
We thank the four reviewers (R1-R4) for their constructive feedback and largely positive comments.1

Improving readability. Several reviewers found the paper clear and “exceptionally well written” (R3), but they also2

noted the density of the Methods and (esp. R1) felt it was overly formal. We agree that this section should better3

get across the key ideas, so we will use the extra page allowed in revision to provide higher-level explanations and4

background for each concept we introduce. To further improve readability, we will also make the following changes:5

F Lines 108-120, the description of PSGs, will be made less formal. The key point is that PSGs are hierarchical graphs6

with additional structures that connect to visual input. Within-level edges are meant to represent physical connections;7

parent-to-child edges are meant to represent part-whole relationships; attribute vectors are meant to encode physical8

properties of elements of the visual input; and spatial registrations map each vertex in the graph to a subset of pixels in9

the input movie. Because a PSG is hierarchical, the registrations form a hierarchical segmentation of a scene.10

F Lines 121-133 should better address R1’s questions about model training. In particular, PSGNets have two types11

of losses that are trained jointly: (1) rendering losses, which train the parameters of Graph Vectorization and Feature12

Extractor modules by backpropagation, because the rendered feature maps are differentiable functions of predicted13

attribute vectors and image features, respectively; and (2) perceptual grouping losses, which train the affinity functions14

in Graph Pooling modules. Rendering gradients cannot flow back into the affinity functions because Label Propagation15

is not differentiable; perceptual grouping gradients can flow into the other modules. To clarify L258 (per R2), we16

will emphasize that depths and normals can supervise rendering losses (1) but are never used as input. We describe17

further experiments without any depths and normals supervision below. Perceptual grouping losses (2) never receive18

supervision. We will implement R3’s idea to make Fig. 1 larger by splitting it into Architecture and Training figures.19

F We can simplify the rest of the Methods as five shorter subsections: (1) ConvRNN Feature Extraction: explain that a20

ConvRNN, unlike a deep CNN, generates features from a single layer with different useful properties after each recurrent21

pass (see Supplement); (2) Graph Pooling: emphasize ideas of affinity functions and explain why Label Propagation22

prevents rendering gradients from training this module; (3) Graph Vectorization: Move details of aggregation to23

Supplement (e.g. L176-184, per R1), emphasize taking statistics over segment interiors and boundaries (to encode24

shape information) and predicting attributes via Graph Convolution [Kipf & Welling, ICLR 2017]; (4) Rendering:25

Combine the QTR, QSR, and Losses sections to explain why parameter-free decoding forces node attributes to encode26

scene properties explicitly; discuss (per R1) why this leads to interpretable representations, as illustrated by graph27

editing (Figure 4); (5) Perceptual Grouping: explain why pairwise inductive biases make sense for grouping and how28

β-VAEs [Higgens et al., ICLR 2016] can naturally encode the idea of node co-occurrence and motion-in-concert.29

Data to address Reviewer 1. R1 makes an excellent suggestion to compare the MultiDSprites (MDS) and CLEVR630

datasets with our custom datasets. We thus built PSGNetS-RGB, a compact version of the original model that does not31

use depths/normals supervision. Trained/tested on the Playroom dataset, PSGNetS-RGB achieved scores of (recall32

0.59, mIoU 0.55, boundary F 0.57), which are (as expected) somewhat, though not dramatically, lower than the33

original PSGNetS scores. Without further hyperparameter tuning, PSGNetS-RGB trained/tested on MDS achieved34

(r0.80, m0.70, b0.72); trained/tested on CLEVR6, it achieved (r0.73, m0.63, b0.67). The higher scores on MDS and35

CLEVR6 suggest that the Playroom dataset is indeed harder to segment than those used in the literature. Moreover, in36

running these experiments we found something else worth reporting: the Playroom-trained PSGNetS-RGB achieved37

zero-shot transfer performance of (r0.75, m0.67, b0.71) on MDS and (r0.70, m0.60, b0.66) on CLEVR6, nearly as38

high as the within-dataset scores. This further indicates that PSGNet inductive biases lead to fairly general object-39

centric representation learning. We will include these points in the revision, along with MDS/CLEVR6 scores for our40

implementations of the baseline models (which take longer to train than the allotted Author Response period.)41

Data to address Reviewers 2 & 3. The Playroom-trained PSGNetS-RGB model above ablates the three δx input42

channels, as per R2. To measure the effect of ablation, we restored these channels to create PSGNetM-RGB and trained43

five models with different random seeds. These achieved scores (mean +/- stdev) of (r0.65 +/ 0.01, m0.59 +/- 0.01,44

b0.60 +/- 0.01), substantially higher than PSGNetS-RGB. This indicates that the δx input channels are useful for45

segmentation and supports our claim of low performance variability, noted by R3. Each model took ~24 hours to train46

on one Titan Xp GPU; inference takes ~200 ms/image. PSGs are implemented on a GPU by choosing a maximum node47

number per level, then masking out nodes that have no incoming child-to-parent edges (& thus represent nothing.)48

Response to Reviewer 4. R4 raised two concerns about (1) the types of edges in the PSG and (2) the inability to group49

by real-world textures. We want to clarify that these are not inherent limitations of our approach, but rather choices50

we made to limit the scope of the submission. As to (1), PSGs can naturally incorporate additional edge types, for51

example to represent temporary occlusions, collisions, or support relationships between objects. We use these edge52

types in ongoing work to predict physical dynamics with PSGs. As to (2), by self-supervising rendered feature maps on53

higher-order statistics of the input image, such as the covariance of RGB pixels within each node segment, attribute54

vectors can be trained to explictly encode texture. Perceptual grouping can take advantage of these texture components.55


