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Abstract

The dominant approaches to text representation in natural language rely on learn-
ing embeddings on massive corpora which have convenient properties such as
compositionality and distance preservation. In this paper, we develop a novel
method to learn a heavy-tailed embedding with desirable regularity properties
regarding the distributional tails, which allows to analyze the points far away from
the distribution bulk using the framework of multivariate extreme value theory. In
particular, a classifier dedicated to the tails of the proposed embedding is obtained
which exhibits a scale invariance property exploited in a novel text generation
method for label preserving dataset augmentation. Experiments on synthetic and
real text data show the relevance of the proposed framework and confirm that this
method generates meaningful sentences with controllable attributes, e.g. positive
or negative sentiments.

1 Introduction

Representing the meaning of natural language in a mathematically grounded way is a scientific
challenge that has received increasing attention with the explosion of digital content and text data
in the last decade. Relying on the richness of contents, several embeddings have been proposed
[44, 145, [19]] with demonstrated efficiency for the considered tasks when learnt on massive datasets.
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Figure 1: Illustration of angular classifier g dedicated to extremes {z, ||| > t} in RZ. The red
and green truncated cones are respectively labeled as +1 and —1 by g.

However, none of these embeddings take into account the fact that word frequency distributions
are heavy tailed [2, 11} 40], so that extremes are naturally present in texts (see also Fig. [6a] and
[6b]in the supplementary material). Similarly, [3] shows that, contrary to image taxonomies, the
underlying distributions for words and documents in large scale textual taxonomies are also heavy
tailed. Exploiting this information, several studies, as [13|38], were able to improve text mining
applications by accurately modeling the tails of textual elements.

In this work, we rely on the framework of multivariate extreme value analysis, based on extreme value
theory (EVT) which focuses on the distributional tails. EVT is valid under a regularity assumption
which amounts to a homogeneity property above large thresholds: the tail behavior of the considered
variables must be well approximated by a power law, see Section [2]for a rigorous statement. The
tail region (where samples are considered as extreme) of the input variable z € R? is of the kind
{||z|| > t}, for a large threshold ¢. The latter is typically chosen such that a small but non negligible
proportion of the data is considered as extreme, namely 25% in our experiments. A major advantage
of this framework in the case of labeled data [30] is that classification on the tail regions may be
performed using the angle ©(z) = ||=|| =« only, see Figure|ll The main idea behind the present
paper is to take advantage of the scale invariance for two tasks regarding sentiment analysis of text
data: (i) Improved classification of extreme inputs, (ii) Label preserving data augmentation, as the
most probable label of an input « is unchanged by multiplying « by A > 1.

EVT in a machine learning framework has received increasing attention in the past few years. Learning
tasks considered so far include anomaly detection [48] [49] [12, 23| |53]], anomaly clustering [9]],
unsupervised learning [22], online learning [6} 1], dimension reduction and support identification [24,
8l 110, 129]. The present paper builds upon the methodological framework proposed by Jalalzai et al.
[30] for classification in extreme regions. The goal of Jalalzai et al. [30] is to improve the performance
of classifiers g(z) issued from Empirical Risk Minimization (ERM) on the tail regions {||z| > ¢}
Indeed, they argue that for very large ¢, there is no guarantee that g would perform well conditionally
to {||X|| > t}, precisely because of the scarcity of such examples in the training set. They thus
propose to train a specific classifier dedicated to extremes leveraging the probabilistic structure
of the tails. Jalalzai et al. [30] demonstrate the usefulness of their framework with simulated and
some real world datasets. However, there is no reason to assume that the previously mentioned text
embeddings satisfy the required regularity assumptions. The aim of the present work is to extend
[30]’s methodology to datasets which do not satisfy their assumptions, in particular to text datasets
embedded by state of the art techniques. This is achieved by the algorithm Learning a Heavy Tailed
Representation (in short LHTR) which learns a transformation mapping the input data X onto a
random vector Z which does satisfy the aforementioned assumptions. The transformation is learnt by
an adversarial strategy [26].

In Appendix [C] we propose an interpretation of the extreme nature of an input in both LHTR and
BERT representations. In a word, these sequences are longer and are more difficult to handle (for
next token prediction and classification tasks) than non extreme ones.

Our second contribution is a novel data augmentation mechanism GENELIEX which takes advantage
of the scale invariance properties of Z to generate synthetic sequences that keep invariant the attribute
of the original sequence. Label preserving data augmentation is an effective solution to the data
scarcity problem and is an efficient pre-processing step for moderate dimensional datasets [S5} 56]].
Adapting these methods to NLP problems remains a challenging issue. The problem consists in
constructing a transformation % such that for any sample 2 with label y(x), the generated sample
h(x) would remain label consistent: y(h(z)) = y(x) [46]. The dominant approaches for text data
augmentation rely on word level transformations such as synonym replacement, slot filling, swap
deletion [56] using external resources such as wordnet [42]. Linguistic based approaches can also be



combined with vectorial representations provided by language models [32]. However, to the best of
our knowledge, building a vectorial transformation without using any external linguistic resources
remains an open problem. In this work, as the label y(h(x)) is unknown as soon as h(z) does not
belong to the training set, we address this issue by learning both an embedding ¢ and a classifier g
satisfying a relaxed version of the problem above mentioned, namely VA > 1

g(ha(e(2))) = g((x)). (1)

For mathematical reasons which will appear clearly in Section[2.2] h is chosen as the homothety
with scale factor A, hy(z) = Az. In this paper, we work with output vectors issued by BERT [19].
BERT and its variants are currently the most widely used language model but we emphasize that
the proposed methodology could equally be applied using any other representation as input. BERT
embedding does not satisfy the regularity properties required by EVT (see the results from statistical
tests performed in Appendix [B.5) Besides, there is no reason why a classifier g trained on such
embedding would be scale invariant, i.e. would satisfy for a given sequence u, embedded as =,
g(ha(z)) = g(z) YA > 1. On the classification task, we demonstrate on two datasets of sentiment
analysis that the embedding learnt by LHTR on top of BERT is indeed following a heavy-tailed
distribution. Besides, a classifier trained on the embedding learnt by LHTR outperforms the same
classifier trained on BERT. On the dataset augmentation task, quantitative and qualitative experiments
demonstrate the ability of GENELIEX to generate new sequences while preserving labels.

The rest of this paper is organized as follows. Section [2]introduces the necessary background in
multivariate extremes. The methodology we propose is detailed at length in Section [3] Illustrative
numerical experiments on both synthetic and real data are gathered in sections [/ and 5| Further
comments and experimental results are provided in the supplementary material.

2 Background

2.1 Extreme values, heavy tails and regular variation

Extreme value analysis is a branch of statistics whose main focus is on events characterized by an
unusually high value of a monitored quantity. A convenient working assumption in EVT is regular
variation. A real-valued random variable X is regularly varying with index o > 0, a property denoted
as RV («), if and only if there exists a function b(t) > 0, with b(¢f) — oo as ¢ — oo, such that for
any fixed x > 0: tP {X/b(¢) > x} P 2~ In the multivariate case X = (X1,...,X4) € R,
it is usually assumed that a preliminary component-wise transformation has been applied so that
each margin X; is RV (1) with b(t) = t and takes only positive values. X is standard multivariate
regularly varying if there exists a positive Radon measure y on [0, 0o]?\ {0}

tP{t7'X € A} — u(A), )

for any Borelian set A C [0, c0]¢ which is bounded away from 0 and such that the limit measure
1 of the boundary O A is zero. For a complete introduction to the theory of Regular Variation, the
reader may refer to [47]]. The measure 1 may be understood as the limit distribution of tail events.
In (2), 1« is homogeneous of order —1, that is u(tA) = t~1u(A), t > 0, A C [0,00]¢ \ {0}. This
scale invariance is key for our purposes, as detailed in Section[2.2] The main idea behind extreme
value analysis is to learn relevant features of i using the largest available data.

2.2 Classification in extreme regions

We now recall the classification setup for extremes as introduced in [30]. Let (X,Y) € Ri x{-1,1}
be a random pair. Authors of [30] assume standard regular variation for both classes, that is
tP{X €tA|Y = %1} — py(A), where A is as in . Let || - || be any norm on R? and consider
the risk of a classifier g : RZ — {1} above a radial threshold ¢,

Li(g) = P{Y # g(X) | [| X]| > t}. 3)

The goal is to minimize the asymptotic risk in the extremes Lo (g) = limsup,_, .o L+(g). Using the
scale invariance property of i, under additional mild regularity assumptions concerning the regression
function, namely uniform convergence to the limit at infinity, one can prove the following result



(see [30], Theorem 1): there exists a classifier g%, depending on the pseudo-angle ©(z) = ||z|| !
only, that is g% (z) = g% (©(z)), which is asymptotically optimal in terms of classification risk,
i.e. Loo(g%,) = infymeasurable Loo(g). Notice that for z € Ri \ {0}, the angle O(z) belongs to
the positive orthant of the unit sphere, denoted by .S in the sequel. As a consequence, the optimal
classifiers on extreme regions are based on indicator functions of truncated cones on the kind
{llz|| > t,©(z) € B}, where B C S, see[Figure 1] We emphasize that the labels provided by such a
classifier remain unchanged when rescaling the samples by a factor A > 1 (i.e. g(z) = g(O(z)) =
9(©(A\x)),Vx € {x,||=|| > t}). The angular structure of the optimal classifier g%, is the basis for
the following ERM strategy using the most extreme points of a dataset. Let Gg be a class of angular
classifiers defined on the sphere S with finite VC dimension Vg, < oo. By extension, for any
z € RY and g € Gg, g(z) = g(O(x)) € {—1,1}. Given n training data {(X;,Y;)}7_, made of
i.i.d copies of (X,Y’), sorting the training observations by decreasing order of magnitude, let X ;)
(with corresponding sorted label Y(;)) denote the i-th order statistic, i.e. ||.X 1) > ... > [ Xl
The empirical risk for the k largest observations Ly (g) = 5 ZZ H{YG) # 9(© (X(l ))} is an
empirical version of the risk L,z (g) as defined in . 3) where (k) isa (1 —k / n) -quantile of the norm,
P{||X| > t(k)} = k/n. Selection of k is a bias-variance compromise, sce Appendix [B|for further
discussion. The strategy promoted by [30] is to use gy = argmingeg, Lk( ), for classification in the

extreme region {x € RY : ||z|| > t(k)}. The following result provides guarantees concerning the
excess risk of gi compared with the Bayes risk above level t = t(k), L} = inf ; measurabte Lt (g)-

Theorem 1 (/30], Theorem 2) If each class satisfies the regular variation assumption (2)), under an
additional regularity assumption concerning the regression function n(z) = P{Y = +1 | x} (see
Equation (E]) in Appendix, Sord € (0,1), Vn > 1, it holds with probability larger than 1 — ¢ that

Lywy (@) — Lig < (\/2 (1 — k/n)log(2/6) + C/Vg, log(1/6) )
= (5 +210g(1/8) + /1og(1/8)(C/Vis + \/5)) + {gi€ngfs Loy (g) — L;”(k)} ,

where C'is a universal constant.

In the present work we do not assume that the baseline representation X for text data satisfies the
assumptions of Theorem|[I] Instead, our goal is is to render the latter theoretical framework applicable
by learning a representation which satisfies the regular variation condition given in (2), hereafter
referred as Condition (2)) which is the main assumption for Theorem [I]to hold. Our experiments
demonstrate empirically that enforcing Condition (2) is enough for our purposes, namely improved
classification and label preserving data augmentation, see Appendix for further discussion.

3 Heavy-tailed Text Embeddings

3.1 Learning a heavy-tailed representation

We now introduce a novel algorithm Learning a heavy-tailed representation (LHTR) for text data from
high dimensional vectors as issued by pre-trained embeddings such as BERT. The idea behind is to
modify the output X of BERT so that classification in the tail regions enjoys the statistical guarantees
presented in Section [2, while classification in the bulk (where many training points are available)
can still be performed using standard models. Stated otherwise, LHTR increases the information
carried by the resulting vector Z = ¢(X) € R? regarding the label Y in the tail regions of Z in
order to improve the performance of a downstream classifier. In addition LHTR is a building block of
the data augmentation algorithm GENELIEX detailed in Section[3.2] LHTR proceeds by training an
encoding function ¢ in such a way that (i) the marginal distribution ¢(z) of the code Z be close to a
user-specified heavy tailed target distribution p satisfying the regularity condition (2); and (ii) the
classification loss of a multilayer perceptron trained on the code Z be small.

A major difference distinguishing LHTR from existing auto-encoding schemes is that the target
distribution on the latent space is not chosen as a Gaussian distribution but as a heavy-tailed, regularly
varying one. A workable example of such a target is provided in our experiments (Section ). As
the Bayes classifier (i.e. the optimal one among all possible classifiers) in the extreme region has a



potentially different structure from the Bayes classifier on the bulk (recall from Section 2] that the
optimal classifier at infinity depends on the angle ©(x) only), LHTR trains two different classifiers,
g°** on the extreme region of the latent space on the one hand, and g™ on its complementary set
on the other hand. Given a high threshold ¢, the extreme region of the latent space is defined as the
set {z : ||z|]| > t}. In practice, the threshold ¢ is chosen as an empirical quantile of order (1 — k)
(for some small, fixed ) of the norm of encoded data |LZ il = |lo(X;)]]- The classifier trained by
LHTR is thus of the kind g(2) = g™ (2)1{|2]| > t} + ¢™"(2)1{] < < t}. If the downstream task
is classification on the whole input space, in the end the bulk classifier ™% may be replaced with
any other classifier ¢’ trained on the original input data X restricted to the non-extreme samples (i.e.
{X, lo(X3)|| < t}). Indeed training g™'* only serves as an intermediate step to learn an adequate
representation .

Remark 1 Recall from Section that the optimal classifier in the extreme region as ¢ — oo
depends on the angular component #(x) only, or in other words, is scale invariant. One can thus
reasonably expect the trained classifier ¢'(z) to enjoy the same property. This scale invariance
is indeed verified in our experiments (see Sections ] and [5) and is the starting point for our data
augmentation algorithm in Section[3.2] An alternative strategy would be to train an angular classifier,
i.e. to impose scale invariance. However in preliminary experiments (not shown here), the resulting
classifier was less efficient and we decided against this option in view of the scale invariance and
better performance of the unconstrained classifier.

The goal of LHTR is to minimize the weighted risk

R(p, g™, g™ ) = piP{Y # g™(2),11Z]| = t} + poP{Y # ¢"™(2), | Z|| < t} + psD(a(2), p(2)),

where Z = ¢(X), D is the Jensen-Shannon distance between the heavy tailed target distribution
p and the code distribution ¢, and p1, p2, p3 are positive weights. Following common practice in
the adversarial literature, the Jensen-Shannon distance is approached (up to a constant term) by the

empirical proxy E(q,p) = SUPper E(q,p, D), with Z(q,p, D) = % St log D(Z;) + log (1 —
D(Zi)), where T is a wide class of discriminant functions valued in [0, 1], and where independent

samples Z;, Z; are respectively sampled from the target distribution and the code distribution q.
Further details on adversarial learning are provided in Appendix The classifiers g™, gPk
are of the form ¢™!(z) = 21{C(2) > 1/2) — 1, g®*(2) = 201{C™k(2) > 1/2) — 1 where
Cext, C™Ik are also discriminant functions valued in [0, 1]. Following common practice, we shall
refer to O, C™k as classifiers as well. In the end, LHTR solves the following min-max problem

infcex!ﬁcbulkvtp sup p ﬁ((ﬁ, Cex"7 CbUIk, D) with

n—=k
pjk > Y, C™™(Zw) + p3 Lia, p, D),

k
X p X
((p,cet Cbulk D ?Z )7Cet Z(z ))
i=1 i=k+1

where {Z(i) =p(X@u))i=1,... ,n} are the encoded observations with associated labels Y(;) sorted
by decreasing magnitude of || Z|| (i.e. || Z(1)|| > - -+ > [|Z(n)[]). k = [kn] is the number of extreme
samples among the n encoded observations and £(y, C(z)) = —(ylogC(z) + (1 — y) log(1 —
C(z)),y € {0,1} is the negative log-likelihood of the discriminant function C(x) € (0,1). A
summary of LHTR and an illustration of its workflow are provided in Appendices[A.2]and[A.3]

3.2 A heavy-tailed representation for dataset augmentation

We now introduce GENELIEX (Generating Label Invariant sequences from Extremes), a data augmen-
tation algorithm, which relies on the label invariance property under rescaling of the classifier for the
extremes learnt by LHTR. GENELIEX considers input sentences as sequences and follows the seq2seq
approach [52][16,[7]. It trains a Transformer Decoder [54] G** on the extreme regions.

For an input sequence U = (uy,...,ur) of length T, represented as Xy by BERT with latent
code Z = p(Xy) lying in the extreme regions, GENELIEX produces, through its decoder G*!
M sequences Uj where j € {1,...,M}. The M decoded sequences correspond to the codes
{\;Z,j € {1,...,M}} where \; > 1. To generate sequences, the decoder iteratively takes as
input the previously generated word (the first word being a start symbol), updates its internal state,
and returns the next word with the highest probability. This process is repeated until either the



decoder generates a stop symbol or the length of the generated sequence reaches the maximum

length (T}nayx). To train the decoder G : RY — 1,..., V] Tmex \where V is the vocabulary on
the extreme regions, GENELIEX requires an additional dataset D, = (Uy, ..., U,) (not necessarily
labeled) with associated representation via BERT (Xy 1, ..., Xy,,). Learning is carried out by
optimising the classical negative log-likelihood of individual tokens ;... The latter is defined as

Loen (U, Ge"t(gp(X))) &t f;‘f" Zvev 1{u; = v}log (p1,7t), where p, ; is the probability predicted

by G that the ' word is equal to v. A detailed description of the training step of GENELIEX is
provided in Algorithm[2]in Appendix [A3] see also Appendix [A-2]for an illustrative diagram.

Remark 2 Note that the proposed method only augments data on the extreme regions. A general
data augmentation algorithm can be obtained by combining this approach with any other algorithm
on the original input data X whose latent code Z = (X)) does not lie in the extreme regions.

4 Experiments : Classification

In our experiments we work with the infinity norm. The proportion of extreme samples in the training
step of LHTR is chosen as x = 1/4. The threshold ¢ defining the extreme region {||z|| > ¢} in the

test setis t = || Z (Lxn)) || as returned by LHTR. We denote by Ties and Tiain respectively the extreme

test and train sets thus defined. Classifiers C*"*, C®*" involved in LHTR are Multi Layer Perceptrons
(MLP), see Appendix [B.6|for a full description of the architectures.

Heavy-tailed distribution. The regularly varying target distribution is chosen as a multivariate
logistic distribution with parameter 6 = 0.9, refer to Appendix for details and an illustration
with various values of . This distribution is widely used in the context of extreme values analysis
[10} 53, 23] and differ from the classical logistic distribution.

4.1 Toy example: about LHTR

We start with a simple bivariate illustration of the heavy tailed representation learnt by LHTR. Our goal
is to provide insight on how the learnt mapping ¢ acts on the input space and how the transformation
affects the definition of extremes (recall that extreme samples are defined as those samples which
norm exceeds an empirical quantile). Labeled samples are simulated from a Gaussian mixture
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Figure 2: Bivariate samples X; in the input spa X;’s in the input space
with extremes from each class selected in the input space. [Figure 2c} Latent space representation
Z; = ¢(X;). Extremes of each class are selected in the latent space. |[Figure 2d} X;’s in the input
space with extremes from each class selected in the latent space.

distribution with two components of identical weight. The label indicates the component from which
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Figure 3: Classification loss of LHTR, LHTR; and NN model on the extreme test set {z € T, ||z|| >
At} for increasing values of A (X-axis), on Yelp and Amazon.

the point is generated. LHTR is trained on 2250 examples and a testing set of size 750 is shown in
Figure 2] The testing samples in the input space (Figure [2a)) are mapped onto the latent space via ¢
(Figure In Figure|[2b] the extreme raw observations are selected according to their norm after a
component-wise standardisation of X;, refer to Appendix [B]for details. The extreme threshold ¢ is
chosen as the 75% empirical quantile of the norm on the training set in the input space. Notice in
the latter figure the class imbalance among extremes. In Figure 2c] extremes are selected as the 25%
samples with the largest norm in the latent space. Figure 2d|is similar to Figure [2b]except for the
selection of extremes which is performed in the latent space as in Figure[2c] On this toy example, the
adversarial strategy appears to succeed in learning a code which distribution is close to the logistic
target, as illustrated by the similarity between Figure 2c|and Figure [5ain the supplementary. In
addition, the heavy tailed representation allows a more balanced selection of extremes than the input
representation.

4.2 Application to positive vs. negative classification of sequences

In this section, we dissect LHTR to better understand the relative importance of: (i) working with a
heavy-tailed representation, (ii) training two independent classifiers: one dedicated to the bulk and the
second one dedicated to the extremes. In addition, we verify experimentally that the latter classifier is
scale invariant, which is neither the case for the former, nor for a classifier trained on BERT input.
Experimental settings. We compare the performance of three models. The baseline NN model is a
MLP trained on BERT. The second model LHTR; is a variant of LHTR where a single MLP (C) is
trained on the output of the encoder ¢, using all the available data, both extreme and non extreme ones.
The third model (LHTR) trains two separate MLP classifiers C®! and C™!¥ respectively dedicated to
the extreme and bulk regions of the learnt representation . All models take the same training inputs,
use BERT embedding and their classifiers have identical structure, see Appendix and fora
summary of model workflows and additional details concerning the network architectures.
Comparing LHTR; with NN model assesses the relevance of working with heavy-tailed embeddings.
Since LHTR; is obtained by using LHTR with C**' = C™¥ comparing LEHTR; with LHTR validates
the use of two separate classifiers so that extremes are handled in a specific manner. As we make no
claim concerning the usefulness of LHTR in the bulk, at the prediction step we suggest working with
a combination of two models: LHTR with C¢** for extreme samples and any other off-the-shelf ML
tool for the remaining samples (e.g. NN model).

Datasets. In our experiments we rely on two large datasets from Amazon (231k reviews) [41] and
from Yelp (1,450k reviews) [58,|36]]. Reviews, (made of multiple sentences) with a rating greater than
or equal to 4/5 are labeled as +1, while those with a rating smaller or equal to 2/5 are labeled as —1.
The gap in reviews’ ratings is designed to avoid any overlap between labels of different contents.
Results. Figure 3] gathers the results obtained by the three considered classifiers on the tail regions of
the two datasets mentioned above. To illustrate the generalization ability of the proposed classifier in
the extreme regions we consider nested subsets of the extreme test set Ty, TN = {z € Teewt, ||2]] =
At}, A > 1. For all factor A > 1, T A C Twst. The greater )\, the fewer the samples retained for
evaluation and the greater their norms. On both datasets, LHTR; outperforms the baseline NN model.
This shows the improvement offered by the heavy-tailed embedding on the extreme region. In
addition, LHTR is in turn largely outperformed by the classifier LHTR, which proves the importance
of working with two separate classifiers. The performance of the proposed model respectively on the
bulk region, tail region and overall, is reported in Table[I] which shows that using a specific classifier
dedicated to extremes improves the overall performance.



Amazon Yelp

Model Bulk Extreme Overall Bulk Extreme Overall
NN model 0.085 0.135 0.098 0.098 0.148 0.111
LHTR; 0.104 0.091 0.101 0.160 0.139 0.155
LHTR 0.105 0.08 0.0988 0.162 0.1205 0.152

Proposed Model 0.085 0.08 0.084 0.097 0.1205 0.103
Table 1: Classification losses on Amazon and Yelp. ‘Proposed Model’ results from using NN model
model for the bulk and LHTR for the extreme test sets. The extreme region contains 6.9k samples for
Amazon and 6.1k samples for Yelp, both corresponding roughly to 25% of the whole test set size.

Scale invariance. On all datasets, the extreme classifier g*' verifies Equation (1) for each sample of
the test set, g**'(AZ) = ¢*'(Z) with ) ranging from 1 to 20, demonstrating scale invariance of g***
on the extreme region. The same experiments conducted both with NN model and a MLP classifier
trained on BERT and LHTR; show label changes for varying values of A: none of them are scale
invariant. Appendix gathers additional experimental details. The scale invariance property will
be exploited in the next section to perform label invariant generation.

S Experiments : Label Invariant Generation

5.1 Experimental Setting

Comparison with existing work. We compare GENELIEX with two state of the art methods for
dataset augmentation, Wei and Zou [56] and Kobayashi [32]. Contrarily to these works which use
heuristics and a synonym dictionary, GENELIEX does not require any linguistic resource. To ensure
that the improvement brought by GENELIEX is not only due to BERT, we have updated the method in
[32] with a BERT language model (see Appendix [B.7]for details and Table[7) for hyperparameters).

Evaluation Metrics. Automatic evaluation of generative models for text is still an open research
problem. We rely both on perceptive evaluation and automatic measures to evaluate our model
through four criteria (C1, C2, C3,C4). C1 measures Cohesion [17] (Are the generated sequences
grammatically and semantically consistent?). C2 (named Sent. in Table [3)) evaluates label conser-
vation (Does the expressed sentiment in the generated sequence match the sentiment of the input
sequence?). C3 measures the diversity [35] (corresponding to distl or dist2 in Table [Iﬁof the se-
quences (Does the augmented dataset contain diverse sequences?). Augmenting the training set with
very diverse sequences can lead to better classification performance. C4 measures the improvement
in terms of F1 score when training a classifier (fastText [31]) on the augmented training set (Does the
augmented dataset improve classification performance?).

Datasets. GENELIEX is evaluated on two datasets, a medium and a large one (see [50]) which
respectively contains 1k and 10k labeled samples. In both cases, we have access to D, a dataset of
80k unlabeled samples. Datasets are randomly sampled from Amazon and Yelp.

Experiment description. We augment extreme regions of each dataset according to three algorithms:
GENELIEX (with scaling factor A ranging from 1 to 1.5), Kobayashi [32]], and Wei and Zou [56]]. For
each train set’s sequence considered as extreme, 10 new sequences are generated using each algorithm.
Appendix gathers further details. For experiment C4 the test set contains 10* sequences.

5.2 Results

Automatic measures. The results of C3 and C4 evaluation are reported in Table[2] Augmented data
with GENELIEX are more diverse than the one augmented with Kobayashi [32] and Wei and Zou [56]].
The F1-score with dataset augmentation performed by GENELIEX outperforms the aforementioned
methods on Amazon in medium and large dataset and on Yelp for the medium dataset. It equals
state of the art performances on Yelp for the large dataset. As expected, for all three algorithms, the
benefits of data augmentation decrease as the original training dataset size increases. Interestingly,
we observe a strong correlation between more diverse sequences in the extreme regions and higher
F1 score: the more diverse the augmented dataset, the higher the F1 score. More diverse sequences

2dist n is obtained by calculating the number of distinct n-grams divided by the total number of generated
tokens to avoid favoring long sequences.



Amazon Yelp

Model Medium Large Medium Large
F1 distl/dist2  F1 distl/dist2  F1 distl/dist2 ~ F1 dist1/dist2
Raw Data 84.0 X 93.3 X 86.7 X 94.1 X

Kobayashi [32] 85.0 0.10/0.47 929 0.14/0.53 87.0 0.15/0.53 94.0 0.14/0.58

Wei and Zou [56] 852 0.11/0.50 932 0.14/0.54 87.0 0.15/0.52 94.2  0.16/0.59

GENELIEX 86.3 0.14/0.52 940 0.18/0.58 884 0.18/0.62 942 0.16/0.60
Table 2: Quantitative Evaluation. Algorithms are compared according to C3 and C4. dist] and dist2
respectively stand for distinct 1 and 2, it measures the diversity of new sequences in terms of unigrams
and bigrams. F1 is the F1-score for FastText classifier trained on an augmented labelled training set.

Amazon Yelp
Model Sent. Cohesion Sent. Cohesion
Raw Data 83.6 78.3 80.6 0.71

Kobayashi [32]] 80.0 84.2 82.9 0.72

Wei and Zou [56] 69.0 67.4 80.0 0.60

GENELIEX 78.4 73.2 85.7 0.77
Table 3: Qualitative evaluation with three turkers. Sent. stands for sentiment label preservation.
The Krippendorff Alpha for Amazon is o = 0.28 on the sentiment classification and oo = 0.20 for
cohesion. The Krippendorff Alpha for Yelp is o = 0.57 on the sentiment classification and o = 0.48
for cohesion.

are thus more likely to lead to better improvement on downstream tasks (e.g. classification).
Perceptive Measures. To evaluate C1, C2, three turkers were asked to annotate the cohesion and
the sentiment of 100 generated sequences for each algorithm and for the raw data. F1 scores of
this evaluation are reported in Table[3] Grammar evaluation confirms the findings of [56] showing
that random swaps and deletions do not always maintain the cohesion of the sequence. In contrast,
GENELIEX and Kobayashi [32]], using vectorial representations, produce more coherent sequences.
Concerning sentiment label preservation, on Yelp, GENELIEX achieves the highest score which
confirms the observed improvement reported in Table[2] On Amazon, turker annotations with data
from GENELIEX obtain a lower Fl-score than from Kobayashi [32]]. This does not correlate with
results in Table [2|and may be explained by a lower Krippendorff Alph on Amazon (o = 0.20) than
on Yelp (o = 0.57).

6 Broader Impact

In this work, we propose a method resulting in heavy-tailed text embeddings. As we make no
assumption on the nature of the input data, the suggested method is not limited to textual data
and can be extended to any type of modality (e.g. audio, video, images). A classifier, trained on
aforementioned embedding is dilation invariant (see Equation [I)) on the extreme region. A dilation
invariant classifier enables better generalization for new samples falling out of the training envelop.
For critical application ranging from web content filtering (e.g. spam [27]], hate speech detection [18],
fake news [43]]) to medical case reports to court decisions it is crucial to build classifiers with lower
generalization error. The scale invariance property can also be exploited to automatically augment
a small dataset on its extreme region. For application where data collection requires a huge effort
both in time and cost (e.g. industrial factory design, classification for rare language [4]), beyond
industrial aspect, active learning problems involving heavy-tailed data may highly benefit from our
data augmentation approach.
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