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Abstract

Practical and pervasive needs for robustness and privacy in algorithms have inspired
the design of online adversarial and differentially private learning algorithms. The
primary quantity that characterizes learnability in these settings is the Littlestone
dimension of the class of hypotheses [Alon et al., 2019, Ben-David et al., 2009].
This characterization is often interpreted as an impossibility result because classes
such as linear thresholds and neural networks have infinite Littlestone dimension.
In this paper, we apply the framework of smoothed analysis [Spielman and Teng,
2004], in which adversarially chosen inputs are perturbed slightly by nature. We
show that fundamentally stronger regret and error guarantees are possible with
smoothed adversaries than with worst-case adversaries. In particular, we obtain
regret and privacy error bounds that depend only on the VC dimension and the
bracketing number of a hypothesis class, and on the magnitudes of the perturbations.

1 Introduction
Robustness to changes in the data and protecting the privacy of data are two of the main challenges
faced by machine learning and have led to the design of online and differentially private learning
algorithms. While offline PAC learnability is characterized by the finiteness of VC dimension,
online and differentially private learnability are both characterized by the finiteness of the Littlestone
dimension [Alon et al., 2019, Ben-David et al., 2009, Bun et al., 2020]. This latter characterization
is often interpreted as an impossibility result for achieving robustness and privacy on worst-case
instances, especially in classification where even simple hypothesis classes such as 1-dimensional
thresholds have constant VC dimension but infinite Littlestone dimension.

Impossibility results for worst-case adversaries do not invalidate the original goals of robust and
private learning with respect to practically relevant hypothesis classes; rather, they indicate that a
new model is required to provide rigorous guidance on the design of online and differentially private
learning algorithms. In this work, we go beyond worst-case analysis and design online learning
algorithms and differentially private learning algorithms as good as their offline and non-private
PAC learning counterparts in a realistic semi-random model of data.

Inspired by smoothed analysis [Spielman and Teng, 2004], we introduce frameworks for online and
differentially private learning in which adversarially chosen inputs are perturbed slightly by nature
(reflecting, e.g., measurement errors or uncertainty). Equivalently, we consider an adversary restricted
to choose an input distribution that is not overly concentrated, with the realized input then drawn
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from the adversary’s chosen distribution. Our goal is to design algorithms with good expected regret
and error bounds, where the expectation is over nature’s perturbations (and any random coin flips
of the algorithm). Our positive results show, in a precise sense, that the known lower bounds for
worst-case online and differentially private learnability are fundamentally brittle.

Our Model. Let us first consider the standard online learning setup with an instance space X and
a set H of binary hypotheses each mapping X to Y = {+1,−1}. Online learning is played over
T time steps, where at each step the learner picks a prediction function from a distribution and the
adaptive adversary chooses a pair of (xt, yt) ∈ X × Y . The regret of an algorithm is the difference
between the number of mistakes the algorithm makes and that of the best fixed hypothesis inH. The
basic goal in online learning is to obtain a regret of o(T ). In comparison, in differential privacy
the data set B = {(x1, y1), . . . , (xn, yn)} is specified ahead of time. Our goal here is to design a
randomized mechanism that with high probability finds a nearly optimal hypothesis inH on the set
B, while ensuring that the computation is differentially private. That is, changing a single element of
B does not significantly alter the probability with which our mechanism selects an outcome. Similar
to agnostic PAC learning, this can be done by ensuring that the error of each hypothesis h ∈ H on B
(referred to as a query) is calculated accurately and privately.

We extend these two models to accommodate smoothed adversaries. We say that a distributionD over
instance-label pairs is σ-smooth if its density function over the instance domain is pointwise bounded
by at most 1/σ times that of the uniform distribution. In the online learning setting this means that
at step t, the adversary chooses an arbitrary σ-smooth distribution Dt from which (xt, yt) ∼ Dt is
drawn. In the differential privacy setting, we work with a database B for which the answers to the
queries could have been produced by a σ-smooth distribution.

While we assume that 1/σ is slowly growing (subexponentiallly) in T , we can use values of σ that
depend on the dimension of the space to account for the volume of high dimensional domains. Since
our bounds are only logarithmic in 1/σ, they gracefully scale with the dimension of the space.

Note that this notion of bounded densities also incorporates smoothness models where worst-case in-
stances are perturbed with small amount of noise, since convolution with noise produces distributions
with bounded density. One advantage is that our smoothing model treats combinatorial domains (say
[n] or graphs on n vertices) and geometric domains (say D ⊆ Rd) in a unified manner and allows
us to deliver results most meaningful to the analysis of learnability in presence of some smoothness
without getting bogged down with domain-specific definitions of smoothness. Another advantage of
our model — which is specifically important in machine learning — is that it naturally allows the
adversary to have arbitrary correlations between the labels and the instances as long as the marginal
on the instances is a “smooth" distribution. This can be handled by other models, albeit with more
awkwardness in separating how an instance is generated by random shifts but its label is generated
exactly by the adversary.

Why should smoothed analysis help in online learning? Consider the well-known lower bound for
1-dimensional thresholds over X = [0, 1], in which the learner may as well perform binary search
and the adversary selects an instance within the uncertainty region of the learner that causes a mistake.
While the learner’s uncertainty region is halved each time step, the worst-case adversary can use ever-
more precision to force the learner to make mistakes indefinitely. On the other hand, a σ-smoothed
adversary effectively has bounded precision. That is, once the width of the uncertainty region drops
below σ, a smoothed adversary can no longer guarantee that the chosen instance lands in this region.
Similarly for differential privacy, there is a σ-smooth distribution that produces the same answers to
the queries. Such a distribution has no more than α probability over an interval of width σα. So one
can focus on computing the errors of the 1/(σα) hypotheses with discreized thresholds and learn
a hypothesis of error at most α. Analogous observations have been made in prior works (Rakhlin
et al. [2011], Cohen-Addad and Kanade [2017], Gupta and Roughgarden [2017]), although only for
very specific settings (online learning of 1-dimensional thresholds, 1-dimensional piecewise constant
functions, and parameterized greedy heuristics for the maximum weight independent set problem,
respectively). Our work is the first to demonstrate the breadth of the settings in which fundamentally
stronger learnability guarantees are possible for smoothed adversaries than for worst-case adversaries.

2



Our Results and Contributions.

• Our main result concerns online learning with adaptive σ-smooth adversaries where Dt can depend
on the history of the play, including the earlier realizations of xτ ∼ Dτ for τ < t. That is, xt and
xt′ can be highly correlated. We show that regret against these powerful adversaries is bounded by
Õ(
√
T ln(N )), where N is the bracketing number ofH with respect to the uniform distribution.1

Bracketing number is the size of an ε-cover ofH with the additional property that hypotheses in
the cover are pointwise approximations of those inH. We show that for many hypothesis classes,
the bracketing number is nicely bounded as a function of the VC dimension. This leads to the
regret bound of Õ(

√
T VCDim(H) ln(1/σ)) for commonly used hypothesis classes in machine

learning, such as halfspaces, polynomial threshold functions, and polytopes. In comparison, these
hypothesis classes have infinite Littlestone dimension and thus cannot be learned with regret o(T )
in the worst case [Ben-David et al., 2009].

From a technical perspective, we introduce a novel approach for bounding time-correlated non-
independent stochastic processes over infinite hypothesis classes using the notion of bracketing
number. Furthermore, we introduce systematic approaches, such as high-dimensional linear
embeddings and k-fold operations, for analyzing the bracketing number of complex hypothesis
classes. We believe these techniques are of independent interest.

• For differentially private learning, we obtain an error bound of Õ
(

ln
3
8 (1/σ)

√
VCDim(H)/n

)
;

the key point is that this bound is independent of the size |X | of the domain and the size |H| of
the hypothesis class. We obtain these bounds by modifying two commonly used mechanisms in
differential privacy, the Multiplicative Weight Exponential Mechanism of Hardt et al. [2012] and the
SmallDB algorithm of Blum et al. [2008]. With worst-case adversaries, these algorithms achieve
only error bounds of Õ(ln

1
4 (|X |)

√
ln(|H|)/n) and Õ( 3

√
VCDim(H) ln(|X |)/n), respectively.

Our results also improve over those in Hardt and Rothblum [2010] which concern a similar notion
of smoothness and achieve an error bound of Õ(ln

1
2 (1/σ)

√
ln(|H|)/n).

Other Related Works. At a higher level, our work is related to several works on the intersection of
machine learning and beyond the worst-case analysis of algorithms (e.g., [Balcan et al., 2018, Dekel
et al., 2017, Kannan et al., 2018]) that are covered in more detail in Appendix A.

2 Preliminaries

Online Learning. We consider a measurable instance space X and the label set Y = {+1,−1}.
Let H be a hypothesis class on X with its VC dimension denoted by VCDim(H). Let U be the
uniform distribution over X with density function u(·). For a distribution D over X × Y , let p(·) be
the probability density function of its marginal over X . We say that D is σ-smooth if for all x ∈ X ,
p(x) ≤ u(x)σ−1. For a labeled pair s = (x, y) and a hypothesis h ∈ H, errs(h) = 1(h(x) 6= y)
indicates whether h makes a mistake on s.

We consider the setting of online adversarial and (full-information) learning. In this setting, a learner
and an adversary play a repeated game over T time steps. In every time step t ∈ [T ] the learner
picks a hypothesis ht and adversary picks a σ-smoothed distribution Dt from which a labeled pair
st = (xt, yt) such that st ∼ Dt is generated. The learner then incurs penalty of errst(ht). We
consider two types of adversaries. First (and the subject of our main results) is called an adaptive
σ-smooth adversary. This adversary at every time step t ∈ [T ] chooses Dt based on the actions of
the learner h1, . . . , ht−1 and, importantly, the realizations of the previous instances s1, . . . , st−1. We
denote this adaptive random process by s ∼ DDD . A second and less powerful type of adversary is
called a non-adaptive σ-smooth adversary. Such an adversary first chooses an unknown sequence of
distributions D = (D1, . . . ,DT ) such that Dt is a σ-smooth distribution for all t ∈ [T ]. Importantly,
Dt does not depend on realizations of adversary’s earlier actions s1, . . . , st−1 or the learner’s actions
h1, . . . , ht−1. We denote this non-adaptive random process by s ∼ D. With a slight abuse of notation,
we denote by x ∼ DDD and x ∼ D the sequence of (unlabeled) instances in s ∼ DDD and s ∼ D.

1Along the way, we also demonstrate a stronger regret bound for the simpler case of non-adaptive adversaries,
for which each distribution Dt is independent of the realized inputs in previous time steps.
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Our goal is to design an online algorithm A such that expected regret against an adaptive adversary,

E[REGRET(A,DDD)]:= E
s∼DDD

[
T∑
t=1

errst(ht)−min
h∈H

T∑
t=1

errst(h)

]
is sublinear in T . We also consider the regret of an algorithm against a non-adaptive adversary defined
similarly as above and denoted by E[REGRET(A,D)].

Differential Privacy. We also consider differential privacy. In this setting, a data set S is a multiset
of elements from domain X . Two data sets S and S′ are said to be adjacent if they differ in at
most one element. A randomized algorithmM that takes as input a data set is (ε, δ)-differentially
private if for all R ⊆ Range(M) and for all adjacent data sets S and S′, Pr [M (S) ∈ R] ≤
exp(ε) Pr [M (S′) ∈ R] + δ. If δ = 0, the algorithm is said to be purely ε-differentially private.

For differentially private learning, one considers a fixed class of queries Q. The learner’s goal is
to evaluate these queries on a given data set S. For ease of notation, we work with the empirical
distribution DS corresponding to a data set S. Then the learner’s goal is to approximately compute
q(DS) = Ex∼DS

[q(x)] while preserving privacy2. We consider two common paradigms of differ-
ential privacy. First, called query answering, involves designing a mechanism that outputs values
vq for all q ∈ Q such that with probability 1− β for every q ∈ Q, |q(DS)− vq| ≤ α. The second
paradigm, called data release, involves designing a mechanism that outputs a synthetic distribution
D, such that with probability 1− β for all q ∈ Q, |q(D)− q(DS)| ≤ α. That is, the user can use D
to compute the value of any q(DS) approximately.

Analogous to the definition of smoothness in online learning, we say that a distributionD with density
function p(·) is σ-smooth if p(x) ≤ σ−1u(x) for all x ∈ X . We also work with a weaker notion of
smoothness of data sets. A data set S is said to be (σ, χ)-smooth with respect to a query setQ if there
is a σ-smooth distribution D such that for all q ∈ Q, we have |q (D)− q (DS)| ≤ χ. The definition
of (σ, χ)-smoothness, which is also referred to as pseudo-smoothness by Hardt and Rothblum [2010],
captures data sets that though might be concentrated on some elements, the query class is not capable
of noticing their lack of smoothness.

Additional Definitions. LetH be a hypothesis class and let D be a distribution. H′ is an ε-cover
forH under D if for all h ∈ H, there is a h′ ∈ H′ such that Prx∼D [h (x) 6= h′ (x)] ≤ ε. For anyH
and D, there an ε-coverH′ ⊆ H under D such that |H′| ≤ (41/ε)VCDim(H) (Haussler [1995]).

We define a partial order � over functions such that f1 � f2 if and only if for all x ∈ X , we have
f1(x) ≤ f2(x). For a pair of functions f1, f2 such that f1 � f2, a bracket [f1, f2] is defined by
[f1, f2] = {f : X → {−1, 1} : f1 � f � f2} . Given a measure µ over X , a bracket [f1, f2] is called
an ε-bracket if Prx∼µ [f1(x) 6= f2(x)] ≤ ε.
Definition 2.1 (Bracketing Number). Consider an instance space X , measure µ over this space, and
hypothesis class F . A set B of brackets is called an ε-bracketing of F with respect to measure µ if all
brackets in B are ε-brackets with respect to µ and for every f ∈ F there is [f1, f2] ∈ B such that
f ∈ [f1, f2]. The ε-bracketing number of F with respect to measure µ, denoted by N[ ](F , µ, ε), is
the size of the smallest ε-bracketing for F with respect to µ.

3 Regret Bounds for Smoothed Adaptive and Non-Adaptive Adversaries

In this section, we obtain regret bounds against smoothed adversaries. For finite hypothesis classesH,
existing no-regret algorithms such as Hedge [Freund and Schapire, 1997] and Follow-the-Perturbed-
Leader [Kalai and Vempala, 2005] achieve a regret bound of O(

√
T ln(H)). For a possibly infinite

hypothesis class our approach uses a finite setH′ as a proxy forH and only focuses on competing
with hypotheses in H′ by running a standard no-regret algorithm on H′. Indeed, in absence of
smoothness of DDD ,H′ has to be a good proxy with respect to every distribution or know the adversarial
sequence ahead of time, neither of which are possible in the online setting. But when distributions
are smooth, H′ that is a good proxy for the uniform distribution can also be a good proxy for all
other smooth distributions. We will see that how well a setH′ approximatesH depends on adaptivity

2In differentially private learning, queries are the error function of hypotheses and take as input a pair (x, y).
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(versus non-adpativity) of the adversary. Our main technical result in Section 3.1 shows that for
adaptive adversaries this approximation depends on the size of the σ

4
√
T

-bracketing cover ofH. This
results in an algorithm whose regret is sublinear in T and logarithmic in that bracketing number
for adaptive adversaries (Theorem 3.3). In comparison, for simpler non-adaptive adversaries this
approximation depends on the size of the more traditional ε-covers of H, which do not require
pointwise approximation ofH. This leads to an algorithm against non-adaptive adversaries with an
improved regret bound of Õ(

√
T ·VCDim(H)) (Theorem 3.3).

In Section 3.2, we demonstrate that the bracketing numbers of commonly used hypothesis classes in
machine learning are small functions of their VC dimension. We also provide systematic approaches
for bounding the bracketing number of complex hypothesis classes in terms of the bracketing number
of their simpler building blocks. This shows that for many commonly used hypothesis classes —
such as halfspaces, polynomial threshold functions, and polytopes — we can achieve a regret of
Õ(
√
T ·VCDim(H)) even against an adaptive adversary.

3.1 Regret Analysis and the Connection to Bracketing Number

In more detail, consider an algorithm A that uses Hedge on a finite setH′ instead ofH. Then,

E[REGRET(A,DDD)] ≤ O
(√

T ln(|H′|)
)

+ E
DDD

[
max
h∈H

min
h′∈H′

T∑
t=1

1 (h(xt) 6= h′(xt))

]
, (1)

where the first term is the regret against the best h′ ∈ H′ and the second term captures how wellH′
approximatesH. A natural choice ofH′ is an ε-cover ofH with respect to the uniform distribution,
for a small ε that will be defined later. This bounds the first term using the fact that there is an ε-cover
H′ ⊆ H of size |H′| ≤ (41/ε)VCDim(H). To bound the second term, we need to understand whether
there is a hypothesis h ∈ H whose value over an adaptive sequence of σ-smooth distributions can
be drastically different from the value of its closest (under uniform distribution) proxy h′ ∈ H′.
Considering the symmetric difference functions fh,h′ = h∆h′ for functions h ∈ H and their
corresponding proxies h′ ∈ H′, we need to bound (in expectation) the maximum value an fh,h′ can
attain over an adaptive sequence of σ-smooth distributions.

Non-Adaptive Adversaries. To develop more insight, let us first consider the case of non-adaptive
adversaries. In the case of non-adaptive adversaries, xt ∼ Dt are independent of each other, while
they are not identically distributed. This independence is the key property that allows us to use the VC
dimension of the set of functions {fh,h′ | ∀h ∈ H and the corresponding proxy h′ ∈ H′} to establish
a uniform convergence property where with high probability every function fh,h′ has a value that is
close to its expectation — the fact that xts are not identically distributed can be easily handled because
the double sampling and symmetrization trick in VC theory can still be applied as before. Furthermore,
σ-smoothness of the distributions implies that ED[

∑
fh,h′(xt)] ≤ σ−1 EU [

∑
fh,h′(xt)] ≤ ε/σ.

This leads to the following theorem for non-adaptive adversaries.

Theorem 3.1 (Non-Adaptive Adversary [Haghtalab, 2018]). Let H be a hypothesis class of VC
dimension d. There is an algorithm such that for any D that is an non-adaptive sequence of σ-smooth

distributions has regret E[REGRET(A,D)] ∈ O
(√

dT ln
(
T
σ

))
.

Adaptive Adversaries. Moving back to the case of adaptive adversaries, we unfortunately lose
this uniform convergence property (see Appendix B for an example). This is due to the fact that
now the choice of Dt can depend on the earlier realization of instances x1, . . . , xt−1. To see why
independence is essential, note that the ubiquitous double sampling and symmetrization techniques
used in VC theory require that taking two sets of samples x and x′ from the process that is generating
data, we can swap xi and x′i independently of whether xj and x′j are swapped for j 6= i. When the
choice of Dt depends on x1, . . . , xt−1 then swapping xτ with x′τ affects whether xt and x′t could
even be generated from Dt for t > τ . In other words, symmetrizing the first t variables generates 2t

possible choices for xt+1 that exponentially increases the set of samples over which a VC class has
to be projected, therefore losing the typical

√
T ·VCDim(H) regret bound and instead obtaining the

trivial regret of O(T ). Nevertheless, we show that the earlier ideas for bounding the second term of
Equation 1 are still relevant as long as we can side step the need for independence.
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Note that σ-smoothness of the distributions still implies that for a fixed function fh,h′ even though
Dt is dependent on the realizations x1, . . . , xt−1, we still have Prxt∼Dt [fh,h′(xt)] ≤ ε/σ. Indeed,
the value of any function f for which EU [f(x)] ≤ ε can be bounded by the convergence property of
an appropriately chosen Bernoulli variable. As we demonstrate in the following lemma, this allows
us to bound the expected maximum value of a fh,h′ chosen from a finite set of symmetric differences.
For a proof of this lemma refer to Appendix C.2.
Lemma 3.2. Let F : X → {0, 1} be any finite class of functions such that EU [f(x)] ≤ ε for all
f ∈ F , i.e., every function has measure ε over the uniform distribution. Let DDD be any adaptive
sequence of T , σ-smooth distributions for some σ ≥ ε such that T ε

σ ≥
√

ln(|F|). We have that

E
x∼DDD

[
max
f∈F

T∑
t=1

f(xt)

]
≤ O

(
T
ε

σ

√
ln(|F|)

)
.

The set of symmetric differences G = {fh,h′ | ∀h ∈ H and the corresponding proxy h′ ∈ H′} we
work with is of course infinitely large. Therefore, to apply Lemma 3.2 we have to approximate G
with a finite set F such that

E
x∼DDD

[
max
fh,h′∈G

T∑
t=1

fh,h′(xt)

]
. E

x∼DDD

[
max
f∈F

T∑
t=1

f(xt)

]
. (2)

What should this setF be? Note that choosingF that is an ε-cover of G under the uniform distribution
is an ineffective attempt plagued by the the same lack of independence that we are trying to side step.
In fact, while all functions fh,h′ are ε close to the constant 0 functions with respect to the uniform
distribution, they are activated on different parts of the domain. So it is not clear that an adaptive
adversary, who can see the earlier realizations of instances, cannot ensure that one of these regions
will receive a large number realized instances. But a second look at Equation 2 suffices to see that
this is precisely what we can obtain if F were to be the set of (upper) functions in an ε-bracketing of
G. That is, for every function fh,h′ ∈ G there is a function f ∈ F such that fh,h′ � f . This proves
Equation 2 with an exact inequality using the fact that pointwise approximation fh,h′ � f implies
that the value of fh,h′ is bounded by that of f for any set of instances x1, . . . , xT that could be
generated by DDD . Furthermore, functions in G are within ε of the constant 0 function over the uniform
distribution, so F meets the criteria of Lemma 3.2 with the property that for all f ∈ F , EU [f(x)] ≤ ε.
It remains to bound the size of class |F| in terms of the bracketing number ofH. This can be done by
showing that the bracketing number of class G, that is the class of all symmetric differences inH, is
approximately bounded by the same bracketing number of H (See Theorem 3.7 for more details).
Putting these all together we get the following regret bound against smoothed adaptive adversaries.
Theorem 3.3 (Adaptive Adversary). LetH be a hypothesis class over domain X , whose ε-bracketing
number with respect to the uniform distribution over X is denoted by N[ ](H,U , ε). There is an
algorithm such that for any DDD that is an adaptive sequence of σ-smooth distributions has regret

E[REGRET(A,DDD)] ∈ O

(√
T ln

(
N[ ]

(
H,U , σ

4
√
T

)))
.

3.2 Hypothesis Classes with Small Bracketing Numbers.

In this section, we analyze bracketing numbers of some commonly used hypothesis classes in machine
learning. We start by reviewing the bracketing number of halfspaces and provide two systematic
approaches for extending this bound to other commonly used hypothesis classes. Our first approach
bounds the bracketing number of any class using the dimension of the space needed to embed it as
halfspaces. Our second approach shows that k-fold operations on any hypothesis class, such as taking
the class of intersections or unions of all k hypotheses in a class, only mildly increase the bracketing
number. Combining these two techniques allows us to bound the bracketing number of commonly
used classifiers such as halfspaces, polytopes, polynomial threshold functions, etc.

The connection between bracketing number and VC theory has been explored in recent works. Adams
and Nobel [2010, 2012] showed that finite VC dimension class also have finite ε-bracketing number
but Alon et al. [1987] (see van Handel [2013] for a modern presentation) showed the dependence on
1/ε can be arbitrarily bad. Since Theorem 3.3 depends on the growth rate of bracketing numbers, we
work with classes for which we can obtain ε-bracketing numbers with reasonable growth rate, those
that are close to the size of standard ε-covers.
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Theorem 3.4 (Braverman et al. [2019]). Let H be the class of halfspaces over Rd. For any ε > 0

and any measure µ over Rd, N[ ](H, µ, ε) ≤
(
d
ε

)O(d)
.

Our first technique uses this property of halfspaces to bound the bracketing number of any hypothesis
class as a function of the dimension of the spaces needed to embed this class as halfpsaces.

Definition 3.5 (Embeddable Classes). Let G be a hypothesis class on X . We say that G is embeddable
as halfspaces in m dimensions if there exists a map ψ : X → Rm such that for any g ∈ G, there is a
linear threshold function h such g = h ◦ ψ.

Theorem 3.6 (Bracketing Number of Embeddable Classes). Let G be a hypothesis class embeddable
as halfspaces in m dimensions. Then, for any measure ν, N[ ](G, ν, ε) ≤

(
m
ε

)O(m)
.

Our second technique shows that combining k classes, by respectively taking intersections or unions
of any k functions from them, only mildly increases their bracketing number.

Theorem 3.7 (Bracketing Number of k-fold Operations). Let F1, . . . ,Fk be k hypothesis classes.
Let F1 · F2 · · · Fk and F1 + F2 + · · ·+ Fk be the class of all hypotheses that are intersections and
unions of k functions fi ∈ Fi, respectively. Then,

N[ ](F1 · F2 · · · Fk, µ, kε) ≤
∏
i∈[k]

N[ ](Fi, µ, ε)

and
N[ ](F1 + F2 + · · ·+ Fk, µ, kε) ≤

∏
i∈[k]

N[ ](Fi, µ, ε) .

For any hypothesis class F and G = {f∆f ′ | for allf, f ′ ∈ F}, N[ ](G, µ, 4ε) ≤
(
N[ ](F , µ, ε)

)4
.

We now use our techniques for bounding the bracketing number of complex classes by the bracketing
number of their simpler building blocks to show that online learning with an adaptive adversary on a
class of halfspaces, polytopes, and polynomial threshold functions has Õ(

√
T VCDim(H)) regret.

Corollary 3.8. Consider instance space X = Rn and let µ be an arbitrary measure on X . Let Pn,d
be the class of d-degree polynomial thresholds and Qn,k be the class k-polytopes in Rn. Then,

N[ ]

(
Pn,d, µ, ε

)
≤ exp

(
c1n

d ln
(
nd/ε

))
and N[ ]

(
Qn,k, µ, ε

)
≤ exp

(
c2nk ln

(
nk

ε

))
,

for some constants c1 and c2. Furthermore, there is an online algorithm whose re-
gret against an adaptive σ-smoothed adversary on the class Pn,d and Qn,k is respectively
Õ(
√
T ·VCDim(Pn,d) ln(1/σ)) and Õ(

√
T ·VCDim(Qn,k) ln(1/σ)).

4 Differential Privacy

In this section, we consider smoothed analysis of differentially private learning in query answering
and data release paradigms. We primarily focus on (σ, 0)-smooth distributions and defer the general
case of (σ, χ)-smooth distributions to Appendix G. For finite query classes Q and small domains,
existing differentially private mechanisms achieve an error bound that depends on ln(|Q|) and ln(|X |).
We leverage smoothness of data sets to improve these dependencies to VCDim(Q) and ln(1/σ).

An Existing Algorithm. Hardt et al. [2012] introduced a practical algorithm for data release,
called Multiplicative Weights Exponential Mechanism (MWEM). This algorithm works for a fi-
nite query class Q over a finite domain X . Given an data set B and its corresponding empirical
distribution DB , MWEM iteratively builds distributions Dt for t ∈ [T ], starting from D1 = U
that is the uniform distribution over X . At stage t, the algorithm picks a qt ∈ Q that approx-
imately maximizes the error |qt (Dt−1)− qt(DB)| using a differentially private mechanism (Ex-
ponential mechanism). Then data set Dt−1 is updated using the multiplicative weights update
rule Dt(x) ∝ Dt−1(x) exp (qt(x)(mt − qt(Dt−1))/2) where mt is a differentially private esti-
mate (via Laplace mechanism) for the value qt (DB). The output of the mechanism is a data set
D = 1

T

∑
t∈[T ]Dt. The formal guarantees of the algorithm are as follows.
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Theorem 4.1 (Hardt et al. [2012]). For any data set B of size n, a finite query class Q, T ∈ N
and ε > 0, MWEM is ε-differentially private and with probability at least 1 − 2T/|Q| produces a

distribution D over X such that maxq∈Q
{∣∣q (D)− q (DB)

∣∣} ≤ 2
√

log |X |
T + 10T log |Q|

εn .

The analysis of MWEM keeps track of the KL divergence DKL (DB‖Dt) and shows that at time t this
value decreases by approximately the error of query qt. At a high level, DKL (DB‖D1) ≤ ln(|X |).
Moreover, KL divergence of any two distributions is non-negative. Therefore, error of any query
q ∈ Q after T steps follows the above bound.

Query Answering. To design a private query answering algorithm for a query class Q without
direct dependence on ln(|Q|) and ln(|X |) we leverage smoothness of distributions. Our algorithm
called the Smooth Multiplicative Weight Exponential Mechanism (Smooth MWEM), given an infinite
set of queries Q, considers a γ-cover Q′ under the uniform distribution. Then, it runs the MWEM
algorithm with Q′ as the query set and constructs an empirical distribution D. Finally, upon being
requested an answer to a query q ∈ Q, it responds with q′(D), where q′ ∈ Q′ is the closest query to
q under the uniform distribution. This algorithm is presented in Appendix E. Note that Q′ does not
depend on the data set B. This is the key property that enables us to work with a finite γ-cover of Q
and extend the privacy guarantees of MWEM to infinite query classes. In comparison, constructing a
γ-cover of Q with respect to the empirical distribution DB uses private information.

Let us now analyze the error of our algorithm and outline the reasons it does not directly depend
on ln(|Q|) and ln(|X |). Recall that from the (σ, 0)-smoothness, there is a distribution DB that
is σ-smooth and q (DB) = q

(
DB
)

for all q ∈ Q. Furthermore, Q′ can be taken to be a subset
of Q and thus B is (σ, 0)-smooth with respect to Q′. The approximation of Q by a γ-cover
introduces error in addition to the error of Theorem 4.1. This error is given by |q (DB)− q′ (DB)| ≤
2 · PrU [q′ (x) 6= q (x)]σ−1 ≤ 2γ/σ. Note that |Q′| ≤ (41/γ)VCDim(Q), therefore, this removes the
error dependence on the size of the query set Q while adding a small error of 2γ/σ. Furthermore,
Theorem 4.1 dependence on ln(|X |) is due to the fact that for a worst-case (non-smooth) data set
B, DKL(DB‖U) can be as high as ln(|X |). For a (σ, 0)-smooth data set, however, DKL(DB‖U) ≤
ln(1/σ). This allows for faster error convergence. Applying these ideas together and setting
γ = σ/2n gives us the following theorem whose proof is deferred to Appendix E.
Theorem 4.2. For any (σ, 0)-smooth dataset B of size n, a query class Q with VC dimension d,
T ∈ N and ε > 0, Smooth Multiplicative Weights Exponential Mechanism is ε-differentially private
and with probability at least 1− 2T (γ/41)

VCDim(Q), calculates values vq for all q ∈ Q such that

max
q∈Q
{|vq − q (DB)|} ≤ 1

n
+ 2

√
log (1/σ)

T
+

10Td log (2n/σ)

εn
.

Data Release. Above we described a procedure for query answering that relied on the construction
of a data set. One could ask whether this leads to a solution to the data release problem as well.
An immediate, but ineffective, idea is to output distribution D constructed by our algorithm in the
previous section. The problem with this approach is that while q′(D) ≈ q′(DB) for all queries in
the cover Q′, there can be queries q ∈ Q \ Q′ for which

∣∣q(D)− q(DB)
∣∣ is quite large. This is due

to the fact that even though B is (σ, 0)-smooth (and DB is σ-smooth), the repeated application of
multiplicative update rule may result in distribution D that is far from being smooth.

To address this challenge, we introduce Projected Smooth Multiplicative Weight Exponential Mecha-
nism (Projected Smooth MWEM) that ensures that Dt is also σ-smooth by projecting it on the convex
set of all σ-smooth distributions. More formally, let K be the polytope of all σ-smooth distributions
over X and let D̃t be the outcome of the multiplicative update rule of Hardt et al. [2012] at time t.
Then, Projected Smooth MWEM mechanism uses Dt = argminD∈KDKL(D‖D̃t). To ensure that
these projections do not negate the progress made so far, measured by the decrease in KL divergence,
we note that for anyDB ∈ K and any D̃t, we have DKL(DB‖D̃t ) ≥ DKL(DB‖Dt)+DKL(Dt‖D̃t).
That is, as measured by the decrease in KL divergence, the improvement with respect to Dt can only
be greater than that of D̃t. Optimizing parameters T and γ, we obtain the following guarantees. See
Appendix F for more details on Projected Smooth MWEM mechanism and its analysis.
Theorem 4.3 (Smooth Data Release). Let B be a σ-smooth database with n data points. For
any ε, δ > 0 and any query set Q with VC dimension d, Projected Smooth Multiplicative Weight
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Exponential Mechanism is (ε, δ) differentially private and with probability at least 1−1/poly (n/σ)
d

its outcome D satisfies

max
q∈Q

{∣∣q (D)− q (DB)
∣∣} ≤ O(√ d

εn
log

1
2

(
1

σ

)
log
(n
σ

)
log

(
1

δ

))
.

5 Conclusions and Open Problems

Our work introduces a framework for smoothed analysis of online and private learning and obtain
regret and error bounds that depend only on the VC dimension and the bracketing number of a
hypothesis class and are independent of the domain size and Littlestone dimension.

Our work leads to several interesting questions for future work. The first is to characterize learnability
in the smoothed setting — via matching lower bounds — in terms of a combinatorial quantity, e.g.,
bracketing number. In Appendix D, we discuss sign rank and its connection to bracketing number
as a promising candidate for this characterization. A related question is whether there are finite VC
dimension classes that cannot be learned in presence of smoothed adaptive adversaries.

Let us end this paper by noting that the Littlestone dimension plays a key role in characterizing
learnability and algorithm design in the worst-case for several socially and practically important
constraints [Ben-David et al., 2009, Alon et al., 1987]. It is essential then to develop models that can
bypass Littlestone impossibility results and provide rigorous guidance in achieving these constraints
in practical settings.

Broader Impact

Like many theoretical machine learning papers, this paper’s main focus is on the mathematical
challenges and contributions to the field. However, as robustness and privacy are two of the most
important practical and societal challenges machine learning is facing, our work also has broader
implications on the deployments of these techniques.

The theoretical impossibility results in online learning and differential privacy have been barriers to
developing robust and private learning methods that work well on day-to-day applications and have
rigorous guarantees — e.g., the impossibility result for privacy implies that error guarantees of private
learning methods only work when data sets are infinitely large. Our work provides a framework to
side step these impossibility results. Our online and differentially private algorithms perform as well
as their offline and non-private counterparts on real-life data and are backed by rigorous theoretical
guarantees.
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A Additional Related Work

Analogous models of smoothed online learning have been explored in prior work. Rakhlin et al.
[2011] consider online learning when the adversary is constrained in several ways and work with
a notion of sequential Rademacher complexity for analyzing the regret. In particular, they study a
related notion of smoothed adversary and show that one can learn thresholds with regret of O(

√
T ) in

presence of smoothed adversaries. Gupta and Roughgarden [2017] consider smoothed online learning
in the context online algorithm design. They show that while optimizing parameterized greedy
heuristics for Maximum Weight Independent Set imposes linear regret in the worst-case, in presence
of smoothing this problem can be learned with sublinear regret (as long they allow per-step runtime
that grows with T ). Cohen-Addad and Kanade [2017] consider the same problem with an emphasis
on the per-step runtime being logarithmic in T . They show that piecewise constant functions over
the interval [0, 1] can be learned efficiently within regret of O(

√
T ) against a non-adaptive smooth

adversary. Our work differs from these by upper bounding the regret using a combinatorial dimension
of the hypothesis class and demonstrating techniques that generalize to large class of problems in
presence of adaptive adversaries.

In another related work, Balcan et al. [2018] introduce a notion of dispersion in online optimization
(where the learner picks an instance and the adversary picks a function) that is a constraint on the
number of discontinuities in the adversarial sequence of functions. They show that online optimization
can be done efficiently under certain assumptions. Moreover, they show that sequences generated
by non-adaptive smooth adversaries in one dimension satisfy dispersion. In comparison, our main
results in online learning consider the more powerful adaptive adversaries.

Smoothed analysis is also used in a number of other online settings. In the setting of linear contextual
bandits, Kannan et al. [2018] use smoothed analysis to show that the greedy algorithm achieves
sublinear regret even though in the worst case it can have linear regret. Raghavan et al. [2018] work in
a Bayesian version of the same setting and achieve improved regret bounds for the greedy algorithm.
Since several algorithms are known to have sublinear regret in the linear contextual bandit setting
even in the worst-case, the main contribution of these papers is to show that the simple and practical
greedy algorithm has much better regret guarantees than in the worst-case. In comparison, we work
with a setting where no algorithm can achieve sublinear regret in the worst-case.

Smoothed analysis has also been considered in the context of differential privacy. Hardt and Rothblum
[2010] consider differential privacy in the interactive setting, where the queries arrive online. They
analyze a multiplicative weights based algorithm whose running time and error they show can be
vastly improved in the presence of smoothness. Some of our techniques for query answering and data
release are inspired by that line of work. Balcan et al. [2018] also differential privacy in presence of
dispersion and analyze the gaurantees of the exponential mechanism.

Generally, our work is also related to a line of work on online learning in presence of additional
assumptions resembling properties exhibited by real life data. Rakhlin and Sridharan [2013] consider
settings where additional information in terms of an estimator for future instances is available to
the learner. They achieve regret bounds that are in terms of the path length of these estimators and
can beat Ω(

√
T ) if the estimators are accurate. Dekel et al. [2017] also considers the importance of

incorporating side information in the online learning framework and show that regrets of O(log(T ))
in online linear optimization maybe possible when the learner knows a vector that is weakly correlated
with the future instances.

More broadly, our work is among a growing line of work on beyond the worst-case analysis of
algorithms [Roughgarden, 2020] that considers the design and analysis of algorithms on instances that
satisfy properties demonstrated by real-world applications. Examples of this in theoretical machine
learning mostly include improved runtime and approximation guarantees of numerous supervised
(e.g., [Kalai et al., 2009, Kalai and Teng, 2008, Awasthi et al., 2016, Diakonikolas et al., 2019]),
and unsupervised settings (e.g., [Bilu and Linial, 2012, Balcan et al., 2020, 2013, Arora et al., 2012,
Bhaskara et al., 2019, Vijayaraghavan et al., 2017, Makarychev et al., 2014, Ostrovsky et al., 2013,
Hardt and Roth, 2013]).
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B Lack of Uniform Convergence with Adaptive Adversaries

The following example for showing lack of uniform convergence over adaptive sequences is due to
Haghtalab [2018] and is included here for completeness.

Let X = [0, 1] and G = {gb(x) = I(x ≥ b) | ∀b ∈ [0, 1]} be the set of one-dimensional thresholds.
Let the distribution of the noise ηi be the uniform distribution on (−1/4, 1/4). Let x1 = 1/2 and
x2 = x3 = · · · = xT = 1/4 if η1 ≤ 0 while x2 = x3 = · · · = xT = 3/4 otherwise. In this case, we
do not achieve concentration for any value of T , as

1

T

T∑
t=1

g0.5(xt + ηt) =

{
0 w.p. 1/2

1 w.p. 1/2
and E

[
1

T

T∑
t=1

g0.5(xt + ηt)

]
=

1

2
.

C Proofs from Section 3

C.1 Algorithm and its Running Time

While our main focus is to provide sublinear regret bounds for smoothed online learning our analysis
also provides an algorithmic solution describe below.

Algorithm 1: Smooth Online Learning
Input: Instance Space X , Hypothesis ClassH, Smoothness parmeter σ, Time horizon T

Cover Construction: ComputeH′ ⊆ H that is a γ-cover ofH with respect to the uniform
distribution on X for γ = σ

4
√
T

.
for t = 1 . . . T do

Use a standard online learning algorithm, such as Hedge, onH′ to pick an ht, where the
history of the play is {sτ}τ<t and {hτ}τ<t

Receive st = (xt, yt) and suffer loss errst (ht).
end

The running time of the algorithm comprises of the initial construction of H′ and then running a
standard online learning algorithm onH′.
Standard online learning algorithms such as Hedge and FTPL take time polynomial in the size of the
cover since in standard implementations they maintain a state corresponding to each hypothesis in
H′. In our setting, the size of the cover is (41

√
T/σ)d.

The time required to construct a cover depends on the access we have to the class. One method is to
randomly sample a set S with m = O(VCDim (H)T/σ2) points from the domain uniformly and
construct all possible labelings on this set induced by the class. The number of labellings of S is
bounded by O(mVCDim(H)) by the Sauer–Shelah lemma. The cover is constructed by then finding
functions in the classH that are consistent with each of these labellings. This requires us to be able
to find an element in the class consistent with a given labeling, which can be done by a “consistency”
oracle. Naively, the above makes 2m calls to the consistency oracle, one for each possible labeling of
S.

The above analysis and runtime can be improved in several ways. First, H′ can be constructed in
time O(mVCDim(H)) rather than 2m. This can be done by constructing the cover in a hierarchical
fashion, where the root includes the unlabeled set S and at every level one additional instance in S
is labeled by +1 or −1. At each node, the consistency oracle will return a function h ∈ H that is
consistent with the labels so far or state that none exists. Nodes for which no consistent hypothesis so
far exists are pruned and will not expand in the next level. Since the total number of leaves is the
number of ways in which S can be labeled byH, i.e., O(md), the number of calls to the consistency
oracle is O(md) as well. The runtime of standard online learning algorithms can also be improved
significantly when an empirical risk minimization oracle is available to the learner, in which case
a runtime of O(

√
|H′|) for general classes [Hazan and Koren, 2016] or even polylog(|H′|)) for

structured classes [Dudík et al., 2017] is possible.
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C.2 Proof of Lemma 3.2

At a high level, note that any f ∈ F has measure at most ε/σ on any (even adaptively chosen)
σ-smooth distribution. Therefore, for any fixed f , EDDD [

∑T
t=1 f(xt)] ≤ Tε/σ. To achieve this bound

over all f ∈ F , we take a union bound over all such functions.

More formally, for any s

exp

(
sE

DDD

[
max
f∈F

T∑
t=1

f(xt)

])
≤ E

DDD

[
exp

(
smax
f∈F

T∑
t=1

f(xt)

)]
(Jensen’s inequqlity)

≤ E
DDD

[
max
f∈F

exp

(
s

T∑
t=

f(xt)

)]
(Monotonicity of exp)

≤
∑
f∈F

E
DDD

[
exp

(
s

T∑
t=1

f(xt)

)]
. (3)

Consider a fixed f ∈ F . Note that even when the choice of a σ-smoothed distribution D depends
on earlier realizations of x1, . . . , xi−1, Prxi∼D[f(xi)] ≤ ε

σ . Therefore,
∑T
t=1 f(xt) for x ∼ DDD

is stochastically dominated by that of a binomial distribution Bin(T, ε/σ). Note that exp(·) is a
monotonically increasing functions and let p = ε/σ. We have

E
DDD

[
exp

(
s

T∑
t=1

f(xt)

)]
≤

T∑
v=0

exp(sv)

(
T

v

)
pv(1− p)T−v =

(
p(exp(s)− 1) + 1

)T
. (4)

Combining Equations (3) and (4) and noting that ln(1 + x) ≤ x, we have

E
DDD

[
max
f∈F

T∑
t=1

f(xt)

]
≤ ln(|F|) + Tp (exp(s)− 1)

s
.

Let s =
√

ln(|F|)/Tp. Note that because s ∈ (0, 1), we have exp(s) ≤ 1 + 2s. Hence, by replacing
s in the above inequality we have

E
DDD

[
max
f∈F

T∑
t=1

f(xt)

]
∈ O

(
Tp
√

ln(|F|)
)
.

C.3 Proof of Theorem 3.3

Consider any hypothesis class H′ and an algorithm that is no-regret with respect to any adaptive
adversary on hypotheses inH′. It is not hard to see that

E[REGRET(A,DDD)] = E
s∼DDD

[
T∑
t=1

errst(ht)−min
h∈H

errst(ht)

]

≤ E
s∼DDD

[
T∑
t=1

errst(ht)− min
h∈H′

T∑
t=1

errst(h)

]
+ E

s∼DDD

[
min
h′∈H′

T∑
t=1

errst(h
′)−min

T∑
t=1

errst(h)

]

≤ O
(√

T ln(|H′|)
)

+ E
DDD

[
max
h∈H

min
h′∈H′

T∑
t=1

1 (h(xt) 6= h′(xt))

]
. (5)

Therefore, it is sufficient to choose anH′ of moderate size such that every function h ∈ H has a proxy
h′ ∈ H′ even when these functions are evaluated on instances drawn from a non-iid and adaptive
sequence of smooth distributions. We next describe the choice ofH′.
Let H′ be a ε

2 -net of H with respect to the uniform distribution U , for an ε that we will determine
later. Note that any ε-bracket with respect to U is also an ε-net, so |H′| ≤ N[ ](H,U , ε/2).3 Let G be
the set of symmetric differences between h ∈ H and its closest proxy h′ ∈ H′, that is,

G = {gh,h′(x) = 1(h(x) 6= h′(x)) | ∀h ∈ H and h′ ∈ H′, s.t. E
U

[gh,h′(x)] ≤ ε/2}.

3Alternatively, we can bound |H′| ≤ (41/ε)VCDim(H) by Haussler [1995].
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Note that because G is a subset of all the symmetric differences of two functions inH, by Theorem 3.7
its bracketing number is bounded as follows.

N[ ](G,U , ε/2) ≤
(
N[ ](H,U , ε/4)

)4
. (6)

Let B(G) be the set of upper ε/2-brackets of G with respect to U , i.e., for all g ∈ G, there is b ∈ B(G)
such that for all x ∈ X , g(x) ≤ b(x) and EU [b(x)− g(x)] ≤ ε/2. Note that

E
DDD

[
max
h∈H

min
h′∈H′

T∑
t=1

1 (h(xt) 6= h′(xt))

]
= E

DDD

[
max
g∈G

T∑
t=1

g(xt)

]
≤ E

DDD

[
max
b∈B(G)

T∑
t=1

b(xt)

]
,

where the last transition is by the fact that B(G) includes all upper brackets of G.

We now note that B(G) meets the conditions Lemma 3.2, namely because all g ∈ G have measure at
most ε/2 over U and B(G) is the set of ε/2-upper brackets of G, we have that EU [b(x)] ≤ ε for all
b ∈ B(G). Therefore, by Lemma 3.2 and Equation 6, we have

E
DDD

[
max
b∈B(G)

T∑
t=1

b(xt)

]
≤ O

(
T
ε

σ

√
ln
(
N[ ](H,U , ε/4)

))
Replacing this in Equation 5 we have that

E[REGRET(A,DDD)] ∈ O
(√

T ln
(
N[ ](H,U , ε/4)

)
+ T

ε

σ

√
ln
(
N[ ](H,U , ε/4)

))
Choosing ε = σ/

√
T proves the claim.

C.4 Proof of Theorem 3.6

Consider the map ψ : X → Rm that embeds G in m dimensions and letH be the class of halfspaces
in Rm. We want to bound the bracketing number of G by that of H. Let B(H) = {[hi, hi]}i be
an ε-bracketing for H with respect to a measure µ that we will specify later. Consider the set of
brackets B′ = {[hi ◦ ψ, hi ◦ ψ] | for all [hi, h

i] ∈ B(H)}. We first argue that B′ is a bracketing
for G with respect to ν. To see this, note that any g ∈ G can be expressed as g = h ◦ ψ for some
halfspace h. Considering the bracket [hi, h

i] 3 h in B(H). Note that hi ◦ ψ � h ◦ ψ � hi ◦ ψ and
thus g ∈ [hi ◦ ψ, hi ◦ ψ]. We next argue that these are ε-brackets under measure ν. Let µ be the
measure such that to sample z ∼ µ we first sample x ∼ ν and let z = ψ (x). Note that

Pr
x∼ν

[
hi (ψ (x)) 6= hi (ψ (x))

]
= Pr
z∼µ

[
hi (z) 6= hi (z)

]
≤ ε,

where the last transition is by the fact that B(H) is an ε-bracketing for H with respect to µ. This
concludes that B′ is an ε-bracketing for G with respect to ν. We complete the proof by using
Theorem 3.4 to bound |B′| = |B(H)| ≤ (m/ε)O(m).

C.5 Proof of Theorem 3.7

We first consider the case of k = 2 and then extend our argument to general k. Let ε′ = ε/k and let
B(F1) and B(F2) be ε′-bracketings for F1 and F2, respectively.

For F1 · F2, construct B = {[f` ∩ g`, fu ∩ gu] | for all [f`, f
u] ∈ B(F1) and [g`, g

u] ∈ B(F2)}.
First note for any f1 ∈ F1 and f2 ∈ F2, f1 ∩ f2 is included in one of these brackets. In par-
ticular, for brackets [f`, f

u] 3 f1 and [g`, g
u] 3 f2, we have that f` ∩ g` � f1 ∩ f2 � fu ∩ gu and

[f` ∩ g`, fu ∩ gu] ∈ B. Furthermore,

Pr
x∼µ

[(f`(x) ∩ g`(x)) 6= (fu(x) ∩ gu(x))] ≤ Pr
x∼µ

[(f`(x) ∩ g`(x)) 6= (f`(x) ∩ gu(x))]

+ Pr
x∼µ

[(f`(x) ∩ gu(x)) 6= (fu(x) ∩ gu(x))]

≤ 2ε′.

Therefore, B is a 2ε′-bracketing for F1 · F2 of size N[ ](F1, µ, ε
′) · N[ ](F2, µ, ε

′). Repeating this
inductively and using ε′ = ε/k, we get the claim for k classes.
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Similarly, forF1+F2, constructB = {[f` ∪ g`, fu ∪ gu] | for all [f`, f
u] ∈ B(F1) and [g`, g

u] ∈ B(F2)}.
First note for any f1 ∈ F and f2 ∈ F1 and their respective brackets [f`, f

u] 3 f1 and [g`, g
u] 3 f2,

we have that f` ∪ g` � f1 ∪ f2 � fu ∪ gu and [f` ∪ g`, fu ∪ gu] ∈ B. Furthermore,

Pr
x∼µ

[(f`(x) ∪ g`(x)) 6= (fu(x) ∪ gu(x))] ≤ Pr
x∼µ

[f` (x) 6= fu (x)] + Pr
x∼µ

[g` (x) 6= gu (x)]

≤ 2ε′.

Therefore, B is a 2ε′-bracketing for F1 + F2 of size N[ ](F1, µ, ε
′) · N[ ](F2, µ, ε

′). Repeating this
inductively and using ε′ = ε/k, we get the claim for k classes.

As for the G, the set of all symmetric differences, note that f1∆f2 = (f1 ∪ f2) \ (f1 ∩ f2) =

(f1 ∪ f2) ∩ (f1 ∩ f2). Furthermore, for any class F , the class F = {f | ∀f ∈ F} has the same
bracketing number as F . Therefore, the bracketing number of G follows from using the bracketing
number F + F , F + F , and their intersection.

C.6 Proof of Corollary 3.8

The set of polynomial threshold functions in n variables and of degree d is embeddable as halfspaces
in O(nd) dimensions using the map

φ (x1, . . . , xn) =

(∏
i∈S

xi

)
S∈{1,...,n}≤d

,

which maps variables to all monomial of degree d. It can be seen that the number of monomials of
degree at most d in n variables is given by

(
n+d+1
d+1

)
which is approximately O

(
nd
)

when d is small.
Combining Theorem 3.6 and Theorem 3.4 completes the proof for polynomial threshold functions.

A k-polytope in Rn is an intersection of k-halfspaces in Rn. Combining Theorem 3.7 and Theorem 3.4
completes the proof.

D More Details on Bracketing Number and Sign Rank

Though bracketing numbers are a fundamental concept in statistics, until recently their connection
to VC theory was not well understood. Adams and Nobel [2010, 2012] show that for countable
(can be generalized to classes that are well approximated by countable classes) classes with finite
VC dimension the bracketing numbers with respect to any measure is finite (this establishes what is
known as a universal Gilvenko–Cantelli theorem under ergodic sampling.)

Theorem D.1 (Finite Bracketing Bounds for VC Classes). Let C be a countable class with finite VC
dimension. Then, N[ ](C, µ, ε) <∞.

Though the above theorem proves that ε-bracketing numbers are finite, their growth rate in 1/ε can be
arbitrarily large. See van Handel [2013] for some interesting examples of classes where the bracketing
numbers grow arbitrarily fast.

Another combinatorial quantity that can help bound the regret in presence of adaptive smooth
adversaries is sign rank.

Definition D.2 (Sign Rank). Let X be an instance space and let F be a class. We can denote the
class naturally as {−1, 1}-valued X × F matrix MF where the entry corresponding to (x, f) is
f (x). The sign rank of a class is the highest rank of a real matrix that agrees with a finite submatrix
of MF in sign. If this is unbounded, the class is said to have infinite sign rank.

The sign rank of a class captures the dimension in which the class can be embedded as thresholds.

Fact D.3 (Sign Rank Embedding, see e.g. Lokam [2009]). The sign rank of a class corresponds to
the smallest dimension d that the class can be embedded as thresholds.

Theorem 3.6 effectively says that classes with small sign rank have a slowly growing bracketing
numbers and thus have low regret in the smoothed online learning setting. Thus, the complexity of
smoothed online learning lies somewhere in between the sign rank and VC dimension. On the other
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hand, it is known that even classes with small VC dimension can have arbitrarily large sign rank
[Alon et al., 1987, Ben-David et al., 2003, Alon et al., 2016]. An intermediate question is whether
classes with slow growing bracketing number also have good sign rank. It would be interesting to
characterize the complexity of smoothed online learning in terms of either the sign rank or bracketing
numbers.

E Query Answering

E.1 Smooth MWEM Algorithm

Algorithm 2: Smooth Multiplicative Weights Exponential Mechanism
Input: Universe X with |X | = N , Data set B with n records, Query set Q, Privacy parameters

ε and δ, Smoothness parameter σ.

Let D0 (x) = 1/N for all x ∈ X .
Cover Construction: Compute Q′ ⊆ Q that is a γ-cover of Q with respect to the uniform

distribution for γ = σ
2n .

for i = 1 . . . T do
Exponential Mechanism: Sample qi ∈ Q′ according to the exponential mechanism with

parameter ε/2T and score function

si(DB , q) = n |q (Di−1)− q(DB)| .

Laplace Mechanism: Let mi = qi (DB) + 1
nLap (2T/ε) .

Multiplicative Update: Update Di−1 using the rule

Di (x) ∝ Di−1 (x) exp

(
qi (x) (mi − qi(Di−1))

2

)
.

end
Let D = 1

T

∑T
i=1Di.

Output: For each q ∈ Q, answer with vq = q′
(
D
)

where q′ is the closest function in Q′ to q.

E.2 Proof of Theorem 4.2

In this section we prove the following theorem.

Theorem 4.2 (restated). For any (σ, 0)-smooth dataset B of size n, a query class Q with VC
dimension d, T ∈ N and ε > 0, Smooth Multiplicative Weights Exponential Mechanism is ε-
differentially private and with probability at least 1− 2T (γ/41)

VCDim(Q), calculates values vq for
all q ∈ Q such that

max
q∈Q
{|vq − q (DB)|} ≤ 1

n
+ 2

√
log (1/σ)

T
+

10Td log (2n/σ)

εn
.

Let us first provide a few useful lemmas.

Lemma E.1 (Cover under Smoothness). Let B be (σ, 0)-smooth data set. Let Q′ ⊆ Q be a γ-cover
ofQ under the uniform distribution. For a q ∈ Q, let q′ ∈ Q be such that Prx∼U [q (x) 6= q′ (x)] ≤ γ.
Then,

|q (DB)− q′ (DB)| ≤ 2γ

σ
.

Proof. From the (σ, 0)-smoothness of B, we get

|q (DB)− q′ (DB)| =
∣∣q (DB)− q′ (DB)∣∣
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≤
∑
x∈D
|(q (x)− q′ (x))| DB(x)

≤
∑
x∈X

2I (q(x) 6= q′ (x))DB(x)

≤ 2

σ

∑
x∈X

I (q(x) 6= q′ (x))U (x)

≤ 2

σ
Pr
x∼U

[q (x) 6= q′ (x)]

≤ 2γ

σ

as required.

Define the potential function Ψi =
∑
x∈X DB(x) log

(
DB(x)/Di(x)

)
, whereDB is a corresponding

σ-smooth distribution that matches the query answers for the (σ, 0)-smooth data set B. Here we
make a few observations about the potential function.
Fact E.2. For all i ≤ T , we have Ψi ≥ 0. Furthermore, Ψ0 ≤ log 1

σ . As a result, Ψ0−ΨT ≤ log 1
σ .

Proof. The first claim follows from the positivity of the KL divergence. For the second one, recall
that from the σ-smoothness ofDB and the fact thatD1 is the uniform distribution, we haveDB (x) ≤
σ−1D0 (x) for all x ∈ X .

Ψ0 =
∑
x∈X
DB (x) log

DB (x)

D0 (x)
≤
∑
x∈X
DB (x) log

1

σ
= log

1

σ

as required.

Below is a direct adaptation of a result of Hardt et al. [2012] for bounding the change in the potential
functions.
Lemma E.3 (Lemma A.4 in Hardt et al. [2012]).

Ψi−1 −Ψi ≥
(
qi (Di−1)− qi(DB)

2

)2

−
(
mi − qi(DB)

2

)2

.

Lemma E.4 (Exponential and Laplace Mechanism guarantees). With probability at least 1− 2T/|Q′|,
we have

|qi (Di−1)− qi (DB)| ≥ max
q′∈Q′

{q′ (Di)− q′ (DB)} − 8T log |Q′|
εn

and

|mi − qi (DB)| ≤ 2T log |Q′|
εn

.

Here we recall again the error guarantees from Hardt et al. [2012].
Theorem E.5 (Hardt et al. [2012]). For any data set B of size n, a finite query class Q, T ∈ N
and ε > 0, MWEM is ε-differentially private and with probability at least 1 − 2T/|Q| produces a
distribution D over X such that

max
q∈Q

{∣∣q (D)− q (DB)
∣∣} ≤ 2

√
log |X |
T

+
10T log |Q|

εn
.

Proof of Theorem 4.2. Our proof closely resembles that of Theorem E.5 from Hardt et al. [2012].
Note that since B is (σ, 0)-smooth, we have a σ-smooth distribution DB with DB (x) ≤ 1

σN such
that for all q ∈ Q, q (DB) = q

(
DB
)
. Furthermore, note that we chose a cover Q′ ⊆ Q. Therefore,

q′ (DB) = q′
(
DB
)

holds for all q′ ∈ Q′ as well.
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Note that since q′ (DB) = q′
(
DB
)

for all q′ ∈ Q′, we can replace this in the above equation. For the
sake of completeness, we sketch the rest of the proof. From Jensen’s inequality, we have

max
q′∈Q′

∣∣q′ (D)− q′ (DB)
∣∣ ≤ 1

T

T∑
i=1

max
q′∈Q′

|q′ (Di)− q′ (DB)|. (7)

From Lemma E.4 and Lemma E.3, we get that with probability at least 1− 2T/|Q′|, we get

Ψi−1 −Ψi ≥

maxq′∈Q′ {q′ (Di)− q′ (DB)} − 8T log |Q′|
εn

2

2

−
(
T log |Q|

εn

)2

.

Rearranging this and taking the average, we get

1

T

T∑
i=1

max
q′∈Q′

|q′ (Di)− q′ (DB)| ≤ 1

T

T∑
i=1

√4 (Ψi−1 −Ψi) +
4T 2 log2 |Q′|

n2ε2
+

8T log |Q′|
nε

 .
Applying the concavity of the square root function i.e., 1

T

∑T
i=1(xi)

1/2 ≤
(

1
T

∑T
i=1 xi

)1/2
,

1

T

T∑
i=1

max
q∈Q′

|q′ (Di)− q′ (DB)| ≤

√√√√ T∑
i=1

4 (Ψi−1 −Ψi)

T
+

4T 2 log2 |Q′|
n2ε2

+
8T log |Q′|

nε

≤

√
4 (Ψ0 −ΨT )

T
+

4T 2 log2 |Q′|
n2ε2

+
8T log |Q′|

nε

≤

√
4 log

(
1
σ

)
T

+
4T 2 log2 |Q′|

n2ε2
+

8T log |Q′|
nε

≤ 2

√
log
(
1
σ

)
T

+
10T log |Q′|

nε
.

The second inequality follows by summing the telescoping series. The third follows from Fact
E.2. The last equation follows from the fact that

√
x+ y ≤

√
x +
√
y for all positive x, y. Using

Equation 7 and the fact that |Q|′ ≤ (41/γ)
d we have

max
q′∈Q′

∣∣q′ (D)− q′ (DB)
∣∣ ≤ 2

√
log (1/σ)

T
+

10Td log (2n/σ)

εn
.

Let vq = q′(D) for q′ ∈ Q′ that is the closest hypothesis to q with respect to the uniform distribution.
Then

|q (DB)− vq| =
∣∣q (DB)− q′ (DB) + q′ (DB)− q′

(
D
)∣∣

≤ |q (DB)− q′ (DB)|+
∣∣q′ (DB)− q′

(
D
)∣∣

≤ 2γ

σ
+ 2

√
log 1/σ

T
+

10Td log (41/γ)

εn
.

Setting γ = σ
4n , we get the desired result.

Setting T = ε2/3n2/3 log1/3 (1/σ) d−2/3 log−2/3(2n/σ), we get (ε, 0) differential privacy with

max
q∈Q
{|vq − q (DB)|} ≤ O

(
3

√
d log (1/σ) log (2n/σ)

nε

)
.

Also, as noted in Hardt et al. [2012], one can use adaptive k-fold composition (see e.g. Dwork and
Roth [2014]) to get (ε, δ)-differential privacy with

max
q∈Q
{|vq − q (DB)|} ≤ O

(√
d

εn
log

1
2

(
1

σ

)
log
(n
σ

)
log

(
1

δ

))
.

21



E.3 Running Time of the Algorithm

The running time of the algorithm is similar to the running time of the MWEM algorithm of Hardt et al.
[2012]. The main additional step is the construction of the cover Q′. Similar to Appendix C.1 , this
cover can be constructed in timeO (|Q′|). The exponential mechanism requiresO

(
n|Q|′

)
to evaluate

all the queries on the cover and time O
(
|Q|′|X |

)
to execute each iteration of the algorithm. Recall

that |Q′| ≤ (41n/σ)
d, thus the running time is bounded by O

(
n (41n/σ)

d
+ T (41n/σ)

d |X |
)
.

This runtime can also be improved using several theoretical tricks, e.g., q(Di) can be approximated
by taking random points from Di in time that is independent of X .

Note that the runtime of our algorithm improves upon the runtime of MWEM by using smaller
query sets. As noted in Hardt et al. [2012], their algorithm is amenable to many optimizations and
modifications that make it very fast and practical Hardt et al. [2012].

F Data Release

F.1 Projected Smooth MWEM Algorithm

Algorithm 3: Projected Smooth Multiplicative Weight Exponential Mechanism
Input: Universe X with |X | = N , Data set B with n records, Query set Q, Privacy parameters ε

and δ, Smoothness parameter σ.

Let D0 (x) = 1/N for all x ∈ X .
Cover Construction: Compute Q′ ⊆ Q that is a γ-cover of Q with respect to the uniform

distribution for γ = σ
2n .

for i = 1 . . . T do
Exponential Mechanism: Sample qi ∈ Q′ according to the exponential mechanism with

parameter ε/2T and score function

si(DB , q) = n |q (Di−1)− q(DB)| .

Laplace Mechanism: Let mi = qi (DB) + 1
nLap (2T/ε) .

Multiplicative Update: Update Di−1 using the rule

D̃i (x) ∝ Di−1 (x) exp

(
qi (x) (mi − qi(Di−1))

2

)
.

KL Projection: Project D̃i onto the polytope K =
{
z : zi ≥ 0,

N∑
i=1

zi = 1, zi ≤ 1
σN

}
of

smooth distributions:
Di = argmin

D∈K
DKL(D‖D̃i)

end
Let D = 1

T

∑T
i=1Di.

Output: Distribution D.

F.2 Proof of Theorem 4.3

As before, let DB be a corresponding σ-smooth distribution that matches the query answers
for the (σ, 0)-smooth data set B. Define Ψi =

∑
x∈X DB(x) log

(
DB(x)/Di(x)

)
and Ψ̃i =∑

x∈X DB(x) log
(
DB(x)/D̃i(x)

)
as the intermediate potential. From Lemma E.3, we know

Ψi−1 − Ψ̃i ≥
(
qi (Di−1)− qi(DB)

2

)2

−
(
mi − qi(DB)

2

)2

.
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Using the properties of relative entropy, we show the following claim.

Claim F.1. For every i ≤ T , we have Ψ̃i ≥ Ψi.

Proof. The claim follows from the following fact about the KL divergence. Let

Di = argmin
D∈K

DKL(D‖D̃i)

for some convex set K. Then, for DB ∈ K,

DKL(DB‖D̃i ) ≥ DKL

(
DB‖Di

)
+ DKL

(
Di‖D̃i

)
.

The claim follows by Ψ̃i = DKL(DB‖D̃i ), Ψi = DKL (DB‖Di) and DKL

(
Di‖D̃i

)
≥ 0.

Together this gives

Ψi−1 −Ψi ≥
(
qi (Di−1)− qi(DB)

2

)2

−
(
mi − qi(DB)

2

)2

.

The remainder of the analysis follows that of Theorem 4.2. Note that we have D is σ-smooth since
each Di ∈ K and K is a convex set. By Lemma E.1, we have

∣∣q′ (D)− q (D)∣∣ ≤ 2γ/σ. Thus,

∣∣q (DB)− q
(
D
)∣∣ =

∣∣q (DB)− q′ (DB) + q′ (DB)− q′
(
D
)

+ q′
(
D
)
− q

(
D
)∣∣

≤ |q (DB)− q′ (DB)|+
∣∣q′ (DB)− q′

(
D
)∣∣+

∣∣q′ (D)− q (D)∣∣
≤ 4γ

σ
+ 2

√
log 1/σ

T
+

10Td log (41/γ)

εn
.

Setting γ = σ/4n, we get

∣∣q (DB)− q
(
D
)∣∣ =

1

n
+ 2

√
log (1/σ)

T
+

10Td log (4n/σ)

εn
.

F.3 Running Time of Projected Smooth Multiplicative Weights Exponential Mechanism

The running time is similar to the running time Smooth Multiplicative Weights Exponential Mech-
anism,with the additional projection step in each step. Note that the projection in each step is
a convex program and can be solved in time poly (|X |). This gives us a total running time of
O
(
n (41n/σ)

d
+ T (41n/σ)

d |X |+ Tpoly(|X |)
)
.

In addition to the improvements discussed in the previous sections, the projection step can be
performed faster by taking an approximate Bregman projection as considered by Barak et al. [2009].
Incorporating this into our algorithm would lead to significant speed ups.
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G Smooth Data Release using SmallDB Algorithm

In this section„ we look at a different algorithm to get differential privacy when dealing with (σ, χ)-
smooth data sets. Our algorithm displayed below uses several pieces that have been introduced by
Blum et al. [2008] and Hardt and Rothblum [2010].

Algorithm 4: Subsampled Net Mechanism
Input: Database B of size n, Query set Q, Privacy parameter ε, Subsampling parameter M ,

Accuracy parameter γ.
Sample (with replacement) a subset V of size M from X .
Sample B′ from amongst all data sets supported on V of size

O

(
d

γ2

)
with probability proportional to

exp

(
−ε · n · s (DB′ ,DB)

2

)
where s (DB′ ,DB) = maxq∈Q |q(DB)− q(DB′)|.

Output: Database B′

First, we analyze the privacy of this algorithm.
Theorem G.1. The Subsampled Net Mechanism is (ε, 0) differentially private.

Proof. The privacy claim follows from the privacy of the exponential mechanism.

Next we bound the error of this mechanism. Let us recall the standard uniform convergence bound.
Fact G.2 (Uniform Convergence for VC Classes, see e.g. Shalev-Shwartz and Ben-David [2014]).
Let X be the domain,Q be a class of queries over X with VC dimension d and let D be a distribution.
LetD′ be a distribution gotten by samplingO

(
(log(2/η) + d)/γ2

)
items iid fromD and normalizing

the frequencies. Then, with probability 1− η, for all q ∈ Q, |q(D′)− q(D)| ≤ γ.

In the following, we use the above fact to show that a randomly sampled subset of the universe
approximates a (σ, χ)-smooth database. The proof largely follows the domain reduction lemma
of Hardt and Rothblum [2010] that achieve a similar bond by with a dependence on log(|Q|). We
include this proof for completeness.
Lemma G.3. Let X be a data universe and Q a collection of queries over X with VC dimension d
and D be (σ, χ)-smooth with respect to Q. Let V ⊂ X of size M be sampled from X at random with
replacement with

M = O

(
log (1/η) + d

σγ2

)
.

Then, with probability 1− η, there exists a D′ on V such that for all q ∈ Q

|q (D)− q (D′)| ≤ χ+ γ.

Proof. Let D1 be σ-smooth distribution that witnesses the (σ, χ)-smoothness of D. If we could
sample from D1, we would be done from Fact G.2. But we want to get a subset that is oblivious to
the distribution D. To achieve this, we use the smoothness of D1.

The idea is to sample from D1 using rejection sampling. Since D1 is σ-smooth, the following
procedure produces samples from D1: sample from the uniform distribution and accept sample u
with probability σND1 (u). Note that accepted samples are distributed according to D1. We repeat
this process until O

(
(log(2/η) + d)/γ2

)
samples are accepted. Since the accepted samples are

distributed according to D1, from Fact G.2, there is a distribution D2 supported on the accepted
samples such that with probability at least 1− η/2 for all q ∈ Q,

|q (D2)− q (D)| ≤ χ+ γ.
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Let S1 be the coordinates corresponding to the accepted samples and S2 be the coordinates cor-
responding to the rejected ones. The key observation is that S = S1 ∪ S2 is subset generated by
sampling from the uniform distribution and has a distribution supported on it that approximates D.
So, it suffices to bound the size of S. The probability that a given sample gets accepted is∑

x∈X

D1 (x)Nσ

N
= σ.

Thus the expected number of samples needed in the rejection sampling procedure is M =

O
(

log(2/η)+d
σγ2

)
. Using a Chernoff bound, we can bound the probability that this is greater than its

mean by a factor of 4 by
e−M ≤ η

2
where we used that fact that M ≥ log (2/η) .

We are finally ready to prove our theorem.
Theorem G.4. For any data set B that is (σ, χ)-smooth with respect to a set of queries Q of VC
dimension d, the output D′′ of the Subsampled Net Mechanism satisfies that with probability 1− η,
for all q ∈ Q

|q (DB)− q (D′′)| ≤ χ+ Õ

(
3

√
d log (1/σ) + log (1/η)

εn

)

Proof. Consider a subset V sampled with size M = O
(

log(1/η1)+d
σγ2

)
where η1 and γ are parameters

we will set later. From Lemma G.3, with probability 1− η1 we have that there exists a distribution
D′ supported on V such that for all q ∈ Q

|q(D′)− q(DB)| ≤ χ+ γ.

Let us work conditioned on this event. Let A denote the set of all data sets supported on V and let
C denote all data sets supported on V with size O

(
dγ−2

)
. From Fact G.2, for any distribution D1

supported on V , there is a data set in C whose distribution D2 satisfies

|q (D1)− q (D2)| ≤ γ.

We recall the guarantees of the exponential mechanism (see e.g. Dwork and Roth [2014]): Let B′′ be
the data base output by the exponential mechanism. Then,

Pr

[
s (DB′′ ,DB) ≥ min

B1∈C
s (DB1 ,DB)− 2

εn
(log |C|+ t)

]
≤ e−t,

where s (DB ,DB′) = maxq∈Q |q(DB)− q(DB′)|. Note that log |C| ≤ MO(dγ−2). Thus, with
probability 1− η2,

s (DB′′ ,DB) ≥ min
B1∈C

s (DB1
,DB)− γ

for

γ ≥ 4

εn
log

MO(dγ−2)

η2
.

Since, minB1∈C s (DB1
,DB) ≤ χ+ 2γ, setting η1 = η2 = η/2 and solving for γ, we get

γ = Õ

(
3

√
d log (1/σ) + log (1/η)

εn

)
as required.

G.1 Running Time of Subsampled Net Mechanism

The running time of the algorithm involves first sampling M elements uniformly from the domain
which takes timeO (M log |X |). Each query needs to be evaluated on the data setB which takes time
n|Q|. Evaluating and sampling from all data bases as required by the exponential mechanism naively
takes time MO(dγ−2). As discussed earlier, this can be sped up using sampling for approximation.

25


	Introduction
	Preliminaries
	Regret Bounds for Smoothed Adaptive and Non-Adaptive Adversaries
	Regret Analysis and the Connection to Bracketing Number
	Hypothesis Classes with Small Bracketing Numbers.

	Differential Privacy
	Conclusions and Open Problems
	Additional Related Work
	Lack of Uniform Convergence with Adaptive Adversaries
	Proofs from [sec:regret-prelim]Section 3
	Algorithm and its Running Time
	Proof of [lem:union-ada]Lemma 3.2
	Proof of Theorem 3.3 
	Proof of Theorem 3.6
	Proof of Theorem 3.7
	Proof of [cor:bnumber]Corollary 3.8

	More Details on Bracketing Number and Sign Rank
	Query Answering
	Smooth MWEM Algorithm
	Proof of Theorem 4.2
	Running Time of the Algorithm

	Data Release
	Projected Smooth MWEM Algorithm
	Proof of Theorem 4.3
	Running Time of [alg:DataRelease]Projected Smooth Multiplicative Weights Exponential Mechanism

	Smooth Data Release using SmallDB Algorithm
	Running Time of [alg:SubNetMech]Subsampled Net Mechanism


