
A Proof of Remark 1

The work of [28] proves Theorem 1 for the special case of deterministic policies. However, it also
holds for stochastic policies, as shown below.

Consider an MDPM0 : 〈S,A, T,R0, γ〉 with its Q-function given by Q0. Assuming a stochastic
policy is considered, we can replace the max operator in the standard Bellman update for the
Q-function with a Boltzmann operator, as shown below:

Q0(s, a) , Es′∼T

[
R0(s, a, s′) + γ

∑
a′∈A

π(s′, a′) Q0(s′, a′)

]
where

π(s′, a′) =
exp(Q0(s′, a′))∑

a′′∈A exp(Q0(s′, a′′))
. (9)

Subtracting a real-valued function φ(s) from Q0(s, a),

Q0(s, a)− φ(s)

= Es′∼T

[
R0(s, a, s′)− φ(s) + γ

∑
a′∈A

π(s′, a′) Q0(s′, a′)

]

= Es′∼T

[
R0(s, a, s′)− φ(s) + γφ(s′)− γφ(s′) + γ

∑
a′∈A

π(s′, a′) Q0(s′, a′)

]

= Es′∼T

[
R0(s, a, s′)− φ(s) + γφ(s′) + γ

∑
a′∈A

π(s′, a′) (Q0(s′, a′)− φ(s′))

]
.

(10)

So, (9) can be rewritten as

π(s′, a′) =
exp(Q0(s′, a′)− φ(s′))∑

a′′∈A exp(Q0(s′, a′′)− φ(s′))
. (11)

Let us define Q(s, a) , Q0(s, a)− φ(s). Then,

π(s′, a′) =
exp(Q(s′, a′))∑

a′′∈A exp(Q(s′, a′′))
. (12)

Let us also define R(s, a, s′) , R0(s, a, s′) + γφ(s′) − φ(s′). Substituting this definition along
with (12) into (10),

Q(s, a) = Es′∼T

[
R(s, a, s′) + γ

∑
a′∈A

π(s′, a′) Q(s′, a′)

]
which is the Bellman update (with Boltzmann operator) for MDPM1 : 〈S,A, T,R, γ〉. Therefore,
by shaping R(s, a, s′) = R0(s, a, s′)+γφ(s′)−φ(s), the policy remains unchanged and the Q-value
is modified to Q0(s, a)− φ(s).

B Proof of Theorem 2

Consider a single trajectory τ with length L sampled fromM. Let F(τ) be any function used to
generate M ≥ 1 additional trajectories with the same starting state and length as τ . Rθ and Rθ̂ are
assumed to be policy invariant under Theorem 1. Then, without loss of generality, Rθ̂(s, a, s′) =
Rθ(s, a, s′) + F (s, a, s′) where F takes the form specified in (7). Recall from Section 2 that

Rθ̂(τ) =

L−1∑
t=0

γtRθ̂(st, at, st+1)

=

L−1∑
t=0

γt (Rθ(st, at, st+1) + F (st, at, st+1))

= Rθ(τ) +

L−1∑
t=0

γtF (st, at, st+1) .

(13)

13

Using the definition of F (s, a, s′) from Theorem 1,
L−1∑
t=0

γtF (st, at, st+1) =

L−1∑
t=0

γt (γφ(st+1)− φ(st)) = γLφ(sL)− φ(s0) . (14)

Substituting (14) into (13),

Rθ̂(τ) = Rθ(τ) + γLφ(sL)− φ(s0) .

Using the same reasoning, for all τ ′ ∈ F(τ),

Rθ̂(τ ′) = Rθ(τ ′) + γLφ(s′L)− φ(s0) .

By definition of ρ-projection (Definition 1), s0 is the same for τ and all τ ′ ∈ F(τ). Note that sL is
the last state in trajectory τ and s′L is the last state in trajectory τ ′. Define h , γLφ(sL)− φ(s0) and
k′ , φ(s′L)− φ(sL). Then,

Rθ̂(τ) = Rθ(τ) + h
Rθ̂(τ ′) = Rθ(τ ′) + h+ γLk′ .

(15)

Using the definition of ρ-projection (Definition 1) and (15),

ρτ (θ̂) =
exp(Rθ̂(τ))

exp(Rθ̂(τ)) +
∑
τ ′∈F(τ) exp(Rθ̂(τ ′))

=
exp(Rθ(τ) + h)

exp(Rθ(τ) + h) +
∑
τ ′∈F(τ) exp(Rθ(τ ′) + h+ γLk′)

=
exp(Rθ(τ))

exp(Rθ(τ)) +
∑
τ ′∈F(τ) exp(Rθ(τ ′) + γLk′)

.

(16)

Since 0 ≤ γ < 1, γL → 0 as L→∞. Therefore,

limL→∞ ρτ (θ̂) =
exp(Rθ(τ))

exp(Rθ(τ)) +
∑
τ ′∈F(τ) exp(Rθ(τ ′))

= ρτ (θ) .

C Proof of Corollary 2

Corollary 2 is a natural extension of Theorem 2. Let us consider the two cases separately.

Case 1: Rewards only depend on the states. Using Corollary 1, the potential-based function
F (s, a, s′) is a constant c. From (13),

Rθ̂(τ) =

L−1∑
t=0

γtRθ̂(st, at, st+1)

= Rθ(τ) +

L−1∑
t=0

γtc .

Similarly, for all τ ′ ∈ F(τ) with the same starting state s0 and length L as τ ,

Rθ̂(τ ′) = Rθ(τ ′) +

L−1∑
t=0

γtc .

Let c′ ,
∑L−1
t=0 γ

tc. Using the definition of ρ-projection (Definition 1),

ρτ (θ̂) =
exp(Rθ̂(τ))

exp(Rθ̂(τ)) +
∑
τ ′∈F(τ) exp(Rθ̂(τ ′))

=
exp(Rθ(τ) + c′)

exp(Rθ(τ) + c′) +
∑
τ ′∈F(τ) exp(Rθ(τ ′) + c′)

=
exp(Rθ(τ))

exp(Rθ(τ)) +
∑
τ ′∈F(τ) exp(Rθ(τ ′))

= ρτ (θ) .

14

Case 2: All τ ′ ∈ F(τ) have the same end state sL, starting state s0, and length L as τ . Recall
that k′ = φ(s′L)− φ(sL) in (15): Since the end states are the same for τ and all τ ′ ∈ F(τ), k′ = 0.
Using this in (16),

ρτ (θ̂) =
exp(Rθ̂(τ))

exp(Rθ̂(τ)) +
∑
τ ′∈F(τ) exp(Rθ̂(τ ′))

=
exp(Rθ(τ) + h)

exp(Rθ(τ) + h) +
∑
τ ′∈F(τ) exp(Rθ(τ ′) + h)

=
exp(Rθ(τ))

exp(Rθ(τ)) +
∑
τ ′∈F(τ) exp(Rθ(τ ′))

= ρτ (θ) .

D Experimental Setups

Figure 4 shows all the environments used in this study. We will now elaborate on the tasks, reward
functions, and other details associated with each of these environments.

D.1 Gridworld Environment

The Gridworld environment introduced in Fig. 1a is a synthetic experimental setup designed to show
the similarities that exist in the reward function space Θ. In this setup, each state s is represented by
a state feature φ(s) which corresponds to the number of gold coins in that state. We used a translated
logistic function Rθ(s) = 10/(1 + exp(−θ1 × (φ(s) − θ0))) + θ2 as reward function where θ0
controls the steepness of the logistic function, θ1 controls the midpoint, and θ2 translates the reward
function. The ground truth values of these parameters are [1.25, 5.0, 0].

During the IRL training, a total of 50 expert trajectories of length 15 were used. For BO-IRL, a subset
of randomly selected K = 10 trajectories were used for the calculation of ρ-projection at each trial.
For each of these trajectories, M = 5 artificial trajectories of the same length and starting state were
generated using a random policy walk. For BO initialization, points were selected from regions of
high NLL to make the training challenging. BO optimizations ran for a budget of 100 evaluations
while AIRL [14] and GCL [12] ran for 1000 iterations. Both the expert trajectories and initialization
remained unchanged across the various tested algorithms for fair comparison. The bounds of Θ were
set to

• steepness: θ0 ∈ [−2, 2],
• midpoint: θ1 ∈ [−10, 10], and
• translation: θ2 ∈ [−4, 4].

D.2 Börlange Road Network Dataset

The Börlange road network dataset contains road link information from the town of Börlange, Sweden.
It contains 7288 links such that each link shares a vertex with at most 5 other links. A dummy link is
also added from the given destination to indicate end of the trip, hence making the total number of
links 7289. Features associated with traveling from a link a to an adjacent link b are available in the
dataset.

We have modified this dataset to form an MDP where each state s(a, b) corresponds to being in a
particular link b after traveling from an adjacent link a. Each s(a, b) is defined by 4 state features:

1. Time to traverse b,
2. Is the turn from a to b a right-turn? Binary value with 0:yes and 1:no,
3. Constant 0 if b is a sink state and 1 otherwise, and
4. Is the turn from a to b a u-turn? Binary value with 0:yes and 1:no.

The reward function is assumed to be a linear combination of these 4 state features with parameters
θ0, θ1, θ2, θ3 corresponding to the features mentioned above in that order. θ2 allows us to penalize

15

any trips that contain too many road link traversals. In our experiments, θ3 was set to −20 and is not
learned.

Furthermore, our action space contains 6 actions. Actions 0-5 at state s(a, b) correspond to moving
from b to one of its adjacent links, c. In terms of transition probabilities, this corresponds to a
deterministic transition from s(a, b) to s(b, c). Action 0 corresponds to moving to the adjacent link
with the rightmost turn, followed by action 1 for the next right link, and so on. If the number of
outgoing links of b is less than 5, then it is assumed that the agent transitions back to state s(a, b).
Action 6 can be thought of as the “parking” action and is only valid for state s(a, b) where b is the
dummy link. Taking action 6 in other states leads to a transition back to the same state. In total,
this environment contains 20,199 states and 6 actions, hence making it challenging for exact policy
optimization methods.

D.2.1 Virtual Börlange Road Network Dataset

To test the quality of the reward function retrieved by BO-IRL, we need to calculate the expected
sum of rewards (ESOR) and compare it to that of the expert. To do so, we need to have access to
the ground truth reward function. Unfortunately, this is not available in the Börlange road network
dataset. So, a simulation of the road network was constructed with the exact set of road links and
connections. An artificial reward function with parameters θ0 = −2, θ1 = −1, θ2 = −1, θ3 = −20
was used and a new set of 20,000 expert trajectories were generated, which was further reduced
to 635 informative trajectories. For BO-IRL, a subset of K = 10 expert trajectories were used for
ρ-projection. For each expert trajectory, M = 2000 artificial trajectories were generated using a
random policy. BO was initialized with points from regions of high NLL and executed for a budget
of 50 evaluations. The following bounds of Θ were used:

• traverse time: θ0 ∈ [−2.5, 2.5],

• right-turn: θ1 ∈ [−2.5, 2.5],

• penalty: θ2 ∈ [−2.5, 2.5], and

• u-turn: θ3 = −20.

D.2.2 Real-World Börlange Road Network Dataset

The experiments from the virtual setting were repeated on the real-world trajectories available in
the Börlange road network dataset. Only the negative log likelihood (NLL) was evaluated to verify
whether BO-IRL converges faster than existing methods to an optimum. All the details for this
setup was kept the same as the virtual setup, except for the number of expert trajectories. For expert
trajectories, we selected 54 trajectories that end at a specific destination, but with different starting
points.

D.3 Fetch Robot Simulation

In this work, we utilize the Fetch Robot simulation which is a part of the OpenAI Gym [7]. In
particular, we use the Fetch-Reach task environment. The goal of this task is to move the gripper of
the Fetch robot to a goal position which is randomly populated in the 3D space at each iteration. The
reward function is given by

R(s) ,

{
0 if d(s) ≤ θ0 ,
θ1 otherwise ;

where d(s) corresponds to the distance between the gripper and the target at the given state s and θ0
is a distance threshold beyond which a penalty value of θ1 is applied. The following bounds of Θ
were used:

• threshold: θ0 ∈ [0, 0.25], and

• penalty: θ1 ∈ [−1.5, 1.5].

Since this is a model-free environment, we use proximal policy optimization (PPO) [34] to perform
policy optimization. Due to the randomness inherent in PPO, we perform policy optimization 3 times
and average the likelihood value when evaluating each reward function.

16

D.4 Point Mass Maze

This environment closely follows the experimental setup in [14]. We have simplified the reward
function from a deep neural network used in [14] to just the x-y position of the target location given
by θ = {θ0, θ1}. As shown in Fig. 4c, the goal is to move the blue ball to the green target location. A
state feature corresponding to state s represents the current x-y location of the blue ball represented
by θ̃s. The reward function of a state s is given by R(s) , ||θ − θ̃s||. We use proximal policy
optimization (PPO) [34] to perform policy optimization. The following bounds of Θ were used:

• threshold: θ0 ∈ [−1, 1], and
• penalty: θ1 ∈ [−1, 1].

D.5 Maximum Entropy Deep IRL

We tested deep maximum entropy IRL (deep ME-IRL) [37] in the discrete environments, namely, the
Gridworld environment and Börlange road network. In the Gridworld environment setting, it failed
to reach the expert’s ESOR across multiple trials. In the Börlange road network, the large state space
made calculating the state-visitation frequency intractable. Deep ME-IRL is not compatible with
continuous environments and was therefore not evaluated in the Point Mass Maze and Fetch-Reach
task environment. Hence, it is omitted from Table 1.

E BO-IRL Algorithm

The full algorithm of BO-IRL with ρ-RBF kernel can be found in Algorithm 1. The algorithm can be
split into four main phases. Phase 1 described in Algorithm 2 shows the steps involved in generating
the Z dataset which contains [

(
τk,F(τk)

)
]Kk=1 where τk is an expert trajectory. As mentioned in

Definition 1, F(τk) corresponds to M sampled trajectories using an uniform policy with the same
starting state and length as τk.

In Phase 2, we define the two components of Bayesian Optimization, namely, the acquisition function
and surrogate function. In our work, EI is used as the acquisition function. A GP with ρ-RBF kernel
generated using the Z matrix from the previous phase is used as the surrogate function. For details
on how to create this kernel, refer to Section 3.3.

Phases 3 and 4 follow the standard Bayesian Optimization practices. These involve initialization and
optimization. During initialization, ninit samples are drawn from the reward function space Θ to
initialize the BO by updating the prior. In our experiments, we have collected a set of initialization
points corresponding to high NLL values to make the training more challenging. During the opti-
mization, the acquisition function is used to select the next reward function parameter to evaluate.
After every evaluation, the GP posterior mean and standard deviation are updated using Bayes rule.
You can find more information about standard BO practices from [6, 22, 26, 30].

F Additional Experimental Results

This section presents additional results obtained by running BO-IRL and other state-of-the-art IRL
algorithms on the four environments shown in Fig. 4.

F.1 GP Posterior Mean and Standard Deviation

Fig. 8 shows the posterior mean and standard deviation obtained using BO-IRL with ρ-RBF kernel
for all the environments. As the plots show, the uncertainty in regions of high likelihood (low NLL)
is low which indicates that BO has focused on uncovering regions of high likelihood. The top and
bottom rows of Fig. 9 show the posterior mean obtained using BO-IRL with RBF and Matérn kernels.
Comparing with the GP posterior mean obtained using ρ-RBF, we observe that RBF and Matérn need
to explore the reward function space more exhaustively to identify multiple regions of high likelihood.
Furthermore, the true likelihood values for the Gridworld environment setting (shown in Fig. 1b)
matches closely with the posterior from ρ-RBF (Fig. 8a) when compared with that from RBF and
Matérn (Fig. 9a). Finally, the standard kernels have also failed to capture a good reward function for
the Point Mass Maze environment.

17

Algorithm 1 BO-IRL
Input: expert demonstrations: D, budget: B, sizes: K, M , and ninit
E ← ∅ (to track all θ values evaluated by BO)

{Phase 1: Generate Z}
Z ← generateZ(D,K,M) using Algorithm 2

{Phase 2: Setup BO}
BO Surrogate Function← GP with ρ-RBF kernel evaluated using Z
BO Acquisition Function← Expected Improvement

{Phase 3: Initialization}
repeat

Randomly select a reward-parameter θ
Calculate optimal policy πθ using policy iteration (or policy gradient methods)
Calculate NLL ` of D using πθ
E ← (θ, `)

until Size of E < ninit
Update the GP Posterior using E

{Phase 4: Optimization}
repeat

Using BO acquisition function, select next θ
Calculate optimal policy πθ using policy iteration (or policy gradient methods)
Calculate NLL ` of D using πθ
E ← (θ, `)
Update the GP Posterior using E

until Size of E < B + ninit

Algorithm 2 generateZ
Input: expert demonstrations D, sizes: K and M
Z ← ∅
for k = 1 to K do

Randomly select a trajectory τk from D without replacement
s← Starting state of τk
L← Length of τk
F(τk)← ∅
for i = 1 to M do

Generate trajectory τ ′ki with starting state s and length L by rolling out a uniform policy
F(τk)← F(τk) ∪ τ ′ki

end for
Z ← Z ∪ (τk,F(τk))

end for
Return Z

18

Figure 8: The GP posterior mean (top row) and standard deviation (bottom row) obtained after
running BO-IRL with ρ-RBF kernel for all the tested environments. The red crosses represent
samples selected by BO that have NLL better than the expert’s true reward function. The red filled
dots and red empty dots are samples whose NLL are similar to the expert’s NLL, i.e., less than 1%
and 10% larger, respectively. The green ? indicates the expert’s true reward function.

Figure 9: The posterior mean learned by BO-IRL with RBF (top row) and Matérn (bottom row)
kernels for all the tested environments.

19

Figure 10: (a) Euclidean distance of the best reward function thus far from the ground truth target
position. (b) ESOR value of the best reward function.

F.2 Fetch-Reach Training Progress

A video file showing the best reward function obtained at each iteration is included along with the
supplementary material. Recall that the reward function is parameterized by the distance threshold
around the target location and the penalty associated with being outside the distance threshold. As
shown in Figs. 7a and 7b, the blue circle is a visual representation of the distance threshold. The
penalty values are reported at each frame of the video.

F.3 Point Mass Maze

As reported in Table 1, Matérn outperforms ρ-RBF kernel for the Point Mass Maze environment.
We believe this is due to ρ-RBF’s ability to capture the correlation between NLL values better than
Matern. Fig. 10a shows the Euclidean distance of the best reward function observed so far in the
training (in terms of NLL) from the ground truth target position. Despite coming close to ground truth
target position at iteration 4, BO-IRL with ρ-RBF kernel explores other regions of reward function
space that have reward functions with lower NLL (iterations 9-20). However, the lower NLL values
at the reward functions that are farther away from the ground truth do not translate directly into better
ESOR, as can be seen in Fig. 10b.

F.4 Börlange Road Network

Börlange road network dataset does not contain a ground truth reward function that generated the
real-world data. Therefore, we created a simulated environment that mimics the road network in this
dataset. Since no ground truth reward is available, we used the reward function in [13] and generated
artificial trajectories. Table 1 shows the number of iterations required by the various algorithms to
match the expert’s performance. As observed, BO-IRL with ρ-RBF kernel outperforms the other
methods.

With the new insight that BO-IRL matches the performance of the expert in the simulated Börlange
road network, we tested BO-IRL against the real-world data. Performance was evaluated using the
negative log likelihood (2) across iterations. Fig. 11 shows the performance of AIRL, GCL, and
BO-IRL on the real-world data. GCL and AIRL converge slowly while BO-IRL finds points with low
NLL within a few iterations. Amongst the BO-IRL kernels, ρ-RBF does not achieve the lowest NLL,
but has comparable values to other kernels.

20

Figure 11: Negative log-likelihood of Börlange road network dataset at rewards retrieved by BO-IRL
compared against that from AIRL and GCL. BO-IRL is able to converge to an optimal reward function
faster than GCL or AIRL. Performance of ρ-RBF kernel was observed to be slightly worse than the
other kernels in terms of the NLL values. AIRL eventually overfits and the training became unstable
after 55 iterations.

21

