
Supplementary Material for
Generative View Synthesis: From Single-view

Semantics to Novel-view Images

Tewodros Habtegebrial1,4 Varun Jampani2 Orazio Gallo3 Didier Stricker1,4
1TU Kaiserslautern 2Google Research 3NVIDIA 4DFKI

1 Additional Experimental Results
In this supplementary, we provide additional details on depth estimation and evaluation(in section 1.3),
evaluation with different style images(in section 1.4), network architecture(2), comparison with more
advanced baselines (1.2), and additional training details(in section 3).

1.1 Visual Results
We have included additional visual results of our approach along with different baseline techniques
in the supplementary video. We highly encourage the readers to watch the supplementary video.
More visual results on depth estimation are included in Figure 1.

1.2 Comparison RGB+Seg View Synthesis Methods

In our the paper we compared against baseline constructed as a sequential application of Image-
to-Image Translation and Monocular Novel-view Synthesis (MNVS). The results indicate that our
method preserves the semantics/geometry of the input scene. In-order to further improve the baselines,
we experimented with feeding the MNVS part with RGB and Semantics. The RGB and Semantics
are concatenated channel wise and fed as input to MNVS methods. As expected, feeding RGB and
Semantics improves the performance of all baselines. Table 1 shows that the SPADE [9]+SM [11],
baseline that takes an additional semantic map (indicated as SPADE [9]+SM [11]+) performs better
than its RGB counterparts.

Method Cls. Acc ↑ IoU ↑ PD↓ FID↓

GVSNet 74.34 66.43 1.74 62.06
SPADE+SM 69.93 60.82 1.95 75.81
SUN+SPADE 72.92 65.52 1.75 68.96
SPADE+SM+ 72.29 63.55 1.75 73.74

Table 1: Comparing against an SPADE [9]+SM [11] baseline, where the SM network takes a
translated image together with the input semantics. As show in rows 3 and 4 the feeding the SM
network with semantics leads to better performance. However, as can be seen in the first column our
method consistently outperforms the improved and the original baselines.

1.3 Depth Estimation and Evaluation
Extracting Depth Maps from Multi-Plane Transparencies. Our Semantic Uplifting Net-
work (SUN) estimates multi-plane transparencies α, in the reference camera. Here we show a
simple way to convert α ∈ Rn×m in to a depth map Ẑ ∈ Rn, where n is the number of pixels and m
is the number of planes in the MPI representation. Suppose the MPI planes are located at distances
{d1, d2, . . . , dm} and are fronto-parallel to the reference camera. The depth value at a pixel p, Ẑ(p),

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

RGB Semantics MD Ours GT-Depth

Figure 1: Depth Estimation Results. Here we present more visual depth estimation results from our
SUN model and MonoDepth (MD) model trained with ground-truth depths.

is computed by alpha compositing the depth of the MPI planes with the alpha values at pixel p, as
follows.

Ẑ(p) =

m∑
i=1

«

di α(p, i)

«

i−1∏
j=1

(1− α(p, j))

ffff

(1)

Depth Evaluations. In Table 2, we show accuracy of the depths estimated by our SUN method and
compare it against a baseline network trained with ground truth depths. The baseline network uses
an RGB input while our method uses semantics as input. The baseline network is taken from the
MonoDepth [5]; it is an encoder decoder network with ResNet-18 backbone. The network can be
trained in a self-supervised manner, however for a fairer comparison, we train the network using
ground-truth depth.

We evaluated these networks following traditional depth accuracy metrics [10]: scale invariant depth
(SC_Inv), relative depth (L1_Rel) and inverse depth (L1_Inv) metrics. Using only semantics as input,
which is devoid of photo-metric details, our network produces favourable depth estimations when
compared to the baseline. Our method outperforms the MonoDepth network on SC_Inv and L1_Inv
metrics. However, on L1_Rel, our method under-performs compared to MonoDepth. We believe this
is due to the fact that MPI planes are distributed by sampling the inverse depth linearly. This results
in having few planes far from the camera. Nonetheless, for the view synthesis tasks it is desirable to
have higher accuracy at closer ranges.

2

Method Input Supervision SC_Inv L1_Rel L1_Inv Depth range
(in meters)

Ours Sem Sem + Depth 0.200 0.129 0.006 1 - 100
Mono-Depth RGB Depth 0.225 0.125 0.008 1 - 100

Ours Sem Sem + Depth 0.252 0.184 0.006 1 - 200
Mono-Depth RGB Depth 0.269 0.155 0.008 1 - 200

Ours Sem Sem + Depth 0.331 0.395 0.006 1 - 1000
Mono-Depth RGB Depth 0.358 0.268 0.007 1 - 1000

Table 2: Depth accuracy evaluation on CARLA [4] dataset. Depth maps generated by our SUN
model and monocular depth estimation network from [5]. SC_inv, L1_Rel and L1_Inv stand for scale
invariant, L1 relative and L1 inverse depth metrics, respectively.

1.4 Evaluations with Different Style Images.

As can be seen in the Figure-1 of the main paper and in the supplementary video, our method can
produce novel-views with different styles, as dictated by the given style images. In image-to-image
literature [9], it is customary to use the target color image as a style during evaluation. Following this
custom, we use the color image from the source camera as a style guidance for the novel-view image
generation. In order to verify the efficacy of method under arbitrary styles, we perform an additional
test where our method is not fed the input image as style, rather a random frame the same sequence is
used as style input. In Table 3, we show semantic evaluation results using this procedure. The results
show that our method still outperforms the baselines under this setting of using different style image.

Method Cls. Acc. ↑ Mean IoU ↑

GVSNet Variations
GVSNet (Full Model) 73.16 65.40
SUN+SPADE [9] 70.95 63.73
SPADE [9] + SM [11] 67.26 58.71
SPADE [9] + CVS [2] 64.70 55.67
SPADE [9] + AF [12] 63.28 54.05

Target GT Images 77.47 69.67

Table 3: Semantic evaluations on CARLA [4] dataset. Metrics are computed using a single
randomly chosen style frame per sequence. This test shows that our method handles arbitrary style
images. Our Class Accuracy and Mean IoU results here are also close the results achieved using the
source-view color image as style input. As reported in the main paper paper, using source-view color
image as style we obtain Cls. Acc. of 77.34 and mean IoU of 66.43.

2 Network Architectures
Semantic Uplifting Network. Our Semantic Uplifting Network (SUN), is a 2D encoder-decoder
network with 3 outputs: lifted semantics, MPI transparency α and association function Φ. These 3
outputs are predicted jointly, with the network architecture shown in Table 4.

Appearance Decoder Network. Table 5 shows the detailed architecture of the Appearance Decoder
Network (ADN) network.

Layered Translation Network. Layered Translation Network (LTN) consists of layered appearance
generator and style encoder networks. The architecture of both the appearance generator and encoder
networks are similar to those used in the SPADE [9] paper. However, in this work the generator
network performs layered translation of k semantic maps. The output of the network is also different
since we predict higher dimensional features, not color images. Our generator, takes input semantics
of shape [H ×W × k × l] and produces appearance features with dimensions [H ×W × l × f]. In
our experiments, we found that k = 3 and f = 20 suffice to achieve good results. The GAN part of
our work is based on SPADE, therefore, we use the same discriminator network and training losses
as in the SPADE work.

3

3 Additional Experimental Details
3.1 Dataset Details

We use three publicly available datasets for our GVS experiments. In all 3 datasets we used images
down scaled to a resolution of 256× 256 pixels.

CARLA. Using the CARLA [4] open source simulation environment, we captured 20 independent
sequences in 5 towns. We use 16 sequences for training and 4 sequences for testing, taking one
test sequence per city. We capture data using camera arrays mounted on top of a car. Each camera
captures color, semantic and depth images. We use 3 groups of camera arrays: horizontal, forward
and side-camera groups. The horizontal camera array has 5 cameras at uniform spacing along the
x− axis. The forward camera array has 5 cameras uniformly distributed along z − axis. The side
camera array contains 3 horizontally shifted cameras facing the side-view of the car. The spacing
between cameras within each array is 54cms. During training and testing we take a random pair of
cameras from one of the camera groups and use one as source and the other as target.

Cityscapes is a publicly available dataset of urban scenes captured across several German cities [3].
We use 2975 scenes for training and 500 scenes for test. Each scene is captured with a stereo pair.
During training and testing phases, we use one of the two stereo cameras as source and the other
as target. Ground truth semantics is available for the left camera images only. We label the right
camera images using a pre-trained semantic segmentation network [13]. Citycapes dataset has no
ground-truth depth. We generate depth maps by training the DPS [6] network in a self-supervised
manner. In order to achieve results which are comparable with SPADE [9], we use instance masks in
our experiments on this dataset. We compute a one channel instance mask image, as a gradient of the
original instance segmentation. We use instance masks by concatenating the input view instance mask
with lifted semantics. Since right camera instance masks are not available, we generate a pseudo
ground-truth instance masks by warping the left image masks using the depths estimated by DPS
network [6]. While warping, we perform forward-backward depth tests to detect occlusions and in
areas where occlusion is detected we leave the instance masks empty. Note, that in other datasets we
do not use instance masks. In all of our experiments, we use 19 class labels provided by the dataset.

Virtual-KITTI-2 is a synthetic dataset of urban scenes captured with a stereo camera. Each stereo
pair has color images together with ground-truth depths and semantic segmentations. The dataset has
6 sequences captured under 5 weather conditions. Each sequence is randomly divided in to train and
test sub-sequences. The training sub-sequence covers 80 % of the frames and the test sub-sequence
covers has 20% of the frames.

3.2 Training Details

Depth Loss. We compute the depth reconstruction loss Ldep on a scaled version of the predicted and
target inverse depth maps. The scaled inverse depth is computed as fx × 0.54/depth, where fx is
the focal length. This is equivalent to converting depth into disparity by assuming imaginary stereo
camera with a baseline of 54cms. Since, all of the datasets used in this paper are large scale outdoor
scenes, the same scaling works well for all the datasets.

Loss Weighting. We set the depth loss weighting factor λ1 = 0.1, while the other weighting
factors (λ0, λ2 and λ3) are all set to 1.

Training Protocol GVSNet is trained in two phases. In the first phase, the Semantic Uplifting
Network (SUN) is trained using depth reconstruction and semantic alignment losses. For the
CARLA [4] dataset, we train the SUN network for 30 epochs. In Cityscapes [3] dataset, we train for
200 epochs and in Virtual KITTI-2 [1], we train for 60 epochs. In all datasets, we use mini-batch size
12 and Adam [7] optimizer with a lr = 0.0004, β1 = 0.900, β2 = 0.999), and eps = e−08. This
SUN training is performed using 3 NVIDIA GTX-2080-Ti GPUs.

In the second phase, the Layered Translation Network (LTN) and Appearance Decoder Network
(ADN), are trained by minimising the color and GAN losses. We train these networks while keeping
the SUN network fixed. For CARLA dataset, we train for 20 epochs. In Cityscapes and Virtual
KITTI-2 datasets, we train for 250 and 35 epochs respectively. In this phase, we use a batch size of
16. The training is done using 8 NVIDIA GTX-2080-Ti GPUs. We use Adam [7] optimizer with the
initial learning rate of lr = 0.0004. The learning rate is kept fixed for the first half of the training. In
the second half, we start decreasing the learning rate linearly so that it reaches 0 at the last iteration.

4

Layer Input Type Stride in_chans out_chans

conv1a input sem Conv2d + ReLU 2 l 32

conv1b conv1a Conv2d + ReLU 1 32 32

conv2a conv1b Conv2d + ReLU 2 32 64

conv2b conv2a Conv2d + ReLU 1 64 64

conv3a con2b Conv2d + ReLU 2 64 128

conv3b conv3a Conv2d + ReLU 1 128 128

conv4a conv3b Conv2d + ReLU 2 128 256

conv4b conv4a Conv2d + ReLU 1 256 256

conv5a conv4b Conv2d + ReLU 2 256 512

conv5b conv5a Conv2d + ReLU 1 512 512

conv6a conv5b Conv2d + ReLU 2 512 512

conv6b conv6a Conv2d + ReLU 1 512 512

conv7a conv6b Conv2d + ReLU 2 512 512

conv7b conv7a Conv2d + ReLU 1 512 512

dconv7 conv7a Conv2d + ReLU 1 512 512

dconv6 dconv7
⊕

conv6b Conv2d + ReLU 1 1024 512

dconv5 dconv6
⊕

conv5b Conv2d + ReLU 1 1024 512

dconv4 dconv5
⊕

conv4b Conv2d + ReLU 1 768 384

dconv3 dconv4
⊕

conv3b Conv2d + ReLU 1 512 256

dconv2 dconv3
⊕

conv24 Conv2d + ReLU 1 320 96

dconv1 dconv2
⊕

conv1b Conv2d + ReLU 1 128 96

base_1 dconv1 Conv2d + ReLU 1 96 96

base_2 base_1 ResBlock 1 96 96

base_3 base_2 ResBlock 1 96 96

base_4 base_3 ResBlock 1 96 96

base_5 base_4 ResBlock with BN 1 96 96

base_6 base_5 ResBlock with BN 1 96 96

out_conv_1a base_6 Conv2d+ReLU 1 96 (l x (k-1) + m*(k+1))/2

out_conv_1b out_conv_1a Conv2d+ReLU + BN 1 (l x (k-1) + m*(k+1))/2 (l x (k-1) + m*(k+1))/2

out_conv_a out_conv_1b Conv2d+ReLU 1 (l x (k-1) + m*(k+1))/2 (l x (k-1) + m*(k+1))/2

out_conv_1b out_conv_a Conv2d 1 (l x (k-1) + m*(k+1))/2 l x (k-1) + m*(k+1)

Table 4: Semantic Uplifting Network Architecture. In this table in_chans and out_chans refer to
input and output number of channels, respectively. The size of the SUN network depends on the
following hyper-parameters: number of layered semantic maps (k), number of MPI planes (m) and
number semantic classes (l). The output from the out_conv_1b layer is split into α, Φ and layered
semantics channels. α and Φ take up m and k × m channels, respectively. Since we create the
layered semantic representation includes the input semantics, the network predicts layered semantics
only for (k − 1) layers, with a total of (k − 1) × l channels. Sigmoid activation is applied on the
α and Φ outputs. All of the layers in this network are 2D convolutional layers. Encoder layers
conv1a up to conv7b decrease the spatial resolution of their output by a factor of 2 using stride 2
convolutions. Decoder layers dconv7 to deconv1 apply nearest neighbour up-sampling with a factor
of 2 before applying convolution and ReLU. The ResBlock have 2 convolutional layers (the first one
has ReLU activation), and the output of the second layer is added to the input. The

⊕
sign refers to

channel-wise concatenation.

References
[1] Yohann Cabon, Naila Murray, and Martin Humenberger. Virtual KITTI 2. In arXiv Preprint,

2020. 4

5

Layer input in_chans out_chans

conv_0 appearance features f 16
conv_1 conv_0 16 32
conv_2 conv_1 32 64
conv_3 conv_2 64 64
conv_4 conv_3 64 64

d_conv_4 conv_4 64 64
d_conv_3 d_conv_4

⊕
conv_3 128 32

d_conv_2 d_conv_3
⊕

conv_2 64 32
d_conv_1 d_conv_2

⊕
conv_1 64 16

output_conv d_conv_1
⊕

conv_0 32 3

Table 5: Architecture of the Appearance Decoder Network. In this table in_chans and out_chans stand
for the number of input and output channels. The

⊕
sign indicates channel-wise concatenation. The

ADN network gets f−channel appearance feature as input and returns a 3−channel color image as
output. Every layer in this network is a convolutional layer with 3× 3 kernel and stride of 1. All layers
except output_conv have spectral normalisation and LeakyReLU non-linearity (with negative slope
value of −0.2) after convolution. output_conv layer applies Tanh non-linearity after convolution and
it has no spectral normalisation [8]. Layers conv_0 up to conv_4 down scale the spatial dimensions
of their output using a bilinear down-sampling kernel. Equivalently, layers d_conv_4 up to d_conv_1
perform bilinear up-sampling with a factor of 2, before convolution is applied.

[2] Xu Chen, Jie Song, and Otmar Hilliges. Monocular neural image based rendering with
continuous view control. In IEEE International Conference on Computer Vision (ICCV),
2019. 3

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes dataset for semantic
urban scene understanding. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 4

[4] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In arXiv Preprint, 2017. 3, 4

[5] Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth
estimation with left-right consistency. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017. 2, 3

[6] Sunghoon Im, Hae-Gon Jeon, Stephen Lin, and In So Kweon. DpsNet: End-to-end deep plane
sweep stereo. In arXiv Preprint, 2019. 4

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In arXiv
Preprint, 2014. 4

[8] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. arXiv Preprint, 2018. 6

[9] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis
with spatially-adaptive normalization. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019. 1, 3, 4

[10] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Nikolaus Mayer, Eddy Ilg, Alexey
Dosovitskiy, and Thomas Brox. Demon: Depth and motion network for learning monocular
stereo. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. 2

[11] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo Magnifi-
cation: Learning view synthesis using multiplane images. In ACM Transactions on Graphics
(SIGGRAPH), 2018. 1, 3

[12] Tinghui Zhou, Shubham Tulsiani, Weilun Sun, Jitendra Malik, and Alexei A Efros. View
synthesis by appearance flow. In European Conference on Computer Vision (ECCV), 2016. 3

6

[13] Yi Zhu, Karan Sapra, Fitsum A Reda, Kevin J Shih, Shawn Newsam, Andrew Tao, and Bryan
Catanzaro. Improving semantic segmentation via video propagation and label relaxation. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019. 4

7

