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Abstract

This document provides the complete proofs and additional details for the main1

results stated in the NeurIPS submission titled “Randomized tests for high-2

dimensional regression: A more efficient and powerful solution”.3
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Notation. We use d
= for two random variables that have the same distribution. Let Φ(·) denote24

the CDF of N (0, 1), and zα denote the upper α quantile of N (0, 1). The upper α quantile of F -25

distribution with degrees of freedom (p, n− p) is denoted by qα,p,n−p. Moreover, the norm ‖ · ‖226

stands for Euclidean norm for a vector, and spectral norm for a matrix. Matrix Frobenuis norm is27

denoted by ‖ · ‖F . We call an � bn if there is a universal constant c0 such that 1
c0
≤ an

bn
≤ c0 for28

large enough n, and an . bn if an ≤ c0bn for large enough n.29

A Relaxation of Gaussian Assumptions30

In this part, we show that the proposed sketching test is still valid under more general conditions for31

both data matrix and noise distribution. To do this, we invoke a new set of assumptions on Xi and zi32

in model (2), which hold beyond the Gaussian setting.33

(B1) The design vectors are generated as xi = Γui, where Γ ∈ Rp×m satisfies ΓΓ> = Σ and34

u1, . . . ,un are i.i.d. instances with E[ui] = 0 and Var[ui] = Im for some m ≤ k. Additionally, we35

assume that ui satisfies36

(a) (polynomial tail) There exists constant c, C > 0 such that for any n ∈ N, orthogonal projection37

P in Rm and t > Crank(P ), we have P(‖Pui‖2 > t) ≤ Ct−1−c;38

(b) (bounded moment) We have sup‖v‖=1(E|v′ui|8)1/8 = O(1) and for any symmetric matrix
sequenceM ∈ Rm×m,

Var[u>i Mui] = O(tr(M2)) + o(tr2(M)).

(B2) The noise vector z is independent of design matrix, with E[z2
i ] = 1 and E[z4

i ] ≤ c for 1 ≤ i ≤ n39

and some universal constant c > 0.40

With this new set of assumptions, we are able to obtain similar results as in the Gaussian case.41

Theorem A.1 below, which builds on [7], includes Theorem 1 as a special case; we can also show42

Theorem 3 holds if we replace the Gaussian assumptions ofX and z with (B1) and (B2).43

Theorem A.1. Besides (B1) and (B2), assume lim sup k/n < 1 and β>Σβ = o(k/n). Then, for44

almost all sequences of sketching matrix Sk, the power function ΨS(Sk) = P {F (Sk) > qα,k,n−k}45

of test (3) satisfies46

ΨF
n − Φ

(
−zα +

√
n∆2

k

σ2

√
1− k/n

2k/n

)
→ 0.

The proof of the result shares the same spirit as the proof of Theorem 1; one major difference is that,47

when the design matrix is not Gaussian, sketched noise zSi is not independent of sketched data SkXi48

anymore, requiring extra efforts to characterize the behavior of F (Sk). We list some technical details49

in Section D.50

Remark: We note that the assumptions (B1) and (B2) are mild. The moment and tail conditions51

hold for a wide range of random instances beyond Gaussian, including heavy-tailed ones such as52

log-normal. Also note that we do not require entries of ui to be independent to each other.53

B Formal version of Definition 154

In the following, we present a full version of Definition 1, which accounts for more general scenarios.55

Definition B.1. We say model (2) has intrinsic dimension up to r, if we can find η = o(1) and r ≤ p,56

such that57 (
1

r

r∑
i=1

β̃2
i

)
·

(
p∑

i=r+1

λi

)
+

p∑
i=r+1

β̃2
i λi ≤ ηβ>Σβ;(

1

r

r∑
i=1

β̃2
i +

1

p− r

p∑
i=r+1

β̃2
i

)
· rλr+1 ≤ ηβ>Σβ.

(1)

Denote the collection of such (β,Σ) as D(r).58
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Here quantities η and r are both sequences of parameters indexed by p. When each β̃i follows the59

same distribution P , the above conditions boil down to Definition 1.60

C Proof of results in main text61

C.1 Proof of Theorem 162

In order to complete the proof, we need to check the conditions in Lemma 1 under the sketched63

regression setting. For a fixed Sk, by the property of a conditional Gaussian distribution, we have64

yi|(X ′iSk) ∼ N
(
β>ΣSk(S>k ΣSk)−1S>k Xi, ν

2
)
,

with ν2 := σ2 + β>Σβ − ∆2
k. Additionally let us write βS := (S>k ΣSk)−1S>k Σβ. Indeed65

Algorithm 1 aims to test whether66

HS
0 : βS = 0 versus HS

1 : βS 6= 0, (2)
for the new regression model67

yi = X ′iSkβ
S + zSi , (3)

where zS1 , . . . , z
S
n are independent random errors with Var(zSi ) = ν2. Furthermore, when S>k ΣSk is

invertible, the problem stated in (2) becomes equivalent to testing whether

HS
0 : S>k Σβ = 0 versus HS

1 : S>k Σβ 6= 0.

It is shown in [6] that ∆2
k ≤ β>Σβ. Then we can show ∆2

k = o(1) and ν2 = σ2 + o(1). Putting68

pieces together with Lemma 1 completes the proof.69

C.2 Proof of Lemma 170

We present the full proof of Lemma 1 in this section. First, write the second term inside Φ(·) as71

η =

√
(1− δ)n

2δ

β>Σβ

σ2
. (4)

We also define72

σ̂2 =
y>(Ip −X(X>X)−1X>)y

n− p
and T =

σ̂2

σ2

√
nδ(1− δ)

2
(F − 1).

The proof builds on the following two claims, which are proved at the end of this section.73

√
n

(
σ̂2

σ2
− 1

)
= OP (1) and (5)

T − η d−→ N (0, 1). (6)
We now continue the main line of the proof assuming the claims in (5) and (6) hold. By the claim (5)74

we know σ̂2/σ2 p−→ 1. Note that η = o(
√
n) under local alternative assumption. By Slutsky’s75

theorem,76

G :=

√
nδ(1− δ)

2
(F − 1)− η =

σ2

σ̂2
(T − η) +

(
σ2

σ̂2
− 1

)
η

d−→ N (0, 1). (7)

We can use the convergence result (7) to show the claim in Lemma 1. Additionally write77

s :=

√
nδ(1− δ)

2
(qα,p,n−p − 1). (8)

Notice that Φ(·) is Lipschitz-1 and thus we have78 ∣∣ΨF
n − Φ(−zα + η)

∣∣ = |P (G ≥ s− η)− Φ(−zα + η)|

(i)
≤ |P (G ≤ s− η)− Φ (s− η)|+ |Φ (s− η)− Φ(zα − η)|

(ii)
≤ sup

x∈R
|P (G ≤ x)− Φ (x)|+ |s− zα| ,
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where step (i) uses the fact Φ(x) = 1−Φ(−x)) and step (ii) uses Lipschitz property of Φ. To analyze79

the second term, we need Lemma 2.1 of [1] which provides an approximation of qα,p,n−p when80

p = δn for δ ∈ (0, 1).81

Lemma C.1 (Lemma 2.1 of [1]). When p = δn with δ ∈ (0, 1), we have82

qα,p,n−p = 1 +

√
2

nδ(1− δ)
zα + o(n−1/2).

Rearranging the statement of Lemma C.1 yields s = zα + o(1) where s is defined in (8). We also83

know supx∈R |P (G ≤ x)− Φ (x)| → 0 by the approximation (7). Combining these pieces yields84 ∣∣ΨF
n − Φ(−zα + η)

∣∣ = o(1) and thus Lemma 1 follows.85

Proof of Claim (5)86

WriteH = X(X>X)−1X>. Notice thatHX = X and then (Ip −H)Xβ = 0. By the linearity87

assumption y = Xβ + σz, we can write88

σ̂2

σ2
=

(Xβ + σz)>(Ip −H)(Xβ + σz)

(n− p)σ2
=

1

n− p
z>(Ip −H)z. (9)

Additionally, by our model assumption, the noise vector z ∼ N (0, Ip) is independent of X . For89

any given X with rank p, Ip − H is a projection matrix with rank (n − p), and in this case90

z>(Ip −H)z|H ∼ χ2
n−p. Under the Gaussian setting, we know rank(X) = p almost surely, so91

σ̂2/σ2 d
= χ2

n−p/(n− p). Recall that p = δn, and thus
√
n
(
χ2
n−p/(n− p)− 1

)
= OP (1), which in92

turn leads to
√
n
(
σ̂2/σ2 − 1

)
= OP (1). This completes the proof of claim (5).93

Proof of Claim (6)94

We first rearrange the expression of T in (6). By definition of T in (6), we have

T =
σ̂2

σ2

√
nδ(1− δ)

2
(F−1) =

σ̂2

σ2

√
nδ(1− δ)

2

(
y>Hy/p

σ̂2
− 1

)
=

√
nδ(1− δ)

2

(
y>Hy/p

σ2
− σ̂2

σ2

)
.

Using the fact thatHX = X , we have95

y>Hy = (Xβ + σz)>H(Xβ + σz) = σ2z>Hz + 2σβ>X>z + β>X>Xβ.

Combining the above with another expression of σ̂2/σ2 in (9), we can write T as96

T =

√
nδ(1− δ)

2

(
z>Hz

p
− z

>(Ip −H)z

n− p
+
β>X>Xβ

pσ2
+

2

σ

β>X>z

p

)
.

By recalling η defined in (4), we can decompose T − η as T − η = T1 + (T2 − η) + T3, where97

T1 =

√
nδ(1− δ)

2

(
z>Hz

p
− z

>(Ip −H)z

n− p

)
,

T2 − η = η

(
β>X>Xβ

nβ>Σβ
− 1

)
and

T3 =
1

σ

√
2(1− δ)
nδ

β>X>z.

In what follows, we prove T1
d−→ N (0, 1), T2 − η

d−→ 0 and T3
d−→ 0 and thus T − η d−→ N (0, 1) as98

desired.99

Analyzing T1: Note thatH = X(X>X)−1X> is a projection matrix with rank p almost surely.100

Therefore, conditional onH , we have z>Hz|H ∼ χ2
p and z>(I −H)z|H ∼ χ2

n−p and these are101
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independent to each other. By letting ω1, ω2
iid∼ N (0, 1), we may apply the central limit theorem and102

see that103

z>Hz/p|H = 1 + ω1/
√
p+ oP (n−1/2),

z>(I −H)z/(n− p)|H = 1 + ω2/
√
n− p+ oP (n−1/2).

Then we conclude that T1|H
d−→ N (0, 1) and thus T1

d−→ N (0, 1) as well by dominated convergence104

theorem.105

Analyzing T2: SinceXβ ∼ N (0, (β>Σβ)Ip) under the Gaussian setting, it follows that106

η

(
β>X>Xβ

nβ>Σβ
− 1

)
d
= η

(
χ2
n

n
− 1

)
.

Together with observations (i) η = o(
√
n) and (ii)

√
n(χ2

n/n−1) = OP (1), we conclude T2−η
d−→ 0.107

Analyzing T3: To show T3
d−→ 0, it suffices to prove β>X>z = oP (

√
n). By the indepen-108

dence between X and z, we have E
[
β>X>z

]
= 0 and Var(β>X>z) = E

[
β>X>zz>Xβ

]
=109

E
[
β>X>Xβ

]
= nβ>Σβ = o(n). Therefore β>X>z = oP (

√
n) holds.110

Combining the results, we complete the proof of claim (6).111

C.3 Well-definedness of Algorithm 1112

In this part, we show that S>k X
>XSk is invertible almost surely.113

Since rank(A>A) = rank(A) for any matrixA, we observe rank(S>k X
>XSk) = rank(XSk). For114

any realization of X with no all-zero rows, the entries of XSk are independent Gaussian random115

variables and thus XSk has full-rank k. By construction, X does not have all-zero rows almost116

surely, and thus rank(S>k X
>XSk) = k almost surely.117

C.4 Proof of Proposition 1118

Rearranging expression (8) in the main text, we have119

AREn(ΨZC
n ; ΨS

n) =

(
4√

ρ(1− ρ)

tr(Σ)√
tr(Σ2)

1√
n

)
·
(
β>Σβ

∆2
k

k

2p

)
·
(
‖Σβ‖2

β>Σβ

p

2tr(Σ)

)
,

where we recall that120

∆2
k := β>ΣSk(S>k ΣSk)−1S>k Σβ.

The first term is exactly what we want; it remains to derive high-probability bounds for the second121

and third terms. Define122

E1 =

{
∆2
k

β>Σβ
≥ k

2p

}
and E2 =

{
‖Σβ‖2

β>Σβ
≤ 2tr(Σ)

p

}
.

If we can show P(E1)→ 1 and P(E2)→ 1 as n→∞, the claim of Proposition 1 follows.123

The remaining parts of the proof rely on concentration bounds of Gaussian quadratic forms. See124

Lemma 0.2. in [2] for the proof of the following lemma:125

Lemma C.2 ([2]). For any symmetric matrix A ∈ Rp×p with A � 0, Z ∼ N (0, Ip×p) and any126

t > 0, we have127

P
(
Z>AZ ≥ tr(A) + 2‖A‖F

√
t+ 2‖A‖t

)
≤ exp(−t) and

P
(
Z>AZ ≤ tr(A)− 2‖A‖F

√
t
)
≤ exp(−t).

We also state the useful matrix inequality used in the proof:128

5



Lemma C.3. For a symmetric matrix Σ ∈ Rp×p and Σ 6= 0, we have

tr(Σ)

‖Σ‖F
≥
(

tr2(Σ2)

tr(Σ4)

)1/8

.

The proof of Lemma C.3 can be found in Section D.1. Using Lemma C.2, we first show P(E1)→ 1.129

By assumption (A), we can write Σ1/2β/‖Σ1/2β‖2 as Z/‖Z‖2, where Z ∼ N (0, Ip). Then130

∆2
k

β>Σβ
=

1

‖Z‖22
Z>Σ1/2Sk(S>k ΣSk)−1S>k Σ1/2Z :=

1

‖Z‖22
Z>PZ,

where we denote P := Σ1/2Sk(S>k ΣSk)−1S>k Σ1/2. To apply the second statement of131

Lemma C.2, we first calculate tr(P ) and ‖P ‖F . By tr(AB) = tr(BA), it follows that tr(P ) =132

tr((S>k ΣSk)−1(S>k ΣSk)) = tr(Ik) = k. Also notice that P is a projection matrix with rank k,133

and then ‖P ‖F =
√

tr(P>P ) =
√

tr(P ) =
√
k. By choosing t = 3−2

√
2

8 k, we have, for some134

universal constant C > 0,135

P
(
Z>PZ ≤ k√

2

)
≤ exp(−Ck).

By the law of large numbers, ‖Z‖22/p → 1 almost surely as p → ∞. Thus P(‖Z‖22 ≥
√

2p) → 0.136

By the above reasoning and the following lower bound137

P (E1) ≥ 1− P
(
‖Z‖22 ≥

√
2p
)

+ P
(
Z>PZ ≤ k√

2

)
,

we know P(E1)→ 1 as k →∞ (recall that we assume p ≥ n/2 and k →∞ as n→∞).138

We complete the proof by showing P(E2)→ 1. Similar to the proof in the first part, we may write139

‖Σβ‖2

β>Σβ
=

1

‖Z‖2
Z>ΣZ.

Slightly modifying the first statement of Lemma C.2 yields140

P
(
Z>ΣZ ≥ tr(Σ) + 2‖Σ‖F

√
t1 + 2‖Σ‖2t2

)
≤ P

(
Z>ΣZ ≥ tr(Σ) + 2‖Σ‖F

√
min(t1, t2) + 2‖Σ‖2 min(t1, t2)

)
≤ exp(−min(t1, t2)).

Choose
√
t1 = tr(Σ)

24‖Σ‖F and t2 = tr(Σ)
24‖Σ‖2 . By ‖Σ‖F ≥ ‖Σ‖2, we know

√
t1 ≤ t2. By Lemma C.3141

and Condition (6), we observe
√
t1 →∞ as p→∞. Then142

P
(
Z>ΣZ ≥

√
2tr(Σ)

)
→ 0, p→∞.

Similar to the first part, we have143

P(E2) ≥ 1− P(‖Z‖2 ≥
√

2p)− P
(
Z>ΣZ ≥

√
2tr(Σ)

)
.

Recall that we have shown P(‖Z‖2 ≥
√

2p)→ 0, and thus it follows that P(E2)→ 1.144

C.5 Details of Example 1145

With the recommended choice k = bn/2c, expression (9) in the main text becomes146

AREn(ΨZC
n ; ΨS

n) ≤ 8
tr(Σ)√
tr(Σ2)

1√
n
.

For Example 1, we have147

tr(Σ2) ≥ λ2
1 + · · ·+ λ2

s

(i)

≥ (λ1 + · · ·+ λs)
2/s

(ii)

≥ (1− ε)2tr2(Σ)/s,

where step (i) follows by Cauchy-Schwarz inequality and step (ii) uses the condition λ1 + · · ·+ λs ≥148

(1− ε) · tr(Σ). This inequality further implies that149

AREn(ΨZC
n ; ΨS

n) ≤ 8
tr(Σ)√
tr(Σ2)

1√
n
≤ 8

√
s

(1− ε)
√
n
.

With s =
√
n, we have 8

√
s

(1−ε)
√
n
� n−1/4 and then AREn(ΨZC

n ; ΨS
n) . n−1/4.150
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C.6 Proof of Theorem 2151

The key of showing the upper bound part in Theorem 2 and Theorem 3 is a high-probability152

lower bound of the signal ∆2
k. Recall ∆2

k ≤ β>Σβ. The Lemma C.4 below shows that, when153

(β,Σ) ∈ D(r) and sketching dimension is O(r), the sketched model can capture most of signals in154

the original model.155

Lemma C.4. When (β,Σ) ∈ D(r) and r ≤ k = O(r), we have ∆2
k/β

>Σβ
p→ 1.156

We defer the proof of Lemma C.4 to Section C.9. With the conclusion of Lemma C.4, we then157

establish Theorem 2 by first proving an information theoretic lower bound and then proving that our158

test achieves this lower bound.159

C.6.1 Lower bound160

We start with the lower bound that is based on standard Le Cam’s framework. Our argument is161

particularly similar to that in [3]. Without loss of generality, we assume σ2 = 1. First, we define a162

new parameter class Br(τ) as163

Br(τ) = {β ∈ Rp : ‖β‖2 ≥ τ, βi = 0 for r + 1 ≤ i ≤ p} .

By definition of Θr(τ), we can easily see that for any β ∈ Br(τ) and Σ0 = diag (1r,0p−r), it164

follows (β,Σ0) ∈ Θr(τ). Then the minimax Type II error can be bounded by165

inf
ψ

sup
β∈Br(τ)

Pβ,Σ0
(ψ = 0) ≤ Rr(τ).

Let µ be a probability measure on Br(τ). Consider any family of probability measures Pβ indexed166

by β ∈ Br(τ). Denote by Pµ the mixture probability measure167

Pµ =

∫
Br(τ)

Pβ µ(dβ).

Also let χ2(P ′, P ) =
∫

(dP ′/dP )2dP − 1 be the chi-square divergence between two probability168

measures P ′ � P . Then,169

α+Rr(τ) ≥ inf
ψ

sup
β∈Br(τ)

{P0(ψ = 1) + Pβ,Σ0(ψ = 0)}

≥ 1−
√
χ2(Pµ, P0),

in which the infimum is taken over all test functions based on (X,y). To show the lower bound, it170

suffices to show that, for τ = τ(A,n) = Ar1/4√
n

, we can find µτ such that171

χ2(Pµτ , P0) ≤ 1 + oA(1), (10)

where oA(1) tends to 0 as A→ 0.172

Note that when Σ = Σ0, data matrixX under the null and alternative model only differs in the first173

r features. Thus the chi-square divergence is essentially the divergence between two r-dimensional174

distributions, which allows us to borrow techniques for linear regression with Σ = Ir. More175

specifically, we may apply the results in Section 7.1 of [4] and observe that176

χ2(Pµτ , P0) ≤ exp(A2) (11)

for some properly chosen µτ . See Section 7.1 of [4] or Section 4.4 of [3] for more details.177

C.6.2 Upper bound178

We now turn to the upper bound. Recall that we always assume β>Σβ = O(1), since the problem is
trivial otherwise. In order to show the upper bound, following the definition (ii), it suffices to show,
if we choose ψS to be the sketched F -test in Algorithm 1 associated with any fixed sequence of
sketching matrix {Sk} ∈ A, it holds that

r(ψS ,βn,Σn) = oP (1), when τn/εn →∞ and (β,Σ) ∈ Θr(τ).

7



For (β,Σ) ∈ Θr(τ), by Chebyshev inequality, we have179

Eβ,Σ
[
1− ψS

]
= P(FS > qα,k,n−k) ≤ Varβ,Σ(FS)

(qα,k,n−k − Eβ,Σ [FS ])2
. (12)

We claim that the following inequalities hold, and leave their proofs to the end of this section:180

Varβ,Σ(FS) ≤ C

r2

[
r2 + λ2

n
+ (r + λ)

]
and (13)

(qα,k,n−k − Eβ,Σ
[
FS
]
)2 ≥ λ2

2r2
, (14)

for any fixed Sk ∈ A. Here we define λ := n∆2
k/ν

2 which satisfies
√
r/λ = oP (1). As a181

consequence of expression (13), we have182

Eβ,Σ
[
1− ψS

]
≤ C (r2 + λ2)/n+ (r + λ)

λ2
= oP (1).

This completes the proof.183

Proof of inequalities (13) and (14)184

We omit the subscript β and Σ of Var and E for short. Recall that we define βS =185

(S>k ΣSk)−1S>k Σβ and ν2 = σ2 + β>Σβ − ∆2
k. Following the reasoning in the proof of Theo-186

rem 1,we have under H1,187

FS |X ∼ Fk,n−k(λ(X)) where λ(X) =
(βS)>S>k X

>XSkβ
S

ν2
.

By the moment expressions of a non-central F -statistic, it can be easily seen that188

E[FS |X] =
(n− k)(k + λ(X))

k(n− k − 2)
,

Var(FS |X) = 2
(k + λ(X))2 + (k + 2λ(X))(n− k − 2)

(n− k − 2)2(n− k − 4)

(
n− k
k

)2

.

Then we have, with λ := E[λ(X)] = n∆2
k/ν

2 and Var(λ(X)) = 2λ2/n,189

Var(E[FS |X]) ≤ 2

k2
Var(λ(X)),

E[Var(FS |X)] ≤ C

k2

[
(k + λ)2

n
+ (k + λ) +

Var(λ(X))

n

]
.

By the law of total variance,190

Var(FS) = Var(E[FS |X]) + E[Var(FS |X)] ≤ C

k2

[
(k + λ)2

n
+ (k + λ)

]
,

which proves inequality (13) under the assumption k � r.191

To prove inequality (14), notice that192

E[FS ] =
(n− k)(k + λ)

k(n− k − 2)
.

In addition, Lemma C.8. of [7] yields193

qα,k,n−k = 1 +

√
2n

k(n− k)
zα + o(k−1/2).

By the assumption τn/εn → ∞, it follows λ �
√
r. After checking each term in (qα,k,n−k −194

E[FS ])2, we have195

(qα,k,n−k − E[FS ])2 =
λ2

k2
(1 + o(1)),

which verifies inequality (14).196

8



C.7 Proof of Theorem 3197

By Theorem A.1 and Lemma C.4, it suffices to show that when ∆2
k/β

>Σβ
p→ 1, we have198

yn := Φ

(
−zα +

√
n∆2

k

σ2

√
1− k/n

2k/n

)
− Φ

(
−zα +

√
nβ>Σβ

σ2

√
1− k/n

2k/n

)
p→ 0. (15)

For ease of notation, let us write an =
√
nβ>Σβ
σ2

√
1−k/n
2k/n and ηn =

β>Σβ−∆2
k

β>Σβ
. Then we have199

ηn
p→ 0 and ηn ≥ 0, due to the fact that ∆2

k ≤ β>Σβ. Assume n is large enough, such that200

ηn ≤ 1/2. By Lipschitz-1 property of Φ(·), we have201

|yn| ≤ ηnan. (16)

On the other hand, we have202

|yn|
(i)
≤ Φ

(
zα −

√
n∆2

k

σ2

√
1− k/n

2k/n

)
+ Φ

(
zα −

√
nβ>Σβ

σ2

√
1− k/n

2k/n

)

≤ 2Φ

(
zα −

√
n∆2

k

σ2

√
1− k/n

2k/n

)
(ii)
≤ 2Φ(zα − an/2)

(iii)
≤ 2 exp

{
−

1{zα−an/2≤0}(zα − an/2)2

2

}
,

(17)

where step (i) is due to Φ(x)−Φ(y) ≤ |Φ(x)− Φ(y)| = |Φ(−x)− Φ(−y)| ≤ Φ(−x)+Φ(−y), step203

(ii) follows from ηn ≤ 1/2 and step (iii) uses the Gaussian tail bound Φ(x) ≤ 2 exp(−1{x≤0}x
2/2).204

Combining inequalities (16) and (17), we have205

|yn| ≤ min

{
ηnan, 2 exp

{
−

1{zα−an/2≤0}(zα − an/2)2

2

}}
.

Given ηn > 0, we know ηnan and 2 exp
{
−1{zα−an/2≤0}(zα − an/2)2/2

}
are monotone increasing206

and decreasing respectively as functions of an. Then we have the upper bound207

|yn| ≤ 2 exp

{
−

1{zα−f(ηn)/2≤0}(zα − f(ηn)/2)2

2

}
, (18)

where f(ηn) is the unique xn that solves208

ηnxn = 2 exp

{
−

1{zα−xn/2≤0}(zα − xn/2)2

2

}
.

We can directly check that f(ηn) is a monotone decreasing function of ηn, and lim
ηn→0+

f(ηn) = +∞.209

Then210

lim
ηn→0+

2 exp

{
−

1{zα−f(ηn)/2≤0}(zα − f(ηn)/2)2

2

}
= 0.

By bound (18), it follows that yn
p→ 0. This completes the proof of Theorem 3.211

C.8 Details of Examples 2212

In this section, we provide details of Examples 2 with η = 1/ log p. Note that for the first two cases,213

the conditions in Definition B.1 essentially boil down to that in (10) in the main text.214

For the α-polynomial decay case, notice that215

p∑
i=r+1

λi � r−α+1,

p∑
i=1

λi � 1.
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Then the conditions translate to r−α+1 ≤ 1/ log p, or equivalently, there exists r . (log p)
1

α−1 such216

that (β,Σ) ∈ D(r).217

For the γ-exponential decay example, first note that λk/λk+1 = exp((k + 1)γ − kγ) by definition.
When γ ≥ 1, we have λk/λk+1 ≥ e ≥ 1 + 1/k; whereas 0 < γ < 1, we have

(k + 1)γ − kγ = γ

∫ k+1

k

xγ−1dx ≥ γ(k + 1)γ−1 ≥ γ

k
.

Thus λk/λk+1 ≥ 1 + γ/k. In either case, we know {λk} decays faster than (γ ∧ 1)/k. Then observe218

that219
p∑

i=r+1

λi ≤ λr
p∑

i=r+1

γ ∧ 1

i
. exp(−rγ)(log p),

p∑
i=1

λi � 1.

Thus the conditions translate to exp(−rγ)(log p) ≤ 1/ log p and r exp(−rγ) ≤ 1/ log p, or there220

exists r . (log log p)
1
γ such that (β,Σ) ∈ D(r) as stated in Table 1 in the main file.221

For the structured coefficient example, we know that
r∑
i=1

β̃i � log r,

p∑
i=r+1

λi � log p− log r,

p∑
i=r+1

β̃2
i λi � 1/r, β>Σβ � 1.

Then the first condition of Definition B.1 is now log r(log p − log r)/r + 1/r ≤ 1/ log p, or r ≥222

log2 p log r. Thus we can see that there exists r . (log p)3 satisfying both conditions.223

C.9 Proof of Lemma C.4224

First we introduce some additional notation. In the SVD decomposition Σ = UΛU>, write U =225

[Ur Up−r] and Λ =

[
Λr

Λp−r

]
, where Ur ∈ Rp×r and Λr ∈ Rr×r. Then Σ = UrΛrU

>
r +226

Up−rΛp−rU
>
p−r := Σr + Σp−r.227

The intuition comes from low-rank case. If rank(Σ) = r, using sketching dimension k = r is228

enough. To see this, notice that when rank(Σ) = r, we have rank(ΣSk) = r almost surely,229

i.e., ΣSk is of full-rank almost surely. Then ∃ξ ∈ Rp, such that Σβ = ΣSkξ. It follows that230

∆2
k = β>ΣSk(S>k ΣSk)−1S>k ΣSkξ = β>Σβ.231

In general case, we may not be able to find ξ satisfying Σβ = ΣSkξ, and we seek for some ξ to232

make the difference between Σβ and ΣSkξ small. Formally, as long as sketching dimension k ≥ r,233

for any ξ that satisfies234

U>r β = U>r Skξ, (19)
define ν = Σp−r(β − Skξ). Then Σβ = ΣSkξ + ν, and235

∆2
k = (ξ>S>k Σ + ν>)Sk(S>k ΣSk)−1S>k (ΣSkξ + ν)

≥ β>Σβ − (β − Skξ)>Σp−r(β − Skξ)

≥ β>Σβ − (β − Skξ)>Σ+
p−r(β − Skξ)

for any Σ+
p−r � Σp−r, where the first inequality follows by positive semi-definite property of236

Sk(S>k ΣSk)−1S>k . When k ≥ r, we have rank(U>r Sk) = r almost surely, so such ξ exists. To237

optimize the results, we seek for a solution of the problem238

minξ (β − Skξ)>Σ+
p−r(β − Skξ) s.t. U>r (β − Skξ) = 0.

The optimal ξ∗ can be obtained by Lagrange multiplier. With Lagrange function

L(ξ,λ) =
1

2
(β − Skξ)>Σ+

p−r(β − Skξ)− λ>U>r (β − Skξ),

by solving the following two equations239

∂L(ξ,λ)

∂λ
= 0 and U>r (β − Skξ) = 0, (20)

we can solve for ξ∗. The following lemma gives an upper bound on (β − Skξ∗)>Σ+
p−r(β − Skξ∗):240
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Lemma C.5. Write S̃1 = U>r Sk, S̃2 = U>p−rSk, β̃1 = U>r β and β̃2 = U>p−rβ. With ξ∗ in (20),241

we have (β − Skξ∗)>Σ+
p−r(β − Skξ∗) ≤ L1 + L2, where242

L1 =
‖S̃>2 Λ+

p−rS̃2‖2
λmin(S̃1S̃>1 )

‖β̃1‖22,

L2 =
(

1 + κ(S̃>2 Λ+
p−rS̃2)κ(S̃1S̃

>
1 )
)
· β̃>2 Λ+

p−rβ̃2.

(21)

Here κ(·) represents the condition number of matrix, i.e., κ(A) = λmax(A)/λmin(A).243

To analyze the terms on the right hand side of (21), we make use of the following lemma.244

Lemma C.6. For ∀a > 1, if we choose sketching dimension to be ar ≤ k ≤ C1

∑p
i=r+1 λi
λr+1

, then245

with probability at least 1− exp(−c2r)− exp(−c1
∑p
i=r+1 λi
λr+1

), we obtain246

1. κ(S̃>2 Λp−rS̃2) ≤ 4;247

2. λmax(S̃>2 Λp−rS̃2) ≤ 2
∑p
i=r+1 λi;248

3. κ(S̃1S̃
>
1 ) ≤ C2;249

4. λmin(S̃1S̃
>
1 ) ≥ C−1

2 k,250

where c1, c2, C1, C2 are universal constants only depending on a.251

The proof of Lemma C.6 can be found at the end of this section. Now suppose that Lemma C.6 is252

given and also assume that ar ≤ k ≤ br with a > 1.253

By Lemma C.5, we have254

β>Σβ −∆2
k ≤

2‖S̃>2 Λ+
p−rS̃2‖2

λmin(S̃1S̃>1 )
‖β̃1‖22 + 2

(
1 + κ(S̃>2 Λ+

p−rS̃2)κ(S̃1S̃
>
1 )
)
· β̃>2 Λ+

p−rβ̃2.

Here we write Σ+
p−r = U>p−rΛ

+
p−rUp−r, with Λ+

p−r = diag(λ+
r+1, . . . , λ

+
p ). Then by Lemma C.7,255

when sketching dimension k satisfies ar ≤ k ≤ C1

∑p
i=r+1 λ

+
i /λ

+
r+1, we have256

β>Σβ −∆2
k ≤

4C2

∑p
i=r+1 λ

+
i

k
‖β̃1‖22 + 2(1 + 4C2) · β̃>2 Λ+

p−rβ̃2

≤ C3

((
1

r

r∑
i=1

β̃2
i

)
·

(
p∑

i=r+1

λ+
i

)
+

p∑
i=r+1

β̃2
i λ

+
i

) (22)

with probability at least 1− exp(−c2r)− exp(−c1
∑p
i=r+1 λ

+
i /λ

+
r+1). Note that the constant C3257

here only depends on a.258

Up to now, the derivations do not depend on the form of matrix Σ+
p−r. Now we are ready to choose a259

particular form of Σ+
p−r, namely we can set260

Σ+
p−r := U>p−rΛ

+
p−rUp−r and λ+

i = λi +
b

C1

rλr+1

p− r
, for r + 1 ≤ i ≤ p. (23)

Then direct calculations give∑p
i=r+1 λ

+
i

λ+
r+1

=

∑p
i=r+1 λi + b

C1
rλr+1

λr+1 + b
C1

rλr+1

p−r

≥ b

C1
r.

Plugging the expression of λ+
i into (22) and then applying the conditions in Definition B.1 yield the261

following result:262
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When sketching dimension k satisfies ar ≤ k ≤ br, we have with probability at least 1−2 exp(−c3r)263

that264

1− ∆2
k

β>Σβ
≤ C3

(
1 +

b

C1

)
η = o(1).

Thus we finish the proof with the stronger conclusion ∆2
k

β>Σβ

p→ 1.265

Now we are only left to prove Lemma C.6.266

Proof of Lemma C.6. To establish Lemma C.6, we make use of the result below whose proof is267

provided in Section D.1.268

Lemma C.7. Suppose Λ = diag(λ1, . . . , λN ) with λi ≥ 0, ‖λ‖2 > 0 and S ∈ RN×n is a standard269

Gaussian random matrix with n ≤ N . Write λ = (λ1, . . . , λN ). Then for t < 1,270

(1− t)

√√√√ N∑
i=1

λ2
i ≤ smin(ΛS) ≤ smax(ΛS) ≤ (1 + t)

√√√√ N∑
i=1

λ2
i ,

with probability at least 1− 9n · 2 exp
(
−min

{
1
16
‖λ‖42
‖λ‖44

t2, 1
4
‖λ‖22
‖λ‖2∞

t
})

.271

Applying Lemma C.7 to Λ
1/2
p−rS̃2 with sketching dimension k and t = 1/3 yields272

κ(S̃>2 Λp−rS̃2) ≤ 4 and λmax(S̃>2 Λp−rS̃2) ≤ 2

p∑
i=r+1

λi (24)

with probability at least 1 − exp
(

ln 9 · k −min
{

1
144

(
∑p
i=r+1 λi)

2∑p
i=r+1 λ

2
i
, 1

12

∑p
i=r+1 λi
λr+1

})
. Since273

(
∑p
i=r+1 λi)

2∑p
i=r+1 λ

2
i
≥

∑p
i=r+1 λi
λr+1

, (24) holds with probability at least 1− exp
(
−c1

∑p
i=r+1 λi
λr+1

)
as long as274

k ≤ C1

∑p
i=r+1 λi
λr+1

.275

Lemma C.7 can be used to bound all the four quantities in Lemma C.6. To obtain a better control for276

κ(S̃1S̃
>
1 ) and λmin(S̃1S̃

>
1 ) in terms of constants, we invoke the following lemma from [6]:277

Lemma C.8 (Lemma 4 of [6]). For k ≤ p, let Pk ∈ Rk×p be a random matrix with i.i.d. N (0, 1)278

entries. Then279

P
(
λmax(

1

p
P>k Pk) ≥ (1 +

√
k/p+ t)2

)
≤ exp(−pt2/2);

P
(
λmin(

1

p
P>k Pk) ≤ (1−

√
k/p− t)2

)
≤ exp(−pt2/2).

With constant a > 1 and k ≥ ar, we now apply Lemma C.8 to S̃1 and obtain that with probability at280

least 1− exp(−c2r),281

κ(S̃1S̃
>
1 ) ≤ C2 and λmin(S̃1S̃

>
1 ) ≥ C−1

2 k (25)
where c2, C2 are universal constants only depending on a. This completes the proof of Lemma C.6.282

C.10 Proof of Lemma C.5283

Structure of the proof: We prove Lemma C.5 following the Lagrange multiplier procedure discussed284

in the main text. We first derive the expression of ξ∗ using the Lagrange multiplier; the explicit form285

of ξ∗ is summarized in (26) and (27). Then we plug ξ∗ into (β − Skξ∗)>Σp−r(β − Skξ∗), and get286

its upper bound; see (28). The remaining part of the proof proceeds by bounding the terms in (28)287

based on properties of the spectral norm.288

Step 1: Finding minimal value of (β − Skξ∗)>Σp−r(β − Skξ∗).289

Recall that we define the Lagrange form

L(ξ,λ) =
1

2
(β − Skξ)>Σp−r(β − Skξ)− λ>U>r (β − Skξ).
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By solving the following two equations290

∂L(ξ,λ)

∂ξ
= 0 and U>r (β − Skξ) = 0,

we can obtain the optimal solution ξ∗.291

First, let us consider the first equation292

∂L(ξ,λ)

∂ξ
= 0.

A direct calculation yields293

S>k Σp−rSkξ − S>k Σp−rβ + S>k Urλ = 0.

Similar to proof in Section C.3 and by noting that rank(Σp−r) = p− r ≥ k, we can show the matrix294

S>k Σp−rSk is invertible almost surely. Then the solution can be written explicitly as295

ξ∗ = (S>k Σp−rSk)−1S>k (Σp−rβ −Urλ∗). (26)

By writingH = Sk(S>k Σp−rSk)−1S>k and plugging the above expression to the constraint condition296

U>r (β − Skξ) = 0, we obtain the following equality:297

U>r β −U>r H(Σp−rβ −Urλ∗) = 0.

Before preceding, we first justify that U>r HUr is invertible almost surely. Note that when298

S>k Σp−rSk is invertible, we have x>U>r HUrx = 0 iff S>k Urx = 0 iff x>U>r SkS
>
k Urx = 0.299

Since S>k Ur ∈ Rk×r is distributed as an i.i.d Gaussian sketching matrix, we conclude that300

rank(U>r SkS
>
k Ur) = rank(S>k Ur) = r almost surely with k ≥ r. Now with S>k Σp−rSk invertible301

and rank(U>r SkS
>
k Ur) = r (which happens almost surely), we know that x>U>r HUrx = 0 iff302

x = 0, or equivalently, U>r HUr is invertible.303

Now we can safely write (U>r HUr)
−1. In this case,304

λ∗ = (U>r HUr)
−1(U>r HΣp−r −U>r )β. (27)

Based on (26) and (27), we have305

Skξ
∗ = H

(
Σp−rβ −Ur(U>r HUr)−1(U>r HΣp−r −U>r )β

)
= H

(
Σp−r −Ur(U>r HUr)−1U>r (HΣp−r − I)

)
β.

With the above expression at hand, we are ready to control quantity (β − Skξ∗)>Σp−r(β − Skξ∗).
For the sake of notational simplicity, let us write

G := Ur(U
>
r HUr)

−1U>r .

Then we obtain the following equalities:306

Skξ
∗ = H (Σp−r −G(HΣp−r − I))β;

β − Skξ∗ = (I−HG)(I−HΣp−r)β.

Putting the pieces together yields307

(β − Skξ∗)>Σp−r(β − Skξ∗) = β>(I−Σp−rH)(I−GH)Σp−r(I−HG)(I−HΣp−r)β.

Step 2: Upper bounding the minimal value.308

By recalling the notationH = Sk(S>k Σp−rSk)−1S>k , we knowHΣp−rH = H andGHG = G.309

ThenHΣp−r(I−HΣp−r) = 0, and310

(β − Skξ∗)>Σp−r(β − Skξ∗) = β>(I−Σp−rH)(Σp−r −GHΣp−r −Σp−rHG+G)(I−HΣp−r)β

= β>(I−Σp−rH)(Σp−r +G)(I−HΣp−r)β

= β>Σp−rβ − β>Σp−rHΣp−rβ + β>(I−Σp−rH)G(I−HΣp−r)β

≤ β>Σp−rβ + ‖(U>r HUr)−1‖2‖U>r β −U>r HΣp−rβ‖22.
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By definition of S̃1 := U>r Sk and S̃2 := U>p−rSk, we can see S̃1 and S̃2 are independent, and their311

entries are independent standard Gaussian random variables. Additionally denoting β̃1 := U>r β and312

β̃2 := U>p−rβ, we can rewrite the above as313

(β−Skξ∗)>Σp−r(β−Skξ∗) ≤ β̃>2 Λp−rβ̃2+‖(U>r HUr)−1‖2‖β̃1−S̃1(S̃>2 Λp−rS̃2)−1S̃>2 Λp−rβ̃2‖22.
(28)

With some algebra (see the details at the end of this section), it can be shown that314

‖β̃1 − S̃1(S̃>2 Λp−rS̃2)−1S̃>2 Λp−rβ̃2‖22 ≤ 2‖β̃1‖22 + 2‖S̃1‖22‖(S̃>2 Λp−rS̃2)−1‖2; (29)

‖(U>r HUr)−1‖2 ≤
λmax(S̃>2 Λp−rS̃2)

λmin(S̃1S̃>1 )
. (30)

Plugging inequalities (29) and (30) into (28) yields315

(β − Skξ∗)>Σp−r(β − Skξ∗)
by (29)
≤ 2‖(U>r HUr)−1‖2‖β̃1‖22 +

(
1 + 2‖(U>r HUr)−1‖2‖S̃1‖22‖(S̃>2 Λp−rS̃2)−1‖2

)
· β̃>2 Λp−rβ̃2

by (30)
≤ 2

‖S̃>2 Λp−rS̃2‖2
λmin(S̃1S̃>1 )

‖β̃1‖22 +

(
1 + 2

λmax(S̃>2 Λp−rS̃2)

λmin(S̃>2 Λp−rS̃2)
· λmax(S̃1S̃

>
1 )

λmin(S̃1S̃>1 )

)
· β̃>2 Λp−rβ̃2

= 2
‖S̃>2 Λp−rS̃2‖2
λmin(S̃1S̃>1 )

‖β̃1‖22 +
(

1 + 2κ(S̃>2 Λp−rS̃2)κ(S̃1S̃
>
1 )
)
· β̃>2 Λp−rβ̃2.

This completes the proof of Lemma C.5.316

Proof of (29) and (30). First we show (29). By the triangle inequality, we have317

‖β̃1 − S̃1(S̃>2 Λp−rS̃2)−1S̃>2 Λp−rβ̃2‖22 ≤ 2‖β̃1‖22 + 2‖S̃1(S̃>2 Λp−rS̃2)−1S̃>2 Λp−rβ̃2‖22.

Note that for A ∈ Rp×p and x ∈ Rp, the multiplicative property of the norm shows ‖Ax‖2 ≤318

‖A‖2‖x‖2. Using this property, it can be seen that319

‖S̃1(S̃>2 Λp−rS̃2)−1S̃>2 Λp−rβ̃2‖22 ≤ ‖S̃1‖22‖(S̃>2 Λp−rS̃2)−1S̃>2 Λ
1/2
p−r‖22‖Λ

1/2
p−rβ̃2‖22.

By ‖AA>‖2 = ‖A‖22, it follows that320

‖(S̃>2 Λp−rS̃2)−1S̃>2 Λ
1/2
p−r‖22 = ‖(S̃>2 Λp−rS̃2)−1‖2.

Then we have321

‖β̃1 − S̃1(S̃>2 Λp−rS̃2)−1S̃>2 Λp−rβ̃2‖22 ≤ 2‖β̃1‖22 + 2‖S̃1‖22‖(S̃>2 Λp−rS̃2)−1‖2.

It remains to show (30). By definition, for a symmetric matrix A, we can write λmin(A) =322

min
‖x‖2=1

x>Ax. Taking ∀x ∈ Rr with ‖x‖2 = 1, we have323

x>U>r HUrx = x>U>r Sk(S>k Σp−rSk)−1S>k Urx = x>S̃1(S̃>2 Λp−rS̃2)−1S̃>1 x

≥ λmin((S̃>2 Λp−rS̃2)−1)(x>S̃1S̃
>
1 x)

≥ λmin((S̃>2 Λp−rS̃2)−1)λmin(S̃1S̃
>
1 ) =

λmin(S̃1S̃
>
1 )

λmax(S̃>2 Λp−rS̃2)
.

Then we know324

‖(U>r HUr)−1‖2 =
1

λmin(U>r HUr)
≤ λmax(S̃>2 Λp−rS̃2)

λmin(S̃1S̃>1 )
.

14



D Auxiliary proofs325

D.1 Proof of Lemma C.3326

Let us write the singular value decomposition of Σ as Σ = UΛU> with Λ = diag(λ), λ ∈ Rp.327

Then we have tr(Σ) = ‖λ‖1, ‖Σ‖F = ‖λ‖2, tr(Σ2) = ‖λ‖22 and tr(Σ4) = ‖λ‖44. With the new328

notation, the claim of Lemma C.3 is now equivalent to ‖λ‖21‖λ‖4 ≥ ‖λ‖32.329

We prove ‖λ‖21‖λ‖4 ≥ ‖λ‖32 using the following ingredients:330

(i) ‖λ‖33‖λ‖1 ≥ ‖λ‖42;

(ii) ‖λ‖44‖λ‖1 ≥ ‖λ‖33‖λ‖22;

(iii) ‖λ‖1 ≥ ‖λ‖2,

where (i) holds directly from Cauchy-Schwarz inequality; (ii) follows from the equality331

‖λ‖44‖λ‖1 − ‖λ‖33‖λ‖22 =
1

2

∑
i 6=j

λiλj(λi + λj)(λi − λj)2 ≥ 0

with λi ≥ 0; (iii) follows from the observation that ‖λ‖21 − ‖λ‖22 =
∑
i 6=j λiλj ≥ 0 with λi ≥ 0.332

Then we have333

‖λ‖81‖λ‖44 =

(
‖λ‖1‖λ‖44
‖λ‖33

)
· (‖λ‖1‖λ‖33) · (‖λ‖61) ≥ ‖λ‖22 · ‖λ‖42 · ‖λ‖62 = ‖λ‖12

2 .

Thus we show ‖λ‖21‖λ‖4 ≥ ‖λ‖32, and Lemma C.3 follows.334

D.2 Proof of Lemma C.7335

We closely follow the proof of Theorem 5.39 in [8] that uses a covering argument with three steps: 1)336

discretization; 2) concentration; 3) union bound. In the discretization step, we discretize the problem337

using a net N ; in the concentration step, we bound ‖Ax‖2 for each x ∈ N . Finally, we use the338

union bound to establish a concentration bound over x ∈ Sn−1.339

Step 1: Discretization. First we invoke Lemma 5.36 in [8]:340

Lemma D.1. Consider a matrixB that satisfies341

‖B>B − I‖2 ≤ max(δ, δ2)

for some δ > 0. Then342

1− δ ≤ smin(B) ≤ smax(B) ≤ 1 + δ.

Conversely, ifB satisfies 1−δ ≤ smin(B) ≤ smax(B) ≤ 1+δ for some δ > 0, then ‖B>B−I‖2 ≤343

3 max(δ, δ2).344

Write T = ‖Λ‖22 andA = ΛS. Then the claim is equivalent to345 ∥∥∥ 1

T
A>A− I

∥∥∥
2
≤ max(t, t2) = t.

We can evaluate the operator norm on a 1/4-net N of the unit sphere Sn−1: with Lemma 5.4 in [8],346

we have347 ∥∥∥ 1

T
A>A− I

∥∥∥
2
≤ 2 max

x∈N

∣∣∣∣ 1

T
‖Ax‖22 − 1

∣∣∣∣ .
Note that we can choose N such that |N | ≤ 9n.348
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Step 2: Concentration. Fix x ∈ Sn−1. Denote the i-th row of matrix A and S by Ai and Si,349

respectively. Then 〈Ai,x〉 /λi = 〈Si,x〉 ∼ N (0, 1) and the 〈Ai,x〉’s are independent to each other.350

We can express ‖Ax‖22 as a sum of independent random variables351

‖Ax‖22 =

N∑
i=1

〈Ai,x〉2 =:

N∑
i=1

λ2
iZ

2
i ,

where Zi
iid∼ N (0, 1). By Lemma 1 of [5], we have352

P

∣∣∣∣∣ 1∑N
i=1 λ

2
i

‖Ax‖22 − 1

∣∣∣∣∣ ≥ 2

√∑N
i=1 λ

4
i∑N

i=1 λ
2
i

√
δ + 2

max1≤i≤N λ
2
i∑N

i=1 λ
2
i

δ

 ≤ 2e−δ.

When δ = min
{

1
16
‖λ‖42
‖λ‖44

t2, 1
4
‖λ‖22
‖λ‖2∞

t
}

, we have 2

√∑N
i=1 λ

4
i∑N

i=1 λ
2
i

√
δ ≤ 1

2 t and 2
max1≤i≤N λ2

i∑N
i=1 λ

2
i

δ ≤ 1
2 t.353

Then we can rewrite the tail bound as354

P

(∣∣∣∣∣ 1∑N
i=1 λ

2
i

‖Ax‖22 − 1

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
−min

{
1

16

‖λ‖42
‖λ‖44

t2,
1

4

‖λ‖22
‖λ‖2∞

t

})
.

Step 3: Union bound. Taking the bound over all vectors in the net N , we obtain355

P

(
max
x∈N

∣∣∣∣ 1

T
‖Ax‖22 − 1

∣∣∣∣ ≥ t) ≤ 9n · 2 exp

(
−min

{
1

16

‖λ‖42
‖λ‖44

t2,
1

4

‖λ‖22
‖λ‖2∞

t

})
.

Thus, by Lemma D.1, we have, for t < 1,356

(1− t)

√√√√ N∑
i=1

λ2
i ≤ smin(A) ≤ smax(A) ≤ (1 + t)

√√√√ N∑
i=1

λ2
i

with probability at least 1− 9n · 2 exp
(
−min

{
1
16
‖λ‖42
‖λ‖44

t2, 1
4
‖λ‖22
‖λ‖2∞

t
})

.357

D.3 Technical details of Theorem A.1358

In this part we check some technical details of Theorem A.1. Recall from the proof of Theorem 1359

that the sketched linear model is360

yi =
〈
x̃i,β

S
〉

+ zSi =
〈
S>k xi,β

S
〉

+ zSi ,

where zSi = 〈xi,β〉 + σzi −
〈
x̃i,β

S
〉

and βS = (S>k ΣSk)−1S>k Σβ. We are essentially testing
whether sketched coefficients βS are zero or not as

HS
0 : βS = 0 versus HS

1 : βS 6= 0.

In what follows, we verify that the technical conditions of Theorem 2.1 and Corollary 2.2 in [7] are361

satisfied under assumptions (B1, B2) and the sketched model yi =
〈
x̃i,β

S
〉

+ zSi . This verification362

step directly leads to the desired result in Theorem A.1. See Section 2.1 of [7] for the technical363

conditions; specifically, it suffices to verify (A1)(a,b,c,d) and (A2) therein. We write them as364

(S-A1)(a,b,c,d) and (S-A2) below.365

Verification of (S-A1): By our assumption (B1) with x̃i = S>k Γui, we can directly see assump-366

tions (S-A1)(a,b,c,d) are satisfied.367

Verification of (S-A2): It suffices to check the following two conditions:368

E
[(

E
[(
zSi
)4 |x̃i])2

]
= O(1) and

n
max
i=1

E
[
(zSi )4|x̃i

]
= oP (

√
k). (31)

16



First claim of (31). To simplify notation, write δ := β − SkβS . Then we can write

zSi = σzi + δ′xi.

We first derive the expression for E[(zSi )4|x̃i]. Notice that E[(zSi )4|x̃i] = E[E[(zSi )4|xi]
 x̃i], with369

E[
(
zSi
)4 |xi] = E

[
(σzi + δ′xi)

4 |xi
]
≤ 8cσ4 + 8 (δ′xi)

4
. (32)

The above inequality follows by (x+ y)4 ≤ 8(x4 + y4) as well as assumption (B2). Then we further370

have371

E
[(

E
[(
zSi
)4 |x̃i])2

]
= E

[(
8cσ4 + 8E

[
(δ′xi)

4 |x̃i
])2
]
≤ 128

(
c2σ8 + E

[(
E
[
(δ′xi)

4 |x̃i
])2
])

.

(33)
To show the first claim in (31), it suffices to show E[(E[(δ′xi)

4|x̃i])2] = O(1). By Var(E[Y |X]) ≤372

Var(Y ), we have373

E
[(

E
[
(δ′xi)

4 |x̃i
])2
]

= Var
(
E
[
(δ′xi)

4 |x̃i
])

+
(
E
[
E
[
(δ′xi)

4 |x̃i
]])2

≤ Var
(

(δ′xi)
4
)

+
(
E
[
(δ′xi)

4
])2

= E
[
(δ′xi)

8
]
.

With δ = β − SkβS , we also have374

E
[
(δ′xi)

8
]

= E
[〈
xi,β − SkβS

〉8] ≤ ‖Γ>(β − SkβS)‖82 sup
‖v‖2=1

(E|v′ui|8). (34)

By definition of βS , we know ‖Γ>(β−SkβS)‖22 = β>Σβ−∆2
k ≤ β>Σβ = o(1). By (B1)(b), we375

further know sup‖v‖=1(E|v′ui|8) = O(1). Thus we show E[(E[(δ′xi)
4|x̃i])2] = O(1). Therefore,376

together with inequality (33), the first claim in (31) follows.377

Second claim of (31). Next we show the second claim in (31). By inequality (32), we have378

n
max
i=1

E
[
(zSi )4|x̃i

]
≤ 8cσ4 + 8

n
max
i=1

E
[
(δ′xi)

4|x̃i
]
,

and it suffices to show that maxni=1 E
[
(δ′xi)

4|x̃i
]

= oP (
√
k). Observe that379

P
(

n
max
i=1

E
[
(δ′xi)

4|x̃i
]
≥ ε
) (i)
≤ n

ε2
Var
(
(δ′xi)

4
) (ii)
≤ nβ>Σβ

sup‖v‖=1(E|v′ui|8)

ε2
(iii)
= o

(
k

ε2

)
.

In the above argument, step (i) follows from the union bound and Chebyshev’s inequality; step (ii)380

is from (34) and Var
(
(δ′xi)

4
)
≤ E[(δ′xi)

8
]; step (iii) uses the local alternative β>Σβ = o(k/n)381

and assumption (B1)(b). Therefore we can conclude that maxni=1 E[(δ′xi)
4|x̃i] = oP (

√
k), which382

completes the proof.383
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