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A Proofs

We first prove the block smoothing algorithm. Recall the definitions and statement of Theorem 1. In
particular, recall the base classification counts n.(x):

w h
Ve, ne(x) =Y > felx,5,2,9) (1)
rz=1y=1

And recall the definition of the smoothed classifier:

9(x) = arg maxn. (x), @)

where in the case of ties, we choose the smaller-indexed class as the argmax solution.

Theorem 1. For any image X, base classifier f, smoothing block size s, and patch size m, if:

ne(x) > nr/l;aéx e (X) + Lese] +2(m + 5 —1)2 3)
then for any image x' which differs from x only in an (m x m) patch, g(x') = c.

Proof. Let (i, j) represent the upper-right corner of the m x m patch in which x and x’ differ. Note
that, for all ¢, the output of f.(x, s, x, y) will be equal to the output of f.(x', s, z,y), unless the s X s
block retained (starting at (x, y)) intersects with the m X m adversarial patch (starting at (¢, j)). This
condition occurs only when both z is in the range between ¢ — s + 1 and ¢ + m — 1, inclusive, and y
is in the range between j — s + 1 and j + m — 1, inclusive. Note that there are (m + s — 1) values
each for z and y which meet this condition, and therefore (m + s — 1)? such pairs (z, y). Therefore
fe(x,8,2,y) = fo(x',5,2,y) in all but (m + s — 1)? cases.

Note that if + — s + 1 < 0, then the intersecting values for z, taking into account the wrapping
behavior of f, willbe h — (i — s + 1) through h, and 0 through i + m — 1 (see Figure 4 in the main
text): there are still (m + s — 1) such values, and a similar argument applies to j.

Therefore, because f.(-) € {0,1},
Ve, [ne(x) — ne(x')| < (m+s—1)2. 4)

Now, consider any ¢’ # ¢, such that n.(x) > [ne(x) + 1eser| +2(m + s — 1)%. There are two cases:

e ¢ > (': In this case, in the event that n.(x") = n/,(x’), we have that g(x’) = ¢’. Therefore,
a sufficient condition for g(x’) # ¢ is that n.(x’) > n/,(x’). By Equation 4] and triangle
inequality, this must be true if n.(x) > [n«(x)] + 2(m + s — 1)2, or equivalently, if
Ne(X) > [N (X) + Lese ] +2(m+ s — 1)°.
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e ¢’ > ¢: In this case, in the event that n.(x’) = n.(x’), we have that g(x’) = ¢’. Therefore,

a sufficient condition for g(x’) # ¢ is that n.(x’) > n/(x’). By Equation 4] and triangle
inequality, this must be true if n.(x) > [ne(X) + Lese] +2(m + s — 1)2

Therefore, if n.(x) > maxq 2 [ne (X) + Lese] + 2(m + s — 1)2, then no class other than ¢ can be
output by g(x). O

The column smoothing method can be proved similarly. For completeness, we state and prove
Theorem 2 here as well. Recall

Ve, ne(x) = ch(x,s,x) (5)

Theorem 2. For any image X, base classifier f, smoothing band size s, and patch size m, if:

ne(x) > max [ne (X) + Lese] +2(m+s—1) (6)
then for any image x' which differs from x only in an (m x m) patch, g(x') = c.

Proof. Let (i, j) represent the upper-right corner of the m x m patch in which x and x’ differ. Note
that, for all ¢, the output of f.(x, s, ) will be equal to the output of f.(x', s, x), unless the band (of
width s) retained, starting at column z, intersects with the m x m adversarial patch (starting at (i, 7)).
This condition occurs only when x is in the range between ¢ — s+ 1 and ¢ +m — 1, inclusive. Note that
there are (m+ s — 1) values for = which meet this condition. Therefore f.(x, s, z,y) = f.(x/, s,2,y)
in all but (m + s — 1) cases.

Again, if i — s + 1 < 0, then the intersecting values for x, taking into account the wrapping behavior
of f will be h — (i — s + 1) through h, and 0 through i + m — 1: there are still (m + s — 1) such
values. Therefore, because f.(-) € {0,1},

Ve, ne(x) — ne(x')] < (m+s—1). (7

The rest of the proof proceeds exactly as in the block smoothing case, with (m + s — 1) substituted
for (m + s —1)2. O

B Full Validation Result Tables for Column and Block Smoothing

Tables [I] and [3] present the full validation set clean and certified accuracies for 5 x 5 patches on
MNIST and CIFAR-10, respectively, for all tested values of parameters s and 6, and for both block
and column smoothing. Note that this is presented in Figure 5 in the main text. Table 2] presents
the validation set clean and certified accuracies for 42 x 42 patches on ImageNet using column
smoothing, for all four tested values of the hyperparameter 6.

C Results for Row Smoothing

We also tested smoothing with rows, rather than columns, on MNIST. This resulted in slightly lower
certified accuracy under 5 x 5 patch attacks (45.32% validation set certified accuracy, versus 53.22%
using column smoothing). Full results are presented in Table 4]

D Multi-column and Multi-block Derandomized Smoothing

In the main text, we argued for having the base classifier use a single contiguous group of pixels on
the grounds that, compared to selecting individual pixels, it provides for a smaller risk of intersecting
the adversarial patch. However, there may be some benefit to getting information from multiple
distinct areas of an image, even if there is some associated increase in A. Rather than just looking
at the extremes of entirely independent pixels (Table 2 in the main text) versus a single band or
block (Figure 5 in the main text) we also explored, on MNIST, the intermediate case of using a
small number of bands or blocks. In Table 5] we show all mathematically possible multiple-column



Column Top-1 class

Size s 0=.2 0=.3 0=.4 (no threshold)
Clean Cert Clean Cert Clean Cert Clean Cert
Acc Acc Acc Acc Acc Acc Acc Acc
1 93.50% | 47.52% | 93.22% | 47.82% | 92.56% | 45.42% | 50.04% | 14.78%
2 96.68% | 51.46% | 96.78% | 53.22% | 96.36% | 52.34% | 72.80% | 19.22%
3 97.84% | 45.92% | 97.70% | 47.22% | 97.46% | 39.14% | 82.36% | 19.48%
4 97.88% | 38.92% | 97.92% | 32.98% | 97.84% | 32.52% | 85.46% | 19.86%
5 98.24% | 32.62% | 98.26% | 25.72% | 98.06% | 25.26% | 93.20% | 21.50%
6 98.44% | 27.60% | 98.30% | 21.52% | 98.24% | 20.42% | 95.42% | 22.20%
7 98.58% | 14.14% | 98.60% | 15.94% | 98.56% | 15.98% | 97.56% | 20.34%
8 98.70% | 10.04% | 98.68% | 11.52% | 98.710% | 11.76% | 97.90% | 18.90%
9 98.88% | 06.52% | 98.82% | 08.16% | 98.74% | 08.32% | 98.48% | 17.28%
Block Top-1 class
Size s 0=.2 0=.3 0=4 (no threshold)

09.76% 0% 09.76% 0% 09.76% 0% 10.80% | 10.80%
09.76% 0% 09.76% 0% 09.76% 0% 10.80% | 10.80%
09.76% 0% 09.76% 0% 09.76% 0% 10.80% | 10.80%
87.30% | 38.06% | 86.04% | 29.62% | 85.94% | 19.32% | 12.78% | 10.80%
91.60% | 42.58% | 90.24% | 36.52% | 90.32% | 27.22% | 21.72% | 11.08%
93.44% | 42.90% | 92.68% | 39.86% | 92.70% | 33.06% | 31.60% | 11.74%
94.78% | 44.00% | 94.30% | 41.80% | 94.52% | 35.84% | 51.18% | 13.30%
96.04% | 44.04% | 95.64% | 42.22% | 95.66% | 36.66% | 75.94% | 17.64%
96.96% | 41.74% | 97.02% | 41.84% | 96.92% | 37.18% | 91.74% | 26.84%
97.54% | 39.84% | 97.44% | 40.00% | 97.50% | 36.02% | 95.66% | 35.30%
97.88% | 36.00% | 97.66% | 36.64% | 97.64% | 32.34% | 96.58% | 31.26%
98.10% | 30.40% | 98.38% | 28.26% | 98.30% | 32.98% | 96.98% | 27.26%
98.38% | 28.26% | 98.30% | 29.06% | 98.44% | 22.72% | 98.02% | 27.66%
98.70% | 22.22% | 98.62% | 18.68% | 98.62% | 14.54% | 98.40% | 24.04%
98.86% | 08.90% | 98.84% | 08.00% | 98.86% | 06.12% | 98.68% | 12.90%
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Table 1: Validation set clean and certified accuracies for 5 x 5 patch adversarial attacks using Block
and Column smoothing on MNIST, with results shown for all tested values of parameters s and 6.
The value with the highest certified accuracy is shown in bold.

Clean Certified
‘ Accuracy ‘ Accuracy ‘

s=25,60=0.1 44.0% 12.0%

§=25,0=02| 43.1% 14.5%

s=25,0=03| 423% 13.8%

§=25,0=04| 409% 12.3%
Table 2: Validation set clean and certified accuracies for 42 x 42 patch adversarial attacks using
Column smoothing on ImageNet, with results shown for all tested values of parameter 6. The value
with the highest certified accuracy is shown in bold.

certificates on MNIST, as well as several certificates for multiple-blocks with s = 4. Interestingly,
while the certificates using multiple columns are far below optimal, the certified accuracy for two
blocks is only marginally below the best single-block certified accuracy.

For smoothing with multiple blocks or multiple columns, we consider only blocks or columns aligned
to a grid starting at the upper-left corner of the image. For example, if using block size s = 4, we
consider only retaining blocks with upper-left corner (i, j), where ¢ and j are both multiples of 4.
This prevents retained blocks from overlapping, and also reduces the (large) number of possible
selections of multiple blocks, allowing for derandomized smoothing.

Let the number of retained blocks or bands be «, and, as in the paper, let the block or band size
be s, the image size be h x w, and the adversarial patch size be m x m. For the block case, note
that there are [h/s] X [w/s] such axis-aligned blocks. Of these, the adversarial patch will overlap
at most ([(m — 1)/s] + 1)? blocks. For example, for a 5 x 5 adversarial patch, using block size



Column Top-1 class

Size s 0=.2 0=.3 0=.4 (no threshold)
Clean Cert Clean Cert Clean Cert Clean Cert
Acc Acc Acc Acc Acc Acc Acc Acc
1 72.92% | 50.74% | 72.58% | 50.94% | 72.90% | 50.32% | 72.30% | 50.94%
2 77.54% | 53.26% | 77.70% | 54.14% | 77.68% | 53.04% | 77.10% | 53.40%
3 81.84% | 56.14% | 81.74% | 56.76% | 81.98% | 56.08% | 81.82% | 56.24%
4 84.04% | 56.62% | 84.04% | 58.08% | 84.16% | 57.12% | 83.66% | 57.36%
5 85.98% | 55.18% | 85.66% | 56.08% | 85.82% | 55.98% | 85.32% | 56.00%
6 87.70% | 54.84% | 87.90% | 56.26% | 88.04% | 56.10% | 87.62% | 55.70%
7 89.24% | 53.12% | 89.48% | 54.36% | 89.30% | 54.04% | 89.12% | 54.14%
8 90.60% | 51.38% | 90.68% | 52.90% | 90.60% | 53.12% | 90.34% | 53.02%
9 91.38% | 47.78% | 91.30% | 49.96% | 91.38% | 50.30% | 91.12% | 50.36%
10 91.66% | 46.26% | 91.74% | 49.00% | 91.62% | 49.44% | 91.56% | 49.58%
11 92.40% | 41.24% | 92.26% | 45.12% | 92.18% | 46.08% | 92.18% | 45.90%
Block Top-1 class
Size s 0=.2 0=.3 0=4 (no threshold)

14.94% | 12.44% | 14.70% | 12.42% | 13.62% | 10.64% | 14.82% | 12.80%
29.94% | 20.96% | 25.30% | 17.06% | 22.66% | 14.00% | 29.48% | 22.58%
41.88% | 27.70% | 36.34% | 24.24% | 32.88% | 18.14% | 39.52% | 27.80%
27.88% | 18.80% | 31.10% | 18.68% | 31.98% | 16.90% | 28.12% | 18.34%
58.64% | 37.72% | 57.58% | 35.74% | 56.00% | 29.20% | 56.98% | 39.64%
68.86% | 45.88% | 67.70% | 44.46% | 66.26% | 39.00% | 67.52% | 46.20%
71.98% | 46.96% | 72.02% | 47.40% | 71.32% | 43.02% | 71.26% | 48.38%
74.90% | 49.18% | 74.80% | 49.96% | 75.78% | 46.72% | 74.24% | 50.68%
79.18% | 52.04% | 78.82% | 53.04% | 79.50% | 50.28% | 78.42% | 53.88%
82.32% | 53.44% | 82.56% | 54.82% | 82.96% | 52.50% | 82.00% | 55.18%
84.34% | 52.84% | 84.94% | 54.94% | 85.12% | 52.84% | 84.40% | 55.24%
86.56% | 53.26% | 86.66% | 55.66% | 86.88% | 54.34% | 86.38% | 56.08%
88.50% | 51.76% | 88.40% | 54.26% | 88.98% | 53.52% | 88.28% | 54.74%
89.98% | 50.72% | 89.86% | 53.94% | 90.22% | 53.22% | 89.86% | 54.58%
90.94% | 49.88% | 91.12% | 52.70% | 91.28% | 52.70% | 90.92% | 53.44%
92.04% | 46.04% | 91.98% | 49.26% | 92.02% | 49.46% | 91.84% | 50.12%
91.82% | 40.30% | 92.04% | 44.14% | 92.12% | 44.74% | 92.12% | 45.14%
93.42% | 28.42% | 93.52% | 32.46% | 93.54% | 33.36% | 93.44% | 33.98%
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Table 3: Validation set clean and certified accuracies for 5 x 5 patch adversarial attacks using Block
and Column smoothing on CIFAR-10, with results shown for all tested values of parameters s and 6.
The value with the highest certified accuracy is shown in bold.

s = 4, the adversarial patch will overlap exactly 4 blocks, regardless of position: see Figure [I] When

performing derandomized smoothing, we classify all ([h/ ] jw/ 5]) possible choices of x blocks. Of
these classifications, at least

will use none of the at most ([(m — 1)/s] + 1)? blocks which may be affected by the adversary.
Therefore, the number of classifications which might be affected by the adversary is at most:

(f’;w <) <f’;1 < (E

K

We can then use the above quantity in place of the number of classifications (m + s — 1)? that might
be affected by the adversarial patch in standard block smoothing (Equation 4). This modification, in
addition to classifying all (“ /5] i[w/ ‘ﬂ) selections of x axis-aligned blocks, is sufficient to adapt the
certification algorithm to a multi-block setting.

The column case is similar: there are [w/s] axis-aligned bands (defined as bands which start at
a column index which is a multiple of s). Of these, the adversarial patch will overlap at most



Row Size s 0=.2 0=.3 0=.4
Clean Certified Clean Certified Clean Certified
Accuracy | Accuracy | Accuracy | Accuracy | Accuracy | Accuracy
88.46% 36.54% 85.26% 33.78% 82.86% 25.52%
95.58% 43.52% 93.92% 45.32% 92.04% 43.16%
96.28% 41.80% 95.26% 44.96% 94.08% 43.74%
97.26% 38.58% 96.40% 42.02% 95.70% 41.82%
97.74% 35.74% 97.00% 39.04% 96.52% 39.54%
97.60% 32.18% 97.18% 36.98% 96.92% 37.10%
98.04% 27.32% 97.62% 32.82% 97.48% 33.50%
98.30% 23.16% 98.18% 28.26% 98.06% 29.54%
98.24% 17.60% 97.96% 23.80% 97.92% 25.12%
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Table 4: Validation set clean and certified accuracies for 5 x 5 patch adversarial attacks using Row
smoothing on MNIST. Values with highest certified accuracies are shown in bold.

0=.2 0=.3 0=.4

Clean Certified Clean Certified Clean Certified
Accuracy | Accuracy | Accuracy | Accuracy | Accuracy | Accuracy
1] 96.80% 38.12% 96.50% 39.18% 96.24% 37.38%

2 columns, s =2 | 98.38% 31.36% 98.24% 25.56% 98.10% 25.80%
3columns, s =1 | 97.74% 07.58% 97.68% 09.36 % 97.64% 09.00%
2 blocks, s = 4 92.32% 43.40% 91.22% 38.78% 91.32% 30.08%
3 blocks, s = 4 94.98 % 41.40% 94.42% 39.38% 94.46% 32.62%
4 blocks, s =4 96.26 % 38.26% 95.72% 37.50% 95.72% 32.02%

2 columns, s

Table 5: Multi-column and multi-block certificates, with results shown for all tested values of
parameter §. Results are on the MNIST validation set, for 5 x 5 patches. For each number of
blocks/columns and block/column size s, we bold the highest certified accuracy over tested values of
the hyperparameter 6.

([(m —1)/s] + 1) bands. When performing smoothing, we classify all (“"é S]) possible choices of
+ bands. Of these classifications, at least

(VS‘W = ("] +1))

K

will use none of the at most ([(m — 1)/s| + 1) bands which may be affected by the adversary.
Therefore, the number of classifications which might be affected by the adversary is at most:

(1) - (1 mol] )

Full validation set results for multi-block and multi-band smoothing are shown in Table 3]

NN NN

Figure 1: Multi-block smoothing: for a 5 x 5 adversarial patch, using block size s = 4, the adversarial
patch overlaps exactly 4 blocks, regardless of position. Individual pixels are represented by black
gridlines. Blocks that may be retained are outlined in blue, and three possible 5 x 5 adversarial
patches are shown in red. Note that this is exact because, in this case, m — 1 is divisible by s: in other
cases, some choices of adversarial patches may affect fewer than ([(m — 1)/s] + 1)2 blocks.



E Comparison with Randomized Structured Ablation

As discussed in the main text, there are two benefits to derandomization: first, we can eliminate
estimation error, and second, it allows the classifier to abstain or select multiple classes without
complicating estimation. In order to distinguish these effects, we present in Tables [6] and [7] the
certificates on MNIST and CIFAR-10 using randomized column smoothing (with the estimation
scheme from [[12])), versus deterministic column smoothing. We compare to both the “Top-1 class”
method (without abstaining or thesholding) as well as to the thresholding method, with = 0.3.
We find that derandomization alone, without the thresholding method, provides a considerable
improvement (around 6 percentage points increase on MNIST, around 7 percentage points on CIFAR-
10). On MNIST (although not on CIFAR-10), the thresholding scheme provides a large additional
improvement.

Column | Derandomized | Derandomized Randomized
Size s 0=.3 Top-1 class Column Smoothing
1 47.82% 14.78% 11.80%
2 53.22% 19.22% 14.26%
3 47.22% 19.48% 15.14%
4 32.98% 19.86% 15.24%
5 25.72% 21.50% 15.48%
6 21.52% 22.20% 16.32%
7 15.94% 20.34% 14.50%
8 11.52% 18.90% 14.52%
9 08.16% 17.28% 14.10%

Table 6: Comparison of Derandomized vs. Randomized Structured Ablation certified accuracies for
5 x 5 adversarial patches on MNIST.

Column | Derandomized | Derandomized Randomized
Size s 0=.3 Top-1 class Column Smoothing
1 50.94% 50.94% 38.16%
2 54.14% 53.40% 41.98%
3 56.76% 56.24% 47.02%
4 58.08 % 57.36 % 49.56%
5 56.08% 56.00% 49.58%
6 56.26% 55.70% 50.38 %
7 54.36% 54.14% 50.04%
8 52.90% 53.02% 48.94%
9 49.96% 50.36% 47.28%
10 49.00% 49.58% 46.46%
11 45.12% 45.90% 43.28%

Table 7: Comparison of Derandomized vs. Randomized Structured Ablation certified accuracies for
5 x b adversarial patches on CIFAR-10.

F Sparse Randomized Ablation for Patch adversarial Attacks

In Table[8] we provide the certified accuracies computed from applying sparse Randomized Ablation
[16] to patch adversarial attacks, as discussed in Section 2.1 of the main text.

G Adversarial Attack Details

In order to test adversarial attacks against our structured ablation model (in particular the column
smoothing model) we must work around the non-differentiability of the base classifier f with respect
to the image. We accomplish this using a method similar to the attack on smooth classifiers proposed
by [13].



MNIST CIFAR-10

Retained | Classification | Certified Retained | Classification | Certified
pixels k accuracy accuracy pixels k accuracy accuracy
5 32.44% 7.58% 25 68.28% 13.28%
10 75.02% 5.40% 50 74.68% 0
15 86.32% 4.34% 75 78.26% 0
20 90.36% 0.10% 100 80.98% 0
25 93.20% 0 125 83.82% 0
30 94.72% 0 150 85.70% 0

Table 8: Certified accuracy to 5 x 5 adversarial patches from directly applying Ly smoothing
as proposed by [16]. Note that with Ly smoothing, the geometry of the attack is not taken into
consideration: these are therefore actually certified accuracies for any L attack on up to p = 25
pixels. The certificates are probabilistic, with 95% confidence.

In particular, as described in Section 2.2.1 in the main text, the base classifier f in our model is
implemented using a neural network: let F' represent the (SoftMax-ed) logits of this neural network:

1, if Fo(x,s,2) > 6

felx,8,2) = {0, if F,(x, s,2) < 0 ®)

Rather than attacking n(x) = Y_."_, f(x, s, z), we instead attack a soft smooth classifier, N (x):

ZF X, 8, ) 9

The objective of the adversary (as in [9]) is now applied to this soft classifier:

— log( lz (x,8,2) (10)

max
x & (Patch Constraints) w

where y is the true label. The IFGSM patch attack proposed by [9] proceeds by first randomly
selecting a patch to attack, and then attacking it with standard IFGSM, without imposing any L,
magnitude constraint on the attack (other than as required to produce a feasable image). This is
repeated many times on many random patches. However, the most successful attack so far is recorded
at each step of optimization, and finally returned at the end of the attack. (Note that this is the
most successful attack over all steps of all random initializations.) In [9], this is taken as whichever
perturbed version of the image maximizes the objective (Equation[I0). Because we ultimately care
about the “hard” smoothed classifier n(x), we instead just evaluate the final “hard” classification
n(x) at each step. We record an attack to return only if it is actually successful at making the final
classification incorrect. Note that this does not impose significant computational costs, because we
already have the value of each ‘soft’ base classifier F..((x) at each step.

As mentioned in the main text, for the patch attack, we perform 80 random starts, 150 iterations per
random start, and use a step size of 0.05. When attacking patches, we uniformly randomly initialize
the pixels in the attacked region. For L, IFGSM, we used IFGSM for 50 iterations and a step size
of 0.5/255: for this, we did not randomize the pixel values before optimizing, but rather started at
the initial x. Training parameters for baseline models were identical to those for column-smoothed
models, except that a regular, full ResNet-18 model was used.

H Evaluation Times

Data on evaluation times (using the optimal hyperparameters to maximize certified accureacy for
each method) are shown in Table[9] We used NVIDIA 2080 Ti GPUs for our experiments.

I Architecture and Training Details

As discussed in the paper, we used the method introduced by [16] to represent images with pixels
ablated: this requires increasing the number of input channels from one to two for greyscale images



Method and Dataset | Images | Seconds | GPUs | GPU-seconds/image
Column, MNIST 5000 6.61 1 0.00132
Block, MNIST 5000 48.1 1 0.00962
Column, CIFAR-10 | 5000 30.8 1 0.00616
Block, CIFAR-10 5000 851 1 0.170
Column, ImageNet 1000 622 4 2.49

Table 9: Evaluation times. Note that evaluation and certification both require evaluating each base
classifier, so these are also the certification times (our evaluation script reports both clean and certified

accuracy).

MNIST CIFAR-10 ImageNet

Training Epochs 400 350 60

Batch Size 128 128 196

Training None Random Cropping Random
Set (Padding:4) and Horizontal Flip
Preprocessing Random Horizontal Flip

Optimizer Stochastic Stochastic Stochastic

Gradient Descent
with Momentum

Gradient Descent
with Momentum

Gradient Descent
with Momentum

Learning Rate

.01 (Epochs 1-200)
.001 (Epochs 201-400)

.1 (Epochs 1-150)
.01 (Epochs 151-250)
.001 (Epochs 251-350)

.1 (Epochs 1-20)
.01 (Epochs 21-40)
.001 (Epochs 41-60)

Momentum

0.9

0.9

0.9

L> Weight Penalty

0.0005

0.0005

0.0005

Table 10: Training Parameters

(MNIST) and from three to six for color images. For MNIST, we used the simple CNN architecture
from the released code of [16]], consisting of two convolutional layers and three fully-connected layers.
For CIFAR-10 and ImageNet, we used modified versions ResNet-18 and ResNet-50, respectively,
with the number of input channels increased to six. Training details are presented in Table [I0]

For randomized smoothing experiments, we follow the empirical estimation methods proposed by
[12]. We certify to 95% confidence, using 1000 random samples to select the putative top class, and
10000 random samples to lower-bound the probability of this class. For sparse randomized ablation
on MNIST, we use released pretrained models from [16].
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