior.

We then train a Wide Residual Network (WRN) [32] for classification on
miniImageNet. We use the PyTorch implementation for WRN found here:
https://pytorch.org/docs/stable/torchvision/models.html and the training pro-
tocol proposed here: https://github.com/huyvnphan/PyTorch_CIFAR10. We train WRN on
a subset of the miniImageNet training set, leaving 5% out for validation. WRN is trained for 100
epochs with a batch size of 128. The optimizer is stochastic gradient descent with a learning rate
of 1× 10−2. The inference performance of the WRN classifier on the datasets generated with the
softmax, sparsemax, and our proposed latent distributions are compared, demonstrating that our
distribution, unlike sparsemax, is able to maintain the performance of softmax, while significantly
reducing the size of the latent sample space.

(a) Original (b) Reconstructed by VQ-VAE

Figure 13: Images are reconstructed using VQ-VAE from the test set of miniImageNet.
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(a) Softmax (b) Ours

Figure 14: Images are generated for the queries (top to bottom): “cliff”, “jellyfish”, “orange”, “rock beauty”,
and “yawl” using the original softmax and our proposed latent distributions. Both sets of sampled images are
of similar quality despite our distribution considering a much smaller latent sample space. Images sampled
using sparsemax are not depicted as they degenerate to solid color blocks due to sparsemax collapsing the
multimodality in the autoregressive latent space distribution.

I Behavior Prediction Experimental Details

Fig. 15 illustrates the architecture of the Trajectron++ network with internal layer sizes for reference,
as depicted in Salzmann et al. [4]. The model was trained for 2000 iterations with a batch size of 256
and an initial learning rate of 1× 10−3 which was exponentially annealed down to 1× 10−5 with
a decay rate of 0.9999. The model was trained to predict 12 timesteps (4.8 s) into the future from
8 timesteps (3.2 s) of history. The loss function β weight was varied following a sigmoid function
from 0 to 2.5 with the middle value achieved at 400 iterations. The model’s latent variables z are
one-hot categorical latent variables which are approximated with a Gumbel-Softmax distribution,
enabling backpropagation through samples with the reparameterization trick [7]. The Gumbel-
Softmax distribution’s temperature τ was exponentially annealed from 2.0 to 0.05 with a decay
rate of 0.997. The decoder outputs Gaussian Mixture Model (GMM) means and covariances for
each prediction timestep, where each GMM has 16 components. Our experiments were run on 50
randomly-sampled scenes from the ETH test dataset, within which there were 203 agent trajectories.
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Figure 15: Trajectron++ architecture with layer dimensions indicated.
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