
First, we would like to thank the reviewers for their well thought out and detailed feedback on our work.1

Reviewer 1: (a) We acknowledge the importance of improving the accessibility of our work to the machine learning2

community and thus we will include an explanatory figure (in Section 3) along with background on the Erdős3

probabilistic method and the method of conditional expectation. (b) In terms of correctness, both the statement of4

theorem 1 and the direction of the inequality at line 168 will be updated accordingly for the final version of the paper.5

Again, we thank the reviewer for pointing out those mistakes.6

Reviewer 2: (a) We decided to focus our attention on two problems that have different types of constraints to illustrate7

the flexibility of our approach. As discussed in Sec. 6, certain constraints would be more complicated to handle, e.g.,8

imposing a tree or path structure on the solutions. We agree that solving more problems is essential to demonstrate the9

generality of our framework and it is one of our current priorities with extending this work. (b) Regarding scalability,10

indeed GNNs can be computationally expensive in practice. However, this is an active field of research and recent11

works indicate that it is possible to scale GNN training to millions of nodes [Bojchevski et al., 2020, Rossi et al., 2020].12

Another appealing possibility is that of “emergent generalization” as it has been described by Joshi et al. [2019]. That is,13

a GNN trained on smaller instances of a problem could be trained to perform well on larger instances at test time. We14

are optimistic that such engineering and conceptual developments in the field of GNNs will yield practically efficient15

methods over time. (c) Regarding our GNN architecture and tuning, our decisions follow standard conventions in16

the field: batch and graph size normalization as well as skip connections have been shown to improve performance.17

Furthermore, our use of GIN and GAT was based on their prominence in the GNN literature as experimentally successful18

modules. These observations and more interesting practical details about GNNs can be found in the work by Dwivedi19

et al. [2020]. (d) Regarding the lines 277-278 where we discuss solver scaling, we have indeed used the default Gurobi20

settings (MIPFocus=0) and therefore our statement will be adjusted to reflect that.21

Reviewer 3: (a) The reviewer’s summary is largely accurate, however, we would like to emphasize that our solutions22

are obtained through the method of conditional expectation instead of sampling. (b) We recognize that the loss needs23

to be derived for each particular problem. At the same time, the probabilistic penalty formulation allows for a rather24

general and principled way of constructing loss functions for CO problems. (c) We would also remark that the loss25

functions that we have derived are not generally convex/concave, and that neural-networks/SGD have been successful26

at providing solutions to problems with non-convex objectives. Ultimately, our view is that the ability of our method27

to yield good solutions will largely depend on how well the neural network will minimize the loss. This, in turn, will28

depend on how well the neural networks’ inductive biases match the problem constraints. Finally, in practice we29

have observed that, if the architecture can minimize the loss efficiently, then it can also be carefully tuned to do so30

consistently regardless of the weight initialization (i.e., with different random seeds).31

Reviewer 4: (a) It is indeed the case that for larger clique instances the greedy method is more efficient. Greedy methods32

strike a nice balance between accuracy and speed. Yet, on the real world datasets it is clear that the greedy methods33

are inferior when it comes to accuracy. The main reason why the greedy algorithm outperforms the neural methods34

on the hard instance dataset (RB) is the time budget limitation that we have imposed in order to have comparable35

time costs for all the methods. Given a sufficiently large time budget, both our method and RUN-CSP can match36

the accuracy of the greedy heuristic (some experiments along those lines an be found in the paper by Toenshoff et al.37

[2019]). Additionally, the use of a suitable greedy heuristic necessitates expert knowledge, which is something a neural38

approach would circumvent by fitting the data distribution. (b) For partitioning, our method is slower than the smooth39

relaxations that we compare against, but consistently achieves superior accuracy. In addition, as it can be seen in Table40

5 of the supplementary material, smooth relaxations generally struggle to yield solutions that obey more complicated41

constraints, as it is the case in the maximum clique problem. The advantage of our approach is that it can consistently42

satisfy constraints while also achieving good performance. Currently, our sequential decoding module induces the43

largest computational overhead, although the number of loss function evaluations is still linear on the number of nodes44

in the worst case. Improving the runtime of our decoding module is a subject we are actively investigating.45
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