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Abstract

Virtually any model we use in machine learning to make predictions does not
perfectly represent reality. So, most of the learning happens under model misspeci-
fication. In this work, we present a novel analysis of the generalization performance
of Bayesian model averaging under model misspecification and i.i.d. data using a
new family of second-order PAC-Bayes bounds. This analysis shows, in simple and
intuitive terms, that Bayesian model averaging provides suboptimal generalization
performance when the model is misspecified. In consequence, we provide strong
theoretical arguments showing that Bayesian methods are not optimal for learning
predictive models, unless the model class is perfectly specified. Using novel second-
order PAC-Bayes bounds, we derive a new family of Bayesian-like algorithms,
which can be implemented as variational and ensemble methods. The output of
these algorithms is a new posterior distribution, different from the Bayesian pos-
terior, which induces a posterior predictive distribution with better generalization
performance. Experiments with Bayesian neural networks illustrate these findings.

1 Introduction

All our models are idealizations which only provide an approximation to the real-world distributions
generating the data (i.e. "all models are wrong" [9]). But whether our models are or not well-specified
is a key consideration in Bayesian statistics. Suboptimal behaviors of Bayesian methods when the
model family is misspecified have been widely reported in the literature [20, 21, 22, 26, 51], even
questioning the principles of Bayesian statistics.

Figure 1: The exact Bayesian posterior and our new proposed (PAC2
T -Variational) posterior, and

their respective posterior predictive distributions, for a linear regression model with a misspecified
constant noise term (the data noise is higher than the linear model’s noise). The Bayesian posterior
concentrates around the best single linear model, while our method estimates a posterior which
introduces high variance in the intercept parameter θ0 to induce a posterior predictive distribution
with higher noise that better fits the data distribution (see Appendix C.2 for details).
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The use of Bayesian methods in machine learning (see [5, 19] for an introduction) has been in general
very successful, specially for discovering hidden patterns in the data by inspecting the Bayesian
posterior [8, 39, 50]. And model misspecification has not been considered as an unresolved issue
[36, 38, 53, 54]. The focus has been put on approximate inference methods [23, 45].

At the same time, many other works have shown that Bayesian methods are not superior methods
when the sole purpose is to make predictions (not to identify the true unknown parameters of a
model) [10, 15, 17]. Bayesian methods make predictions through Bayesian model averaging, which
combines the predictions of the individual models of the family weighted by their posterior probability.
Ensemble models (see [12] for an introduction) are an alternative approach for model combination
that have consistently provided very competitive generalization performance in a wide range of
different problems, even in terms of well-calibrated probability predictions [49]. Recently, [56]
provided strong evidence on how the generalization performance of Bayesian neural networks can
be significantly improved by considering different posteriors distributions for model averaging that
largely deviate from the Bayesian posterior.

Contributions: This paper provides a novel theoretical analysis of the generalization properties of
Bayesian model averaging when the model family is misspecified. Our analysis shows that Bayesian
model averaging provides suboptimal generalization performance because the Bayesian posterior is
the minimum of a first-order PAC-Bayes bound [42], which can be quite loose when the model family
is misspecified. Based on this analysis, we introduce novel second-order PAC-Bayes bounds and,
based on the minimization of these bounds, we derive a new sound and scalable family of Bayesian-
like algorithms with better generalization properties. These new algorithms can be interpreted as
generalized variational methods [29] and, even, as ensemble methods. The output of these algorithms
is a new posterior distribution, different from the Bayesian posterior, which induces new posterior
predictive distributions with better generalization capacity. See Figure 1 for an illustrative example.
Experiments with Bayesian neural networks also illustrate these findings.

2 Relevant prior work

PAC-Bayesian theory [42] provides probably approximately correct (PAC) bounds on the generaliza-
tion risk (i.e., with probability 1− ξ, the generalization risk is at most ε away from the training risk.)
Although PAC-Bayesian theory is mostly a frequentist method, connections between PAC-Bayes
and Bayesian methods have been explored since the beginnings of the theory [33, 46]. But it was in
[18] were a neat connection was established between Bayesian learning and PAC-Bayesian theory.
However, they did not directly study the generalization performance of Bayesian model averaging
and did not consider model misspecification.

There is a large literature showing that Bayesian inference can behave suboptimally if the model is
wrong [20, 21, 22, 26, 51]. The Safe Bayesian method is probably the best-known framework [20].
The main point of this approach is to guarantee the concentration of the Bayesian posterior around the
best possible model. But this work shows that the concentration of the Bayesian posterior around the
best possible model is the main reason behind the suboptimal generalization performance of Bayesian
methods under model misspecification.

Other related works [6, 11, 29, 34] propose Bayesian-like algorithms based on the use of alternative
belief updating schemes which differs from the Bayesian approach. Again, the final goal of these
works is not to study the generalization risk of Bayesian model averaging. Some of them [6, 29] are
based on the use of alternative loss functions, different from the log-likelihood function, to derive
new Bayesian-like algorithms. In this sense, our proposed learning algorithms employ a special loss
which includes a correcting term to account for model misspecification.

Direct loss minimization [25, 48, 55] is a line of research close to our approach. These works analyze
Bayesian methods from the angle of regularized loss minimization. They also consider the direct
optimization of the log-loss of the posterior predictive distribution. But they do not consider a
generalization performance analysis and the role that model misspecification has when justifying this
approach with respect to standard Bayesian methods.

Zhang [60, 61] introduces information theoretical bounds which consider the log-loss and model
misspecification. But the bounded quantity is not the generalization error of Bayesian model
averaging, and their focus is to find the best single model, not the best model averaging distribution.
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Robust Bayesian methods [4, 24, 28, 52, 54] also address the problem of model misspecification. But
their focus is mainly in how to fix the inference procedure under small deviations from the assumptions
(e.g. outliers, error measurements, etc) rather than systematically study the generalization performance
under these circumstances.

3 Background

Our analysis is made under unsupervised settings or density estimation, but it readily applies to super-
vised classification settings too by considering labelled data and conditional probability distributions.

We denote the training data set D = {x1, . . . ,xn}, where x ∈ X . And the probability distribution
over X is denoted by p(x|θ), which is indexed by a parameter θ ∈ Θ. As a standard requirement in
generalization analysis methods [42, 60], we assume that the samples in D are i.i.d. generated from
some unknown data generating distribution denoted ν(x)2. For this analysis, we assume that

Assumption 1. There exists a constant M <∞ such that ∀x ∈ X ,∀θ ∈ Θ, p(x|θ) ≤M .

This assumptions is always satisfied in supervised classifications settings (i.e, in this case we would
have a conditional distribution p(y|x,θ) whose maximum is equal to 1). But, for example, when
p(x|θ) is a Normal density function, we have to restrict the parameter space Θ to only consider
variances higher than a given ε > 0. Finally, we also assume that

Assumption 2. We are learning under model misspecification, i.e., ∀θ ∈ Θ p(·|θ) 6= ν.

We define the posterior predictive distribution induced by a probability distribution ρ over Θ as
p(x) = Eρ(θ)[p(x|θ)], where ρ is also referred as a posterior distribution because it depends on the
data. When ρ(θ) is the Bayesian posterior, Eρ(θ)[p(x|θ)] corresponds to Bayesian model averaging.

We denote CE(ρ) as the cross entropy of Eρ(θ)[p(x|θ)] wrt to ν(x),

CE(ρ) = Eν(x)[− lnEρ(θ)[p(x|θ)]]. (1)

We address the problem of finding the optimal distribution ρ? over Θ for performing model averaging,
in terms of generalization performance. So, we aim to find the probability distribution ρ? which
defines the posterior predictive distribution p(x) with the smallest cross entropy wrt to the true
data generating distribution ν(x), i.e., ρ? = arg minρ CE(ρ). The distribution ρ? also satisfies that
ρ? = arg minρKL(ν(x),Eρ(θ)[p(x|θ)]), where KL denotes the Kullback-Leibler (KL) divergence.

As the true distribution ν(x) is unknown, our approach to find ρ? will be based on the minimization
of a PAC-Bayes upper-bound [42], which depends on the data sample D, over the CE(ρ) function.
Note, CE(ρ) is the expected log-loss of the posterior predictive distribution Eρ(θ)[p(x|θ)] and, in
consequence, measures the generalization error associated to the density ρ.

3.1 Bayesian Learning and Variational Inference

The key quantity in Bayesian statics is the Bayesian posterior, p(θ|D) ∝ π(θ)
∏n
i=1 p(xi|θ), where

π(θ) is known as the prior distribution. When a new observation x′ arrives we compute the Bayesian
posterior predictive distribution to make predictions about x′, p(x′|D) = Ep(θ|D)[p(x

′|θ)].

Variational Inference (VI) (see [7] for an introduction) is a popular method to compute approximations
of intractable Bayesian posteriors. In standard VI settings, we choose a tractable family of probability
distributions over Θ, denoted by Q, and the learning problem consists in finding the probability
distribution q ∈ Q which is closest to the Bayesian posterior in terms of the inverse KL divergence,
arg minq∈QKL(q(θ), p(θ|D)). Solving this minimization problem is equivalent to maximize the
following function, which is known as the ELBO function,

q?(θ) = argmax
q∈Q

Eq(θ)[ln p(D|θ)]−KL(q, π). (2)

See [40, 59] for a recent review of methods to efficiently solve this maximization problem.

2We assume that p(·|θ) and ν are probability measures having densities w.r.t. the Lebesgue measure.
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3.2 PAC-Bayesian Theory and Bayesian statistics

The PAC-Bayes framework [42] provides data-dependent generalization guarantees over the gen-
eralization error of a model under i.i.d. data. Let us define the expected log-loss for the model
θ, denoted L(θ) = Eν(x)[− ln p(x|θ)], and the empirical log-loss for the model θ on the sample
D, denoted L̂(θ, D) = 1

n

∑n
i=1− ln p(xi|θ). PAC-Bayesian theory provides probabilistic bounds

over Eρ(θ)[L(θ)] using Eρ(θ)[L̂(θ, D)]. But most of the PAC-Bayes bounds only apply to bounded
losses and do not cover the log-loss, which is unbounded. [2] introduced a PAC-Bayes bound for a
restrictive set of unbounded losses, which was later extended to general unbounded losses by [18, 47].
We reproduce here this PAC-Bayes bound 3 and, for completeness, a proof is given in Appendix A.1.
Theorem 1. [18, 47] For any prior distribution π over Θ independent of D and for any ξ ∈ (0, 1)
and c > 0, with probability at least 1− ξ over draws of training data D ∼ νn(x), for all distribution
ρ over Θ, simultaneously,

Eρ(θ)[L(θ)] ≤ Eρ(θ)[L̂(θ, D)] +
KL(ρ, π) + ln 1

ξ + ψπ,ν(c, n)

c n
,

where ψπ,ν(c, n) = lnEπ(θ)ED∼νn(x)[ec n(L(θ)−L̂(θ,D))].

But PAC-Bayes bounds also provide a well-founded approach to learning. As these bounds hold
simultaneously for all densities ρ, the learning algorithm consists in choosing the distribution ρ
which minimizes the upper bound over the generalization risk. Fortunately, we can compute the
ρ distribution minimizing the PAC-Bayes bound of Theorem 1 for constant c, ξ, n and D values,
because the ψπ,ν(c, n) term is also constant wrt ρ. [18] noted that the Bayesian posterior distribution
is the minimum of this PAC-Bayes bound over the expected log-loss Eρ(θ)[L(θ)],

Lemma 1. [18] The Bayesian posterior p(θ|D) is the distribution over Θ which minimizes the
PAC-Bayes bound introduced in Theorem 1 for c = 1 and constant ξ, n and D values.

4 The Bayesian posterior is suboptimal for generalization

In the previous section, we saw that the Bayesian posterior minimizes a PAC-Bayes upper bound
over the expected log-loss. So, by minimizing the PAC-Bayes bound, we aim to minimize the
expected log-loss Eρ(θ)[L(θ)]. In fact, under some technical conditions, the distribution minimizing
the PAC-Bayes bound (i.e., the Bayesian posterior as shown in Lemma 1) converges, in the large
sample limit and in probability, to a distribution minimizing the expected log-loss, Eρ(θ)[L(θ)],
due to well-known asymptotic results of the Bayesian posterior under model misspecification [27].
And this distribution can be characterized as a Dirac-delta distribution, denoted δθ?ML(θ), centered
around θ?ML, which is the parameter that minimizes the KL divergence wrt the true distribution,
θ?ML = arg minθKL(ν(x), p(x|θ)). This also applies for the variational posterior [53], i.e the
variational posterior also converges in the large sample limit to δθ?ML(θ), a minimum of the expected
log-loss. See Appendix A.3 for a formal proof of these statements.

But the question is whether the minimization of the expected log-loss, Eρ(θ)[L(θ)], is a good strategy
for minimizing the cross-entropy loss, CE(ρ). In principle, this is a good strategy because, by the
Jensen inequality, the expected log-loss is an upper oracle bound4 of the cross-entropy loss,

Eν(x)[− lnEρ(θ)[p(x|θ)]]︸ ︷︷ ︸
CE(ρ)

≤ Eρ(θ)[Eν(x)[− ln p(x|θ)]]︸ ︷︷ ︸
Eρ(θ)[L(θ)]

. (3)

This strategy would be optimal if the minimum of the expected log-loss was also the minimum of the
cross-entropy loss. But, as shown in the following result, this only happens when the best model in
isolation, p(x|θ?ML), provides better performance than any model averaging, Eρ(θ)[p(x|θ)],

Lemma 2. A distribution minimizing Eρ(θ)[L(θ)], denoted ρ?ML, is also a minimizer of the cross-
entropy loss CE(ρ) if and only if for any distribution ρ over Θ we have that,

KL(ν(x), p(x|θ?ML)) ≤ KL(ν(x),Eρ(θ)[p(x|θ)]).

3This bound is expressed in terms of any λ > 0, which we equivalently set here as λ = c n, for any c > 0.
4An oracle bound depends on the unknown distribution ν(x).
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And ρ?ML can always be characterized as a Dirac-delta distribution center around θ?ML, i.e.,
ρ?ML(θ) = δθ?ML(θ). [Full proof in Appendix A.4].

According to this result, the Bayesian posterior is an optimal learning strategy under perfect model
specification because we have that KL(ν(x), p(x|θ?ML)) = 0, and ρ?ML will be a minimum of
CE(ρ). But perfect model specification rarely happens in practice. The problem with the Bayesian
posterior lies in the inequality of Equation (3), which is the result of the application of a first-order
Jensen inequality [35]. And a first-order Jensen inequality induces a linear bound whose minimum
is always at the border of the solution space, i.e., a Dirac-delta distribution. For this reason, we
also refer to the expected log-loss Eρ(θ)[L(θ)] as a first-order oracle bound, and to the PAC-Bayes
bound of Theorem 1 as a first-order PAC-Bayes bound. But if we use a tighter second-order Jensen
inequality [3, 35] to upper bound the cross-entropy loss, we will never end up in these extreme,
no-model-averaging, solutions. Figure 2 graphically illustrates this situation.

Figure 2: First-Order vs Second-Order Jensen Bounds. See Appendix B for full details.

5 Second-order PAC-Bayes bounds

We exploit second-order Jensen inequalities [3, 35] to derive tighter oracle bounds over CE(ρ),
Theorem 2. (Second-order Oracle bound) Any distribution ρ over Θ satisfies that,

CE(ρ) ≤ Eρ(θ)[L(θ)]− V(ρ),

where V(ρ) is a variance term defined as

V(ρ) = Eν(x)[
1

2 maxθ p(x|θ)2
Eρ(θ)[(p(x|θ)− p(x))2]],

where maxθ p(x|θ)2 is a finite scalar value according to Assumption 1.

Proof sketch. Apply [3, 35] to the random variable p(x|θ). Full proof in Appendix A.5.

This second-order oracle bound differs from the expected log-loss, Eρ(θ)[L(θ)], (a first-order oracle
bound) in this new variance term V(ρ), which is positive when the ρ distribution is not a Dirac-delta
distribution. So, this second-order oracle bound is tighter than the the expected log-loss and, also,
induces high variance solutions when it is minimized.

But the key point is that a distribution minimizing this new second-order oracle bound induces better
model averaging solutions than a distribution minimizing the expected log-loss,
Lemma 3. Let us denote ρ?J2 and ρ?ML a distribution minimizing the second-order oracle bound of
Theorem 2 and Eρ(θ)[L(θ)], respectively. The following inequality holds

KL(ν(x),Eρ?
J2

[p(x|θ)]) ≤ KL(ν(x),Eρ?ML [p(x|θ)]),

and the equality holds if we are under perfect model specification.
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A proof is provided in Appendix A.6. The above result shows that a learning strategy based on
the minimization of this second-order oracle bound is better than a learning strategy based on the
minimization of the expected log-loss (which is the strategy of Bayesian learning). In fact, in case of
perfect model specification, the minimum of the second-order oracle bound equals the minimum of
the expected log-loss.

However, the direct minimization of the second-order oracle bound of Theorem 2 is not possible
because it assumes access to ν(x). But the following result introduces a second-order PAC-Bayes
bound over the second-order oracle bound, which also provides generalization guarantees over the
performance of the posterior predictive distribution, because it also bounds the cross-entropy loss.
Theorem 3. (Second-order PAC-Bayes bound) For any prior distribution ρ over Θ independent
of D and for any ξ ∈ (0, 1) and c > 0, with probability at least 1− ξ over draws of training data
D ∼ νn(x), for all distribution ρ over Θ, simultaneously,

CE(ρ) ≤ Eρ(θ)[L(θ)]− V(ρ) ≤ Eρ(θ)[L̂(θ, D)]− V̂(ρ,D) +
KL(ρ, π) + 1

2 ln 1
ξ + 1

2ψ
′
π,ν(c, n)

c n
,

where ψ′π,ν(c, n) is the same term as in Theorem 1 adapted to this setting and V̂(ρ,D) is the empirical
version of V(ρ).

Proof sketch. We express the problem using a tandem log-loss. Note that Eρ(θ)[L(θ)]− V(ρ) =
Eθ∼ρ,θ′∼ρ[L(θ,θ′)], where L(θ,θ′) = Eν(x)[ln

1
p(x|θ)

− 1
2 maxθ p(x|θ)2

(
p(x|θ)2 − p(x|θ)p(x|θ′)

)
].

Then, we apply [18, Theorem 3] to this loss and fix λ = 2c n. ψ′π,ν(c, n) is like the ψπ,ν(c, n)

term of Theorem 1 adapted to L(θ,θ′). Full proof in Appendix A.7.

As happen with the bound presented in Theorem 1, this bound can not be directly computed because
the ψ′π,ν(c, n) term depends on ν(x). We could apply the approaches presented in [1, 18] to provide
computable upper bounds over ψ′π,ν(c, n), but it would require strong assumptions and would only
be applicable to very simple models. Fortunately, we can still minimize this PAC-Bayes bound for
constant c, ξ, n and D values, because ψ′π,ν(c, n) is also constant wrt ρ.

The key part of this new PAC-Bayes bound is the variance term V(ρ,D), which measures the diversity
or the disagreement among the predictions of the models. Note, for example, that when all the models
provide the same predictions the variance term is null and there is no gain in making model averaging
with these models. Diversity or disagreement among models has been empirically identified as a
key factor in the performance of model combination [14, 31]. This work describes which should be
the precise balance between the average empirical log-loss Eρ(θ)[L̂(θ, D)] of the models (i.e., how
well the models individually fit the training data) and how difference they should be among them (i.e.
measure through V(ρ,D)) to maximize the generalization performance of the model averaging. A
recent work [41] arrives at similar conclusions in the context of weighted majority voting.

6 Learning by minimizing second-order PAC-Bayes bounds

Our learning strategy is then to minimize the second-order PAC-Bayes bound introduced in Theorem
3 because it is a probabilistic approximate correct bound over the generalization error of the resulting
posterior predictive distribution. In this case, we do not have a closed-form solution to find the
distribution ρ minimizing this second-order PAC-Bayes bound. But, in the next subsections, we
introduce several scalable methods for (approximately) solving this minimization problem.

6.1 PAC2-Variational Learning

Like in variational inference (see Section 3.1), we can choose a tractable family of densities ρ(θ|λ) ∈
Q, parametrized by some parameter vector λ, to solve the minimization of the second-order PAC-
Bayes bound of Theorem 3. By discarding constant terms of this bound wrt ρ and setting c = 1 in
order to keep the connection with Bayesian approaches5, the minimization problem can be written as,

arg min
λ

Eρ(θ|λ)[L̂(θ, D)]− V̂(ρ,D) +
KL(ρ, π)

n
. (4)

5Appendix C.5 further discusses how to set this parameter.
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We refer to this learning method as PAC2-Variational learning, which can be interpreted as a
generalized variational method [29]. Note, the standard variational inference algorithm (see Equation
(2)) can be similarly derived by minimizing the PAC-Bayes bound of Theorem 1, which misses the
V̂(ρ,D) term because it is based on a first-order oracle bound. Appendix C.2 shows a numerically
stable version of the PAC2-Variational learning to perform optimization over this objective function
using modern black-box variational methods [59].

6.2 PAC2
T -Variational Learning

One of the key contributions of our work is to show that the error induced when bounding the cross-
entropy loss is a significant barrier when learning under model misspecification. Our assumption
is that our learning strategy should further improve if we use tighter second-order Jensen bounds.
[35] proposed an alternative second-order Jensen bound which is tighter than the one considered
in Theorem 2. This new bound suggests a new learning algorithm, referred as PAC2

T -Variational
learning, already illustrated in Figure 1 for a linear model. The subscript T highlights that it relies on
tighter Jensen bounds. The only difference with the approach presented in Equation (4) is the use of
a different variance term, denoted V̂T (ρ,D),

V̂T (ρ,D) =
1

n

n∑
i=1

h(mxi , µxi)Eρ(θ)[(p(xi|θ)− p(xi))2], (5)

where µxi = Eρ(θ)[p(xi|θ)],mxi = maxθ p(xi|θ) and h(m,µ) = lnµ−lnm
(m−µ)2 + 1

µ(m−µ) . We provide
a formal proof for this new tighter bound in Appendix C.1. A numerically stable version of this
learning algorithm is provided in Appendix C.2. Figures C.5, C.6, C.8 and C.9 illustrate the behavior
of the two presented versions of the PAC2-Variational learning algorithm in several toy examples.

6.3 PAC2-Ensemble Learning

Ensemble models (see [12] for an introduction) are based on the combination of a finite set of models
to obtain better predictions than the predictions of a single model alone. This section provides an
adaptation of the previous results for learning a finite set of models (i.e., an ensemble model). As a
consequence, we provide a novel explanation of why the so-called diversity of the ensemble [31] is
key to have powerful ensembles. We also present a novel ensemble learning algorithm.

We first assume that Θ ⊆ RM . Let us denote ρE a mixture of Dirac-delta distributions centered
around a set of E parameters {θj}1≤j≤E ,

ρE(θ) =

E∑
j=1

1

E
δθj (θ).

So, we have that EρE(θ)[p(x|θ)] = 1
E

∑E
j=1 p(x|θj), i.e. the averaging of a finite set of models.

In order to properly define the Kullback-Leibler divergence between ρE and a given prior, we restrict
ourselves to the following family of priors, denoted πF (θ). For any prior πF (θ) within this family,
its support is contained in ΘF , which denotes the space of real number vectors of dimension M
that can be represented under a finite-precision scheme using F bits to encode each element of the
vector. So, we have that supp(πF ) ⊆ ΘF ⊆ Θ ⊆ RM . This prior distribution πF can be expressed
as, πF (θ) =

∑
θ′∈ΘF

wθ′δθ′(θ), where wθ′ are positive scalars values parametrizing this prior
distribution. They satisfy that wθ′ ≥ 0 and

∑
wθ′ = 1.

The following result provides a second-order PAC-Bayes bound for an ensemble of models,
Theorem 4. For any prior distribution πF over ΘF and independent of D and for any ξ ∈ (0, 1)
and c > 0, with probability at least 1− ξ over draws of training data D ∼ νn(x), for all densities
ρE with supp(ρE) ⊆ ΘF , simultaneously,

CE(ρE) ≤ EρE(θ)[L̂(θ, D)]− V̂(ρE , D) +
KL(ρE , πF ) + 1

2 ln 1
ξ + 1

2ψ
′
πF ,ν(c, n)

c n
,

where ψ′πF ,ν(c, n) is the same term as in Theorem 3, and V̂(ρE , D) is the empirical variance.
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Figure 3: The PAC2
T -Ensemble posterior, ρE , and its posterior predictive distribution for the same

misspecified linear regression model used in Figure 1. The ensemble used 5 linear regression models
which do not collapse and better approximates the data distribution (see Appendix C.3 for details).

A proof is provided in Appendix C.3. Note that V̂(ρE , D) can be interpreted as a measure of the
diversity of the ensemble [31]. According to the above result, to learn optimal ensembles, we need to
trade-off how well we fit the data (i.e., low values for EρE(θ)[L̂(θ, D)]) while also maintaining high
diversity (i.e., high V̂(ρE , D) values) to make the ensemble work (i.e., to reduce the generalization
bound given in Theorem 4). This is a clear explanation of why ensembles need diversity to generalize
better, but it is out the scope of the this paper to explore this claim.

We derive again a learning algorithm for building ensembles by minimizing the generalization
upper bound of Theorem 4. Similarly to the variational methods, we derived two versions, the
PAC2-Ensemble and the PAC2

T -Ensemble learning algorithms, based on the use of V̂(ρE , D) and
V̂T (ρE , D) (see Equation (5)), respectively. Note that these learning algorithms could be interpreted
as particle-based variational inference methods [37], because the posterior ρE is represented as a set
of particles, which could be potentially very expressive. Figure 3 illustrates one of these algorithms
for a simple linear regression model. In Appendix C.3, we provide all the details of these algorithms
and illustrate their behavior on another toy models, including one with multimodal posteriors.

We can similarly derive an ensemble algorithm from the PAC-Bayes bound of Theorem 1 using ρE
and πE densities. In this case, the V̂(ρE , D) term would disappear from the PAC-Bayes bound, and
the algorithm will not induce diversity among the ensemble members. For example, this algorithm
could recover as an optimal solution a collapsed ensemble with all models equal to the MAP model,
which is equivalent to a single ensemble model. See Appendix C.3 for a formal proof of this statement.

In Appendix C.4, we also show how all the learning algorithms presented in Section 6, based on
the minimization of second-order PAC-Bayes bounds, behave quite similarly to their first-order
counterparts when the model family is not misspecified (see Lemma 3 and the subsequent discussion).

7 Empirical Evaluation

We performed the empirical evaluation on two data sets, Fashion-MNIST [58] and CIFAR-10 [30]
and two prediction tasks 6. A standard supervised task and a self-supervised task, where the goal is to
predict the pixels of the below half part of the image given the pixels of the upper half part of the
same image. For the self-supervised task, we employed two data models: a Normal distribution for
continuous value predictions and a Binomial one for binarized pixels. The prediction model was a
multi-layer perceptron with 20 hidden units. We always assumed the same standard normal prior and
a fully factorized mean-field normal distribution. The generalization risk was evaluated by computing
the average negative log-likelihood (NLL) on independent test sets. Full details in Appendix D.

Figure 4 shows the result of this evaluation. These results validate the main hypothesis of our work:
the use of tighter bounds addressing the gap introduced when upper bounding the cross-entropy loss
CE(ρ) leads to learning algorithms that generalize better. PAC2-Variational and PAC2-Ensemble
methods, based on second-order bounds, have better predictive performance than standard variational

6The code to reproduce the results is available in https://github.com/PGM-Lab/PAC2BAYES.
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methods and single model ensembles, which are based on first-order bounds (see the discussions
at the end of Section 6.1 and Section 6.3, respectively). And, in turn, the PAC2

T -Variational and
PAC2

T -Ensemble methods, based on tighter second-order bounds, generalize better than the PAC2-
Variational and PAC2-Ensemble methods, respectively. The only exception is the classification task
in CIFAR-10, where all the variational approaches do not perform better than the MAP model. In
our opinion, this is due to poor prior specification, as discussed in [56], or because we employ a
too-simplistic variational family for these settings.

Ensemble methods (see Section 6.3) clearly outperform over the rest. We argue this is mainly because
the variational family ρE , based on mixtures of Dirac-delta distributions, is much more flexible
than standard mean-field variational approximations. In fact, ρE could even represent multimodal
distributions (see Appendix C.3 for a concrete example).

Figure 4: Experimental Evaluation. First column shows the ratio of the test negative log-likelihood
(NLL) wrt to a MAP model for the Variational (VAR), PAC2-Variational (PAC2-VAR) and PAC2

T -
Variational (PAC2

T -VAR) methods (e.g. ratio = 0.95 indicates a 5% improvement in NLL w.r.t. a
MAP model). Second and third columns similarly evaluates PAC2-Ensembles and PAC2

T -Ensembles
w.r.t. a MAP model (or, equivalently, an ensemble with a single model). All the models of the
ensembles are randomly initialized with the same parameters and are jointly optimized with the
same mini-batches, so it is the variance term V̂(ρE , D) the only mechanism which induces better
generalization performance, because, otherwise, all the models of the ensemble would be identical.

8 Discussion

This work performs a novel theoretical analysis of the generalization capacity of Bayesian model aver-
aging under model misspecification and provides strong theoretical arguments showing that Bayesian
methods are suboptimal for learning predictive models when the model family is misspecified.

These theoretical insights can be of help to better understand the generalization performance of
Bayesian approaches. For example, in many cases, Bayesian neural networks do not outperform
standard methods [44, 56]. Our work shows that, if a neural network does not perfectly represent
reality, Bayesian learning methods do not provide optimal generalization performance.

This work may also help to better explain the relationship between ensembles and Bayesian ap-
proaches. Deep ensemble models [32, 49] provide SOTA performance for uncertainty estimation.
[57] argues that ensembles are approximate Bayesian methods, which are able to capture multimodal-
ity. But we provide an alternative theoretical explanation. We show that we need to induce diversity
[31], measured by the variance term of the second-order PAC-Bayes bound, to define ensembles
of models that generalize. We hypothesise that the random initialization of each member of the
ensemble is one of the key ingredients to make them diverse.
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Broader impact

Machine learning models are quickly playing a prominent role in society, industries, and individuals.
In consequence, there is a growing demand to have machine learning models that can assert the
confidence they have in their predictions, specially, to avoid catastrophic decisions. Predictive
models which provide well-calibrated probabilities are a sound way to attach a confidence level
to a prediction. Bayesian methods are the main tools employed for this goal. This work provides
novel theoretical tools to better understand why Bayesian methods induce predictive models with
suboptimal performance in terms of well-calibrated probabilities. So, the findings of this work can be
of help to develop more accurate and safer predictive models in machine learning, which could ease
the adoption of this technology.
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