
Introducing Routing Uncertainty
in Capsule Networks

Fabio De Sousa Ribeiro∇ Georgios Leontidis† Stefanos Kollias∇

∇ Machine Learning Group
University of Lincoln, UK

{fdesousaribeiro,skollias}@lincoln.ac.uk

† Department of Computing Science
University of Aberdeen, UK

georgios.leontidis@abdn.ac.uk

Abstract

Rather than performing inefficient local iterative routing between adjacent capsule
layers, we propose an alternative global view based on representing the inherent un-
certainty in part-object assignment. In our formulation, the local routing iterations
are replaced with variational inference of part-object connections in a probabilistic
capsule network, leading to a significant speedup without sacrificing performance.
In this way, global context is also considered when routing capsules by introducing
global latent variables that have direct influence on the objective function, and
are updated discriminatively in accordance with the minimum description length
(MDL) principle. We focus on enhancing capsule network properties, and perform a
thorough evaluation on pose-aware tasks, observing improvements in performance
over previous approaches whilst being more computationally efficient.

1 Introduction

Although capsule networks (CapsNets) have taken on a few different forms since their inception [1,
2, 3, 4], they are generally built upon the following core assumptions and premises:

(i) Capturing equivariance w.r.t. viewpoints in neural activities, and invariance in the weights;
(ii) High-dimensional coincidences are effective feature detectors;

(iii) Viewpoint changes have nonlinear effects on pixels, but linear effects on object relationships;
(iv) Object parts belong to a single object, and each location contains at most a single object.

In theory, a perfect instantiation of the above premises could yield more sample efficient models, that
leverage robust representations to better generalise to unseen cases. Unlike current methods, humans
can extrapolate object appearance to novel viewpoints after a single observation. Evidence suggests
that this is because we impose coordinate frames on objects [5, 6]. Capsules imitate this concept by
representing neural activities as poses of objects w.r.t. a coordinate frame imposed by an observer,
and attempt to disentangle salient features of objects into their composing parts. This is reminiscent
of inverse graphics [7], but is not explicitly enforced in capsule formulations since the learned pose
matrices are not constrained to interpretable geometric forms. Another argument for CapsNets, is one
that views capsules as an extension to the very successful inductive biases already present in CNNs,
by wiring in some additional complexity to deal with viewpoint changes. One of the desired effects is
to align the learned representations with those perceptually consistent with humans, which would also
make adversarial examples less effective [8]. The additional complexity comes from replacing scalar
neurons with vector valued neural activities, along with a high-dimensional coincidence filtering
algorithm to detect capsule level features, known as capsule routing [2, 3]. This procedure is typically
iterative, local and inefficient which has prompted further research on the topic [9, 10, 11, 12, 13].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

1.1 Motivation & Contribution

Weaknesses of Capsule Networks. The memory bottleneck incurred by vector valued activations
in addition to the iterative nature of capsule routing algorithms results in inefficient models. They are
also prone to underfitting or overfitting if the number of routing iterations isn’t properly set [2, 3].
To address the above weaknesses one may decide to naively replace the iterative nature of capsule
routing with some faster alternative. However, to stay true to the premises of CapsNets, we argue that
the four following points are of paramount importance for the research community to consider, when
proposing algorithmic variants of CapsNets or capsule routing going forward:

(i) Whether viewpoint-invariance and affine transformation robustness properties are retained;
(ii) Changes in assumptions about part-object relationships are made explicit;

(iii) Whether capsules are still activated based on high-dimensional coincidences;
(iv) How do we handle the intrinsic uncertainty in assembling parts into objects.

Changes in the core assumptions of CapsNets aren’t always made clear in recent literature, but emerge
incidentally via the proposed modifications. This leads to ambiguities regarding what qualifies as a
capsule network, which can make comparisons between methods more difficult and hinder progress.
In this paper, we focus on the core premises of capsule networks, and on enhancing their advantages
over CNNs: viewpoint-invariance, and affine transformation robustness whilst being more efficient.

Contribution. Rather than performing local iterative routing between adjacent capsule layers which
is inefficient, we propose an alternative global view based on representing the inherent uncertainty
in part-object relationships, by approximating a posterior distribution over part-object connections.
Sources of uncertainty in assembling objects via a composition of parts can arise from numerous
sources, such as: (i) feature occlusions due to observed viewpoints; (ii) sensory noise in captured
data; (iii) object symmetries for which poses may be ambiguous such as spherical objects/parts.

In our formulation, the local routing iterations are replaced with variational inference of part-object
connections in a probabilistic capsule network, leading to a significant speedup (Figure 4). In this way,
we encourage global context to be taken into account when routing information, by introducing global
latent variables which have direct influence on the objective function, and are updated discriminatively
in accordance with the minimum description length (MDL) principle [14, 15]. Our experiments
demonstrate that local iterative routing can be replaced by variational posterior inference of part-
object connections in a global context setting, allowing the model to leverage the inherent uncertainty
in assembling objects as a composition of parts to improve performance on pose-aware tasks.

2 Background: Capsule Networks

Capsules. A capsule c is a set of neurons c = fa;Mg. Each capsule is composed of either a vector
m 2 Rd or matrix M 2 R

√
d×
√
d of neurons, and an activation probability a. A single capsule

is wired to represent a single entity, and its vector/matrix may learn to encode its pose w.r.t the
coordinate frame imposed by an observer. The activation a simply represents an entity’s presence.
A capsule network is composed of two or more capsule layers, with multiple capsules N in each
layer. Capsule routing takes place between adjacent capsule layers, i.e. Ni capsules in a lower layer
‘i are routed to Nj capsules in a higher layer ‘j , which can be seen as a form of cluster finding.
Contextually, capsules in ‘i are referred to as parts of objects (datapoints), and capsules in ‘j are
objects (clusters). Each part capsule uses its relationship to the viewer (pose), to posit a vote for what
the pose of the object it is part of should be. To achieve this, part capsule poses Mi are multiplied
with trainable viewpoint-invariant, affine transformation weight matrices:

Vj|i =
n

Mi �Wij j 8ci 2 ‘i ; 8cj 2 ‘j
o
; Wij 2 R

√
d×
√
d: (1)

where Vj|i denotes the ith part capsule vote for the jth object capsule pose, and Wij are the weights,

Inducing Nonlinearity. Capsule poses M are not directly activated via nonlinear mappings but are
compositions of affine/projective linear transformations, that increase in complexity as we traverse
through the network. Nonlinearity is induced by the choice of routing algorithm [2, 3], and the vote
agreement measure used in calculating the activation probability aj for each capsule cj 2 ‘j .

2

Figure 1: Our inference procedure in a given capsule layer (Left). Small example of part-object
connections in convolutional voting fork = 2 , drawn randomly from Dirichlet distributions (Right).

3 Uncertainty in Capsule Routing

Let D denote a set of data given asm pairsf x i ; yi gm
i =1 , wherex i 2 Rd denotes a datapoint, and

yi 2 f 1; : : : ; K g its corresponding label. Letz denote some latent variables associated with our
observations(x; y), that capture underlying structure in our dataD and help govern its distribution.

3.1 De�ning Part-Object Connections

Dense & Convolutional Voting. In densecapsule voting, all part capsules are connected to all
object capsules in the layer above. That is, each part capsuleci 2 ` i votesN j times, therefore each
object capsulecj 2 ` j receivesN i votes. The part-object connections are thenz` i ;` j 2 RN i � N j .
Alternatively, in a convolutional capsule layer with kernel sizek and strides, the number of object
capsules that each part capsuleci can vote forN i ! j , is bounded above and below by

0 � N i ! j � t j �
�

k
s

� 2

; and z(i)
` i ;` j

2 RN i ! j 8ci 2 ` i ; (2)

whered�edenotes the ceiling function, andt j denotes the number of output object capsule types,
which are analogous to output channels in CNNs. Importantly, part capsules on the edge of feature
maps vote for fewer objects than those in the middle (Figure 1), a fact which is very often overlooked
in capsule research, leading to improper normalisation over objects and competition between capsules.

Stochastic Variational Inference. To represent our uncertainty about part-object relationships in
a CapsNet, we look to approximate the (intractable) posterior distributionp(zjD) over part-object
connectionsz, with a chosen parameterised distributionq� (zjD) � p(zjD) via variational inference
(VI). In general,q� (zjD) is optimised by updating the parameters� such that the Kullback-Leibler
(KL) divergenceDKL (q� (zjD) jj p(zjD)) is minimised [15, 16, 17]. Next, we discuss and consider
the inference ofq� (zjD) under two main modelling paradigms:generativeanddiscriminative.

Generative. Under generative frameworks, a set oflocal latent variablesz in models of the form
p� (x ; z) = p� (x jz)p(z) are often employed, such as in the variational autoencoder (VAE) [18].
Speci�cally, latent variablesz = f zi gm

i =1 are inferred for eachx = f x i gm
i =1 , and maximum

likelihood (ML) or maximum a posteriori (MAP) inference is performed onglobal parameters. The
model is �t by maximising the Evidence Lower BOund (ELBO) on the marginal log-likelihood

logp(x) �
mX

i =1

� DKL (q� (zi jx i) jj p(zi)) + Eq� (z i j x i) [logp� (x i jzi)] , L local (� ; �): (3)

Discriminative. Under the discriminative framework,global latent variablesz are often utilised
and are shared among datapointsf x i gm

i =1 , for instance when inferring the posterior on the weights of
a neural network (NN) [15, 17, 19]. The bound is on the conditional marginal log-likelihood

logp(y jx) �
mX

i =1

�
1
m

DKL (q� (z) jj p(z)) + Eq� (z) [logp(y i jx i ; z)] , L global (�) (4)

To facilitate comparisons with the majority of research on CapsNets, we focus on the development
and evaluation of our method in a discriminative setting. Formally, we are interested in estimating
the conditional likelihoodp(y jx ; z) =

Q m
i =1 p(y i jx i ; z) using probabilistic capsule network models.

3

3.2 Posterior Inference of Part-Object Connections

Inference & Model Assumptions. Using stochastic VI tools, we intend to �nd the best approxima-
tion q?

� (z) that minimisesDKL (q� (z) jj p(zjD ; W)) , wherez are global latent part-object connection
variables, andW are viewpoint-invariant transformation parameters, in a CapsNet withL layers.
We place a priorp(z(i)) over each part capsule'sci 2 ` connections to the objects they vote for
cj 2 ` + 1 , and make the following factorised independence assumptions across capsule layers:

z(i) = (z1; z2; : : : ; zN i ! j) � p(z(i)) 8ci 2 ` i ; p(z) =
L � 1Y

` =1

N iY

i =1

p(z(i)
`): (5)

We then make a variational approximationq� (z`;` +1) to the posterior on part-object connection
variables between adjacent capsule layers` and` + 1 , for all capsule layers in the network. Our
model's likelihoodp(Djz; W), and mean-�eld variational familyq� (z) are given by

p(Djz; W) =
mY

i =1

p(y i jx i ; z; W); q� (z) =
L � 1Y

` =1

N iY

i =1

q� (z(i)
`;` +1): (6)

The model is de�ned hierarchically where the object capsules in` are the parts of̀ + 1 , and so forth.

Free Energy Objective. The model is �t end-to-end by maximising the following lower bound on
the conditional marginal log-likelihoodlogp(y jx), which approximates its description length:

L (y jx ; �) , �
L � 1X

` =1

DKL (q� (z`;` +1) jj p(z`)) +
mX

i =1

Eq� (z) [logp(y i jx i ; z; W)]: (7)

In the general case, we perform variational inference on the part-object connection latent variablesz,
and ML/MAP inference onW . We �nd this to work well enough in practice, whilst signi�cantly
reducing the number of parameters needed and assumptions made, which is especially important in
CapsNets given that ef�ciency is a major concern. Nonetheless, for full posterior learning, we can
make one further mean-�eld assumption by:q�;� (z; W) = q� (z)q� (W), whereq� (W) is Gaussian
and factorises similarly across layers, including any convolutional layers preceding the capsule layers.

3.3 Choosing Priors: Re�ecting Part-Object Assumptions

Logistic-Normal. Recall from Eq.(2) that each part capsuleci votes forN i ! j objects, we can
introduce randomness in their part-object connections via a Gaussian-Softmax parameterisation:

softmax(z(i)) j =
exp(zj)

P N i ! j

k exp(zk)
; zj � N (0; 1) for j = 1 ; 2; : : : ; N i ! j ; (8)

with all componentszj sampled independently from standard Gaussian priors. The approximate
posterior then takes the form:q� (z(i)) = N (z(i) j � (i) ; � (i)) 8ci 2 ` i . To obtain stochastic
gradients of the lower bound w.r.t. the parameters� , we can parameterise samples fromq� (z(i))
by: z(i) = f (�; �) wheref (�) is differentiable and� � N (0; I), using the (local) reparameterisation
trick [18, 20]. These priors are generally attractive since reparameterising Gaussian samples is straight
forward, and they have been shown to work well in other settings such as topic models [21, 22].

Dirichlet. Alternatively, multi-modality over categorical events is better captured by the Dirichlet
distribution [23]. We can also reduce the number of parameters as we only need to infer� (i) rather
thanf � (i) ; � (i) g for each part capsuleci , which is especially important in CapsNets, as explained in
Section 1.1, since ef�ciency is a major concern. Our Dirichlet priors overz are de�ned as

z(i) = (z1; z2 : : : ; zN i ! j) � Dir(� (i)
0); � (i)

0 = (� 1; � 2; : : : ; � N i ! j); (9)

where� (i)
0 are the prior concentration parameters forci , and the approximate posterior is then also

Dirichlet distributed:q� (z(i)) = Dir(� (i)) 8ci 2 ` i . In practice, we draw Dirichlet samples via
independent standard Gamma distributions over each part-object connection:

 (i) =
�

 j
	 N i ! j

j =1 ; j � Gamma(� j ; 1); (10)

4

zj =
 j

P N i ! j

k (i)
k

; then z(i) = (z1; z2; : : : ; zN i ! j) � Dir(� (i)
0): (11)

This parameterisation enables signi�cantly more ef�cient normalisation over objects, using a 2D
transposed convolution with an identity �lter to collect variable length vectorsz(i) , when using
convolutional voting. Unlike the Gaussian, the Gamma and Dirichlet distributions are not directly
amenable to the reparameterisation trick [18, 24], so we obtain approximate pathwise gradients via the
optimal mass transport (OMT) method [25]. Alternatively, we could obtain implicitly reparameterised
gradients as in [26]. Both are readily available in PyTorch and Tensor�ow respectively [27, 28].

3.4 Routing & Activating Capsules

Algorithm 1 Capsule Layer with Routing Uncertainty. Returns updated object capsulescj =
f aj ; M j g 2 ` + 1 , given part capsulesci = f ai ; M i g 2 `. Performs ML/MAP inference of
transformation weightsW , and variational inference of latent part-object connection variablesz.

1: function CONVCAPS2D (ai , M i) . input capsules from previous layer

2: Initialise Af�ne Weights:W ij 2 R
p

d�
p

d 8i8j

3: Set Dirichlet priors:� (i)
0 2 RN i ! j 8ci 2 `

4: V j j i VOTE (M i , W ij) # Eq.(1) . capsulesci vote for poses of capsulescj

5: z`;` +1 SAMPLE q� (�) (ai , � (i)
0) # Eqs.(10�12) . samplez(i) 8ci from approximate posterior

6: aj ; M j ROUTE (z`;` +1 , V j j i) # Eqs.(12,13) . aggregate votes and activate capsules8cj

7: return cj = f aj ; M j g . output capsules to next layer

Global Routing. Following from Eq.(1), part capsulesci 2 ` cast votesV j j i for object capsules
cj 2 ` + 1 , in all layers. During training we �t multivariate gaussiansM j � N (� j ; � j), on each
object'sd dimensional poses, and sample part-object connections from the approximate posterior:

z(i) � q� (z`;` +1) 8ci 2 `; � j =

P
i z(i)

`;` +1 V j j i
P

i z(i)
`;` +1

; � j =

P
i z(i)

`;` +1 (V j j i � � j)2

P
i z(i)

`;` +1

: (12)

The latent variablesz(i) canact as soft assignments depending on our choice of prior, and one could
interpret the training procedure as approximating the true posteriorq?

� (zjD) � p(zjD ; W) over all
layers under theglobal minimum description length objective in Eq.(7), rather thanlocal (iterative)
inference ofz in the E-step of EM routing [3] between all adjacent capsule layers. Alternatively, if
for instance we let our priors onz(i) be Beta distributed over each part-object connection, and omit
the normalisation over objects, we can allow each part to route information to multiple objects at
once. If one normalises over parts rather than objects, then routing closely resembles attention [29].

Agreement & Activation. To measure vote agreement for each object capsule, we compute the av-
erage negative entropy of its pose:�H (M j) , � d� 1H

�
N (M j j � j ; � j)

�
. Averaging yields a scale

invariant measure w.r.t. the number of pose parametersd. Agreement is weighted by the support for
each object capsule, which is the amount of data received from its parts:�H (M j)

P
i z(i)

`;` +1 . Next,
consider a Binomially distributed random variableSj � B (N i ; N � 1

j), describing the assignment of
N i parts toN j objects with probabilityN � 1

j . The expected amount of data each object receives in
a given layer is thenE(Sj). We can use this value to normalise and offset the entropy term, which
automatically scales logits according to the number of capsules in each layer:

aj ,
� � j H(M j) � E(Sj)

E(Sj)
= �

� j

E(Sj)
H (M j) � 1; � j ,

X

i

z(i)
`;` +1 ; (13)

aj is then activated using the logistic function. In simple terms, if the uncertainty among votes is
high — i.e. low negative entropy andpoor agreement — assigning more data to capsulej decreases
its activation. Alternatively, if the uncertainty among votes islow — i.e. high negative entropy and
goodagreement — assigning more data to capsulej increasesits activation signi�cantly. Activating
capsules in this way simply encourages the model to meet theagreementandsupportactivation
criteria implicitly, but does not enforce them explicitly via learned� thresholds as in EM routing [3].

5

Table 1: Comparing viewpoint-invariance on SmallNORB. Performances are matched on familiar
viewpoints, before testing on novel. Results from 3 random seeds on architecturesf f 0; t1; t2; t3; t4g.

Method Azimuth (Acc. %) Elevation (Acc. %) # Param
(Viewpoints) A train A test Etrain Etest

Baseline CNN [3] 96.3 80.0 95.7 82.2 4.2M
CNN (AvgPool) [12] 91.5 78.2 94.3 82.28 0.15M
Our EM-Routing 96.29� 0.02 87.1� 0.42 95.71� 0.02 87.9� 0.39 0.17M

SR-Caps [12] 92.38 80.14 94.04 84.09 0.75M
STAR-Caps [11] 96.3 86.3 - - 0.32M
EM-Routing [3] 96.3 86.5 95.7 87.7 0.31M
VB-Routing [13] 96.29 88.6 95.68 88.4 0.17M

f 32; 8; 8; 8; 5g 96.3� 0.03 89.12� 0.7 95.68� 0.04 89.64� 0.49 0.06M
f 64; 8; 16; 16; 5g 96.3� 0.02 91.06� 0.31 95.7� 0.02 91.01� 0.26 0.14M
f 64; 16; 16; 16; 5g 96.29� 0.03 91.41� 0.46 95.7� 0.03 91.36� 0.4 0.22M
f 128; 16; 32; 32; 5g 96.3� 0.02 91.85� 0.42 95.71� 0.03 92.03� 0.21 0.58M

CapsuleL 2 Norm. Alternatively, we can activate capsules by computing the Frobenius norm of
the mean votes for object posesjj � j jjF , then squashing it to a sensible(0; 1) range [2]. This encodes
agreement in the norm of the poses and offers a considerable speedup at a performance cost.

4 Experiments

In this study, we focus on demonstrating that our method enhances capsule properties and outperforms
previous approaches on challenging pose-aware tasks used in CapsNet literature (Sections 4.1, 4.2
and 4.4), whilst being more computationally ef�cient (see Figure 4 for runtime comparisons).1

Network Architecture. To ensure fair and direct comparisons with previous work, we use identical
CapsNets to EM routing [3]. A single 5 � 5 Convlayer with f 0 �lters and stride 2 precedes four
capsule layers. ThePrimaryCaps layer transformsf 0 feature maps intot1 capsule types, each
havingH � W number of capsules with4 � 4 poses. Next, two3 � 3 ConvCapslayers witht2 and
t3 output capsule types, using strides 2 and 1. The lastConvCapslayer outputst4 class capsules, and
shares weights across spatial dimensions [3]. Let f f o; t1; t2; t3; t4g denote the complete architecture.
In all experiments, we use Adam [30] with default parameters and a batch size of 128 for training.

Priors. To show our method works well in the general case, we set the priors to be as uninformative
as possible for all the benchmark results presented, i.e. �at Dirichlet:p(z(i)) � Dir(1N i ! j) 8ci 2
`; 8`. These priors explicitly assume that each part capsuleci is equally likely to belong to any object
it votes for, with any level of certainty. Nonetheless, we conducted experiments to test sensitivity
to the choice of prior, as presented in Figure 4. We observe tighter bounds for priors with central
peaks, meaning that sampled part-object connections are closer to uniform over objects. Although
tighter bounds are not always better [31], this suggests that parts prefer to spread their vote amongst
multiple objects in CapsNets, which is reminiscent of Dropout's effect on NN weights [32].

Inference. In all benchmark results, we perform a deterministic inference at test time with-
out samplingz, by using the posterior meansz? = E[q?

� (z`;` +1)] 8`, to compute predictions
y ? = arg max y p(y jx ; z?; W). Alternatively, we can drawT Monte Carlo samples of part-object
connections from the approximate posterior, and calculate the predictive entropy:

H(by jx ; z; W) = �
KX

k=1

by k log by k ; by �
1
T

TX

t =1

p(y jx ; zt ; W); zt � q?
� (zjD): (14)

Under full posterior learning:q�;� (z; W), the pose transformation matricesW are also sampled.
Although the model is partially Bayesian, we observe predictive entropies on out-of-distribution
dataset samples (AffNIST, FashionMNIST) to be consistent with model uncertainty representation as
shown in Figure 3. We also observe entropic predictions on more challenging SmallNORB viewpoints
as we vary azimuth, whilst holding the lowest/highest elevation viewpoints �xed (see Figure 2).

6

	Introduction
	Motivation & Contribution

	Background: Capsule Networks
	Uncertainty in Capsule Routing
	Defining Part-Object Connections
	Posterior Inference of Part-Object Connections
	Choosing Priors: Reflecting Part-Object Assumptions
	Routing & Activating Capsules

	Experiments
	Generalisation to Novel Viewpoints
	Affine Transformation Robustness
	Limited Training Data Regime
	Performance Under Feature Occlusion

	Related Work & Conclusion
	Conclusion

