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Abstract

Neural networks have been shown to perform incredibly well in classification tasks
over structured high-dimensional datasets. However, the learning dynamics of such
networks is still poorly understood. In this paper we study in detail the training
dynamics of a simple type of neural network: a single hidden layer trained to
perform a classification task. We show that in a suitable mean-field limit this case
maps to a single-node learning problem with a time-dependent dataset determined
self-consistently from the average nodes population. We specialize our theory to
the prototypical case of a linearly separable data and a linear hinge loss, for which
the dynamics can be explicitly solved in the infinite dataset limit. This allows us to
address in a simple setting several phenomena appearing in modern networks such
as slowing down of training dynamics, crossover between rich and lazy learning,
and overfitting. Finally, we assess the limitations of mean-field theory by studying
the case of large but finite number of nodes and of training samples.

1 Introduction

Despite their proven ability to tackle a large class of complex problems [1], neural networks are
still poorly understood from a theoretical point of view. While general theorems prove them to be
universal approximators [2], their ability to obtain generalizing solutions given a finite set of examples
remains largely unexplained. This behavior has been observed in multiple settings. The huge number
of parameters and the optimization algorithms employed to optimize them (gradient descent and its
variations) are thought to play key roles in it [3–5].

In consequence, a large research effort has been devoted in recent years to understanding the training
dynamics of neural networks with a very large number of nodes [6–8]. Much theoretical insight has
been gained in the training dynamics of linear [9, 10] and nonlinear networks for regression problems,
often with quadratic loss and in a teacher-student setting [11–14], highlighting the evolution of
correlations between data and network outputs. More generally, the input-output correlation and its
effect on the landscape has been used to show the effectiveness of gradient descent [15, 16]. Other
approaches have focused on infinitely wide networks to perform a mean-field analysis of the weights
dynamics [17–22], or study its neural tangent kernel (NTK, or “lazy”) limit [23–26].
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In this work, we investigate the learning dynamics for binary classification problems, by considering
one of the most common cost functions employed in this setting: the linear hinge loss. The idea
behind the hinge loss is that examples should contribute to the cost function if misclassified, but also
if classified with a certainty lower than a given threshold. In our case this cost is linear in the distance
from the threshold, and zero for examples classified above threshold, that we shall call satisfied
henceforth. This specific choice leads to an interesting consequence: the instantaneous gradient for
each node due to unsatisfied examples depends on the activation of the other nodes only through their
population, while that due to satisfied examples is just zero. Describing the learning dynamics in
the mean-field limit amounts to computing the effective example distribution for a given distribution
of parameters: each node then evolves “independently” with a time-dependent dataset determined
self-consistently from the average nodes population.

Contribution. We provide an analytical theory for the dynamics of a single hidden layer neural
network trained for binary classification with linear hinge loss. In Sec. 2 we obtain the mean-field
theory equations for the training dynamics. Those equations are a generalizations of the ones obtained
for mean-square loss in [17–22]. In Sec. 3 we focus on linearly separable data with spherical
symmetry and present an explicit analytical solution of the dynamics of the nodes parameters. In
this setting we provide a detailed study of the cross-over between the lazy [23] and rich [27] learning
regimes (Sec. 3.2). Finally, we assess the limitations of mean-field theory by studying the case of
large but finite number of nodes and finite number of training samples (Sec. 3.3). The most important
new effect is overfitting, which we are able to describe by analyzing corrections to mean-field theory.
In Sec. 3.4 we show that introducing a small fraction of mislabeled examples induces a slowing down
of the dynamics and hastens the onset of the overfitting phase. Finally in Sec. 4 we present numerical
experiments on a realistic case, and show that the associated nodes dynamics in the first stage of
training is in good agreement with our results.
The merit of the model we focused on is that, thanks to its simplicity, several effects happening in
real networks can be studied analytically. Our analytical theory is derived using reasoning common
in theoretical physics, which we expect can be made rigorous following the lines of [17–22]. All our
results are tested throughout the paper by numerical simulations which confirm their validity.

Related works. The study of neural network dynamics with one (or few) nodes started in statistical
physics [11], but was mainly focused on the online setting. More recent works on separable data [28,
29] observed the main trend of logarithmic alignment with the max margin vector under rather general
settings. Mean-field analysis of the training dynamics of very wide neural networks have mainly
focused on regression problems with mean-square losses [17–23], whereas fewer works [30, 31] have
tackled the dynamics for classification tasks.1 The task and architecture we focus on bears strong
similarities to the one proposed in des Combes et al. [30], but with fewer assumptions on the dataset
and initialization. With respect to [30], we show the relation with mean-field treatments [17–22] and
provide a full analysis of the dynamics, in particular the cross-over between rich and lazy learning.
Moreover, we discuss the limitations of mean-field theory, the source of overfitting and the change in
the dynamics due to mislabeling.

2 Mean-Field equation for the density of parameters

We consider a binary classification task for N points in d dimensions fxng � Rd with corresponding
labels yn = �1. We focus on a hidden layer neural network consisting of M nodes with activation �.
The output of the network is therefore

f(x; �) =
1

M

MX
i=1

ai�

�
wi � xp

d

�
; (1)

where �i = fai;wig represents all the trainable parameters of the model: fwig, the d-dimensional
weight vectors between input and each hidden node, and faig, the contributions of each node to
the output. All components are initialized before training from a Gaussian distribution with zero
mean and unit standard deviation. The 1=M in front of the sum leads to the so-called mean-field
normalization [17]. In the large-M limit, this allows to do what is called a hydrodynamic treatment
in physics, a procedure that have been put on a rigorous basis in this context in [17–23] (here the �is
play the role of particle positions). One of the main assumptions of this procedure is that in the large

1In the NTK (or “lazy”) limit [23–25] general losses have been considered.
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M -limit one can rewrite the output function in terms of the averaged nodes population (or density)
�(�):

f(x; �) =

Z
d��(�)a�

�
w � xp
d

�
: (2)

To optimize the parameters we minimize the loss function

L =
1

N

NX
n=1

‘(yn; f(xn; �)) (3)

by gradient flow _� = ���@L=@� (‘(x; y) will be specified later). The dynamical equations for the
parameters fai;wig read:8>>>><>>>>:

_ai = � �
N

NX
n=1

@‘(yn; f(x; �))

@f
�

�
wi � xp

d

�
_wi = � �

N

NX
n=1

@‘(yn; f(x; �))

@f
ai�
0
�

wi � xp
d

�
xp
d
;

(4)

where we have defined the effective learning rate � = ��=M . These equations show that the coupling
between the different nodes has a mean-field form: it is through the function f , i.e. only through the
density �(�; t). Following standard techniques one can obtain a closed hydrodynamic-like equation
on �(�; t) in the large M limit:

@t�(�; t) = �rθ

�
�(�; t)rθ

�L[�(�; t)]

��(�; t)

�
; �(�; 0) = N (0; I) (5)

where we have made explicit that the L is a functional of the density � since it depends on f(x; �),
see eqs. (2, 3). The convergence of the dynamical process to the hydrodynamic limit is usually
assumed in the physics literature, proofs (that we expect can be generalized to our case) have been
worked out in [32, 33]. (see SM for details)

To be more concrete, in the following we consider the case of linear hinge loss, ‘(y; f) = R(h� yf)
(h being the size of the hinge, often taken as 1), and rectified linear unit (ReLU) activation function:
�(x) = R(x) = max(0; x). With this choice

�L[�(�; t)]

��(�; t)
= �a

�
u(x; y; t)� (w � x) y

w � xp
d

�
x;y

; (6)

� being the Heaviside step function. The notation u(x; y; t) � Ih�yf(x;θ(t))>0 denotes the indicator
function of the unsatisfied examples, i.e. those (x; y) for which the loss is positive, and h�ix;y denotes
the average over examples and classes (y = �1 for binary classification). The dynamical equations
on the node parameters simplify too:8>><>>:

_ai(t) =
�p
d

wi � hu(x; y; t)� (wi � x) y xix;y

_wi(t) =
�p
d
ai hu(x; y; t)� (wi � x) y xix;y :

(7)

Remarkably, the equation on the wi is very similar to the one induced by the Hebb rule in biological
neural networks.

3 Analysis of a linearly separable case

We now focus on a linearly separable model, where the dynamics can be solved explicitly. We
consider a reference unit vector ŵ� in input space and examples distributed according to a spherical
probability distribution P (x). We label each example based on the sign of its scalar product with ŵ�,
leading to a distribution for y = �1: P (x; y) = P (x)�(y(ŵ� � x)).
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In order to be able to explore different training regimes, we adopt a rescaled loss function, similar to
the one proposed in Chizat et al. [23]:

L � (� ) =
1

� 2N

NX

n =1

R
h
h � �y n

�
f (xn ; � ) � f (xn ; � 0)

�i
; (8)

where� is the rescaling parameter and� 0 are the parameters at the beginning of training. Subtracting
the initial output of the network ensures that no bias is introduced by the speci�c �nite choice of
parameters at initialization, while having no in�uence in the hydrodynamic limit since the output is 0
by construction.

3.1 Explicit solution for an in�nite training set

We �rst consider the limit of in�nite number of examples, and later discuss the effects induced by a
�nite training set.

Figure 1: Training of a network withM = 400, N = 105, d = 100, � = 1 :0, h = 1 , � � = 103,
for tmax = 2 � 103 timesteps (until all examples are classi�ed) with �nal generalization error� 0:01
evaluated on105 examples. Data and initial parameters are taken from a normal distribution of zero
mean and width 1 per dimension.a, b: Evolution of ten of theai (t)s in (a) and of thewk

i (t)s in (b)
during training (circles) compared to our theoretical prediction (lines) for the same initial values.c:
Evolution of (t) obtained through numerical integration of eq. 13 for the parameters of this example.
The dashed lines represent the linear approximation neart = 0 and the logarithmic slopelog(t)=4 for
large (shifted with a �tted constant).d: Projection of examples on the vectorŵ � as a function of
the timetsat when they are �rst satis�ed. The red line is the estimate of our theory, the dashed lines
represent our estimate for a standard deviation due to the �nite number of nodesM (see Sec. 3.3).

The explicit solution of the training dynamics is obtained making use of the cylindrical symmetry
aroundŵ � , which implies that the average in the equations of motion (7) does not depend onw, i.e.

hu(x; y; t)� (w � x) y x i x ;y = I (t)ŵ � : (9)

whereI (t) � h u(x; y; t)� (w � x) y x � ŵ � i x ;y . By plugging the identity (9) into eqs. (6, 7) one �nds
that the hydrodynamic equation (5) can be solved by the method of the characteristic, where� (� ; t)
is obtained by transporting the initial condition through the equations (7). By decomposing the vector
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w in its parallel and perpendicular components with respect toŵ � , i.e. w = wk ŵ � + w? , and using
the solution� (� ; t), one �nds that the parameters� at timet are distributed in law as:

8
><

>:

a(t) d� a(0) cosh( (t)) + wk (0) sinh( (t))

wk (t) d� wk (0) cosh( (t)) + a(0) sinh( (t))

w? (t) d� w? (0)

;  (t) =
�

�
p

d

Z t

0
I (t)dt: (10)

wherea(0); wk (0); w? (0) are given by the initial condition distributions: since all initial components
of w were taken as i.i.d. Gaussian, so iswk (0) and every component ofw? (0) for any choice of basis.
Using the distribution of� at timet, one can then computehu(x; y; t)� (w � x) y x � ŵ � i x ;y and
hence obtain a self-consistent equation onI (t), which completes the mean-�eld solution. Similarly,
one can obtain explicitly the output function and the indicator function which acquire a simple form:

f (x ; � ) =
sinh(2 (t))

2
p

d
ŵ � � x ; (11)

u(x; y; t) = �

 
2h

p
d

� sinh(2 (t))
� yŵ � � x

!

(12)

where we have used thatf (x ; � ) = 0 at t = 0 . As expected, both functions have cylindrical symmetry
aroundŵ � . The analytical derivation of these results and the following ones is presented in the SM.
Since by de�nitionI (t) � 0 the function (t) is monotonously increasing and starts from zero at
t = 0 . To be more speci�c, we consider two cases: normally distributed data with unit variance in each
dimension, and uniform data on thed-dimensional unit sphere. The corresponding self-consistent
equations on (t) read respectively:

_ (t) =
�I N (0)

�
p

d

�
1 � exp

�
�

2h2d

� 2 sinh2(2 (t))

��
; (13)

_ (t) =
�I S (0)

�
p

d

�
1 � max

�
0; 1 � 4h2d=(� 2 sinh2(2 (t)))

� d � 1
2

�
; (14)

whereI N (0) = 1 =
p

2� andI S (0) = �
�

d+2
2

�
=(�

�
d+1

2

�
d
p

� ). Both equations imply that (t) � t
for smallt and (t) � ln t for larget.

We have now gained a full analytical description of the training dynamics: the node parameters evolve
in time following eqs. (10). Note that their trajectory is independent of the training parameters and
the initial distribution, which only affect the time dependence, i.e. the “clock” (t). The change of
the output function is given by eq. (11), where one sees that only the amplitude off (x; � ) varies with
time and is governed by (t). The amplitude increases monotonically so that more examples can be
classi�ed above the marginh at later times; the more examples are classi�ed the slower becomes the
increase of (t) and hence the dynamics.

Our theoretical prediction can be directly compared with a simple numerical experiment. Fig. 1
shows the training of a network withM = 400 on Gaussian input data. The top panels (a andb)
compare the analytical evolution of the network parametersai andwk

i obtained from eqs. (10) to
the numerical one. Inc we plot (t) (computed numerically) showing that it grows linearly in the
beginning and logarithmically at longer times, as expected from theory. Ind we show a scatter
plot illustrating that the time when an example is satis�ed is proportional to its projection on the
reference vector, following on average our estimate based on eq. (12). Overall, the agreement with
the analytical solution is very good. The spread around the analytical solution in paneld is a �nite-M
effect, that we will analyze in Sec. 3.3. The departure from the analytical result (10) happens at large
time when the �niteness of the training set starts to matter (the larger is the training set the larger is
this time). In fact, for any �nite number of examples the empirical average over unsatis�ed examples
deviates from its population average and the dynamics is modi�ed eventually, and ultimately stops
when the whole training set is classi�ed beyond margin. We study this regime in Sec. 3.3.

3.2 Lazy learning and rich learning regimes

The presence of the factor� in the loss function (8) allows us to explore explicitly the crossover
between different learning regimes, in particular the“lazy learning” regime corresponding to
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Figure 2: Evolution ofai andwk
i for a network withM = 400, N = 104, d = 100, h = 1 in two

different regimes. Data and initial parameters are taken from a normal distribution of zero mean
and width 1 per dimension.a: First and last step of a case with� = 103 (learning rate� � = 104,
training set is �tted byt = 3000, �nal generalization error� 0:04). The arrows indicate the analytical
derivative att = 0 , showing that the evolution is approximately linear.b: Initial steps (time indicated
in legend) of a case with� = 10 � 3 (learning rate� � = 1 , training set is �tted byt = 300, �nal
generalization error� 0:02). The gray lines follow the evolution of each node.

� ! 1 [23]. The dynamical equations can be studied in this limit by introducing (t) = � (t).
For concreteness, let us focus on the case of normally distributed data. Taking the� ! 1 limit of
eq. (13) one �nds the equation for (t):

_ (t) =
�I N (0)

p
d

�
1 � exp

�
�

2h2d
4 (t)2

��
; (15)

As for the evolution of the parameters and the output function, we obtain:
8
><

>:

ai (t) � ai (0) = wk
i (0)

 (t)
�

+ O(� � 2)

wk
i (t) � wk

i (0) = ai (0)
 (t)
�

+ O(� � 2)
; �f (x ; � ) =

 (t)
p

d
ŵ � � x : (16)

The equations above provide an explicit solution of lazy learning dynamics and illustrate its main
features: the� i evolves very little and along a �xed direction, in this case given by(wk

i (0); ai (0); 0).
Despite the small changes in the nodes parameters, of the order of1=� , the network does learn since
classi�cation is performed through�f (x ; � ) which has an order one change even for� ! 1 . In this
regime, the correlation betweena andwk only increases slightly, but this is enough for classi�cation,
since an in�nite amount of displacements in the right direction is suf�cient to solve the problem.
On the contrary, when� is of order one or smaller, the dynamics is in the so-called“rich learning”
regime [27]. At the beginning of learning, the initial evolution of the� i s follows the same linear
trajectories of the lazy-learning regime. However, at later stages, the trajectories are no more linear
and the norm of the weights increases exponentially in (t), stopping only at very large values of
when all nodes are almost aligned withŵ � (for small � ). Note that, as observed in Geiger et al.[34],
with the standard normalization1=

p
M it would be the parameter�

p
M governing the crossover

between the two regimes.

We compare the two dynamical evolutions in Fig. 2. The left panel (a) shows the displacement
of parameters between initialization and full classi�cation (zero training loss) for a network with
� = 103. As expected, the displacement is small and linear. A very different evolution takes place for
� = 10 � 3 in the right (b) panel. The trajectories are non-linear, and all nodes approach large values
close to thea = wk line at the end of the training. Correspondingly, the initially isotropic Gaussian
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