
A Algorithms and Results of RCD-LMC

A.1 Algorithm

We apply RCD as surrogates of the gradient in O/U-LMC. This amounts to replacing the gradient
terms in (4) using the approximation (1). The new methods are presented in Algorithm 1, termed
RCD-O/U-LMC.

Algorithm 1 RCD-overdamped(underdamped) Langevin Monte Carlo
Preparation:
1. Input: η (space step); h (time step); γ (parameter); d (dimension); M (stopping index) and f(x).
2. Initial: (overdamped): x0 i.i.d. sampled from a initial distribution induced by q0(x).

(underdamped): (x0, v0) i.i.d. sampled from the initial distribution induced by q0(x, v).
Run: For m = 0 , 1 , · · ·M

1. Finite difference: calculate flux approximation by RCD:

Fm = d
f(xm + ηer)− f(xm − ηer)

2η
er (A.1)

with r uniformly drawn from 1 , · · · , d.
2. (overdamped): Draw ξm from N (0, Id):

xm+1 = xm − Fmh+
√

2hξm . (A.2)

(underdamped): Sample (xm+1, vm+1) ∼ Zm+1 = (Zm+1
x , Zm+1

v ) where Zm+1 is a Gaussian
random variable with expectation and covariance defined in (6), replacing∇f(xm) by Fm.
end
Output: {xm}.

A.2 A counter-example

In this section, we prove Theorem 4.1.

Fisrt, we define wm = xm + vm, and denote um(x,w) the probability density of (xm, wm) and
u∗(x,w) the probability density of (x,w) if (x, v = w − x) is distributed according to density
function p2. From [2], we have:

|xm − x|2 + |vm − v|2 ≤ 4(|xm − x|2 + |wm − w|2) ≤ 16(|xm − x|2 + |vm − v|2) , (A.3)

and thus
W 2

2 (qUm, p2) ≤ 4W 2
2 (um, u

∗) ≤ 16W 2
2 (qUm, p2) . (A.4)

Proof of Theorem 4.1. Throughout the proof, we drop the superscript “U" to have a concise notation.
According to (A.4), it suffices to find a lower bound for W 2

2 (um, u
∗). We first notice

W2(um, u
∗) ≥

√∫
|w|2um(x,w) dw dx−

√∫
|w|2u∗(x,w) dw dx

=

√∫
|w|2um(x,w) dw dx−

√
2d =

√
E|wm|2 −

√
2d

=
E|wm|2 − 2d√
E|wm|2 +

√
2d

,

(A.5)

where E takes all randomness into account. This implies to prove (11), it suffices to find a lower
bound for second moment of wm. Indeed, in the end, we will show that

W2(um , u
∗) ≥ (1− 2h)

m

√
d

512
+
d3/2h

1152
(A.6)
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and thus

W2(qm, p2) ≥ (1− 2h)
m

√
d

1024
+
d3/2h

2304

proving the statement of the theorem since (1− 2h)
m ≥ exp (−2mh). To show (A.6), we first note,

by direct calculation:

W2(q0, p2) =
√
d/8 , E|ω0|2 =

129d

64
, (A.7)

then we divide the proof into several steps:

• First step: Priori estimation

According to (A.7), use convergence result of Algorithm 1 ([4] Theorem 4.1), we have for
any m ≥ 0

W2(qm, p2) ≤
√
d

2
+

√
d

6
=

2
√
d

3
,

Similar to (A.5), we have

W2(qm, p2) ≥ |
√

E|xm|2 −
√
d| , W2(qm, p) ≥ |

√
E|vm|2 −

√
d|

which implies
√
d

3
≤
√
E|xm|2 ≤ 5

√
d

3
,

√
d

3
≤
√
E|vm|2 ≤ 5

√
d

3
(A.8)

for any m ≥ 0.

Finally, use (A.8), we can obtain√
E|ωm|2 ≤

√
E|xm|2 +

√
E|vm|2 ≤ 4

√
d . (A.9)

• Second step: Iteration formula of E|wm|2.

By the special structure of p, we can calculate the second moment explicitly. Since f(x)
can be written as

f(x) =

d∑
i=1

|xi|2

2
,

in each step of RCD-U-LMC, according to Algorithm 1, for each m ≥ 0 and 1 ≤ i ≤ d, we
have

E
(
xm+1
i |(xm, vm, rm)

)
= xmi +

1− e−2h

2
vmi −

(
h

2
− 1− e−2h

4

)
(xmi − Emi ),

E
(
vm+1
i |(xm, vm, rm)

)
= vmi e

−2h − 1− e−2h

2
(xmi − Emi ) ,

E
(
wm+1
i |(xm, vm, rm)

)
=

1 + e−2h

2
wmi +

1− e−2h

2
Emi −

(
h

2
− 1− e−2h

4

)
(xmi − Emi ) ,

Var
(
xm+1
i |(xm, vm, rm)

)
= h− 3

4
− 1

4
e−4h + e−2h ,

Var
(
vm+1
i |(xm, vm, rm)

)
= 1− e−4h ,

Cov
(
(xm+1
i , vm+1

i )|(xm, vm, rm)
)

=
1

2

[
1 + e−4h − 2e−2h

]
,

(A.10)
where Em ∈ Rd is a random variable defined as

Emi = xmi − dxmi ermi
and satisfies

Erm(Emi ) = 0, Erm |Emi |
2

= (d− 1)|xmi |2 (A.11)
for each 1 ≤ i ≤ d. Furthermore,

E〈wmi , Emi 〉 = E〈xmi , Emi 〉 = 0 . (A.12)
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Now, since h ≤ 1
880 , we can replace e−2h and e−4h by their Taylor expansion:

e−2h = 1− 2h+ 2h2 +D1h
3, e−4h = 1− 4h+ 8h2 +D2h

3 , (A.13)

where D1, D2 are negative constants depends on h and satisfy

|D1| < 10, |D2| < 100 .

Plug (A.13) into (A.10), we have

E
(
wm+1
i |(xm, wm, rm)

)
=

(
1− h+ h2 +

D1h
3

2

)
wmi −

(
h2

2
+
D1h

3

4

)
xmi

+

(
h− h2

2
− D1h

3

4

)
Emi ,

Var
(
xm+1
i |(xm, vm, rm)

)
=

(
D1 −

D2

4

)
h3 ,

Var
(
vm+1
i |(xm, vm, rm)

)
= 4h− 8h2 −D2h

3 ,

Cov
(
(xm+1
i , vm+1

i )|(xm, vm, rm)
)

= 2h2 +
(D2 − 2D1)h3

2
.

(A.14)

The last three equalities in (A.14) implies

Var
(
wm+1
i |(xm, vm, rm)

)
=Var

(
xm+1
i |(xm, vm, rm)

)
+ Var

(
vm+1
i |(xm, vm, rm)

)
+ 2Cov

(
xm+1
i , vm+1

i )|(xm, vm, rm)
)

=4h− 4h2 −
(
D1 +

D2

4

)
h3 .

Then, we can calculate the iteration formula for E|xm+1
i |2 and E|ωm+1

i |2:

E|ωm+1
i |2

=Exm,wm,rm
(
|ωm+1
i |2

∣∣ (xm, vm, rm)
)

=Exm,wm,rm

(∣∣E (wm+1
i |(xm, wm, rm)

)∣∣2 + Var
(
wm+1
i |(xm, vm, rm)

))
=

(
1− h+ h2 +

D1h
3

2

)2

E|wmi |2 + (d− 1)

(
h− h2 − D1h

3

2

)2

E|xmi |2

+

(
h2

2
+
D1h

3

4

)2

E|xmi |2 − 2

(
1− h+ h2 +

D1h
3

2

)(
h2

2
+
D1h

3

4

)
E 〈wmi , xmi 〉

+ 4h− 4h2 −
(
D1 +

D2

4

)
h3 ,

where we use (A.11) and (A.12) .

Sum them up with i, we finally obtain an iteration formula for E|wm|2:

E|ωm+1|2

=

(
1− h+ h2 +

D1h
3

2

)2

E|wm|2 + (d− 1)

(
h− h2 − D1h

3

2

)2

E|xm|2

+

(
h2

2
+
D1h

3

4

)2

E|xm|2 − 2

(
1− h+ h2 +

D1h
3

2

)(
h2

2
+
D1h

3

4

)
E 〈wm, xm〉

+ 4dh− 4dh2 − d
(
D1 +

D2

4

)
h3 .

(A.15)

• Third step: Lower bound for W2(um, u
∗) Use (A.9), since D1 < 0, h < 1

100 <
1
|D1| and

d > 1872, we have

h2

2
≤ h2 +

D1h
3

2
≤ h2, h− h2 − D1h

3

2
≥ h− h2 ≥ h

2
,
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which implies

1− h+ h2 +
D1h

3

2
≥ 1− h+ h2/2 , (d− 1)

(
h− h2 − D1h

3

2

)2

E|xm|2 ≥ d2h2

72
.

(A.16)
and (

h2

2
+
D1h

3

4

)
E 〈wm, xm〉 ≤ h2

2

(
E|wm|2E|xm|2

)1/2 ≤ 4dh2 . (A.17)

For the last line of (A.15), since h ≤ 1
880 <

1
|D1|+|D2|/4 , we have

4dh− 4dh2 − d
(
D1 +

D2

4

)
h3 ≥ 4dh− 5dh2 . (A.18)

Plug (A.16),(A.17),(A.18) into (A.15), we have

E|ωm+1|2 ≥
(
1− h+ h2/2

)2 E|wm|2 + 4dh+ d2h2/72− 13dh2 . (A.19)

Note that
(
1− h+ h2/2

)2 ≥ 1 − 2h, and since d > 1872, we have d2h2

144 ≥ 13dh2.
Use (A.19) iteratively and combine with (A.7), we finally have:

E|ωm|2 ≥ 129 (1− 2h)
m
d

64
+ (1− (1− 2h)m)

[
2d+ d2h/288

]
= (1− 2h)m

[
d

64
− d2h

288

]
+ 2d+

d2h

288

≥ (1− 2h)m
d

128
+ 2d+

d2h

288
,

(A.20)

Plug (A.20) into (A.5), we further have

W2(um, u
∗) ≥

(1− 2h)m d
128 + 2d+ d2h

288 − 2d√
(1− 2h)m d

128 + 2d+ d2h
288 +

√
2d

≥
(1− 2h)m d

128 + d2h
288

4
√
d

≥ (1− 2h)
m

√
d

512
+
d3/2h

1152
,

where we use small enough h in the second inequality to bound the d2h term by d in the
denominator. This proves (A.6).

B Proof of convergence of RCAD-O-LMC (Theorem 5.1)

In this section we provide the detailed proof for Theorem 5.1.

Before diving into details, we quickly summarize the proving strategy. Recall that the target distri-
bution p is merely the equilibrium of the SDE (2). This means, if a particle prepared at the initial
stage is drawn from p, then following the dynamics of SDE (2), the distribution of this particle will
continue to be p. In the analysis below, we call the trajectory of this particle yt, and the sequence
generated by this particle evaluated at discrete time ym. Essentially we evaluate how quickly xm
converges to ym as m increases. In particular, we call ∆m = xm − ym and will derive an iteration
formula that shows the convergence of ∆m.

In evaluating ∆m, there are three kinds of error that get involved:
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1. discretization error in η: this can be made as small as possible. η is a spatial stepsize
parameter and can be made as small as we wish. The finite differencing accuracy is second
order and thus the produced error is at the order of O(η2). By making η small, we make
this part of error negligible;

2. discretization error in h: this amounts to controlling the discretization error of the SDE (2).
To handle this part of error we employ the estimates in [3];

3. random coordinate selection process error: this is to measure, at each iteration, how big can
∇f(xm)− Fm be. According to the way Fm is defined, it is straightforward to show that
the expectation of this error is always 0, but the variance E|∇f(xm)−Fm|2 can be big, and
this is the main reason for the direct application of RCD on LMC to fail [4]. The variance
reduction technique discussed in this paper is exactly to reduce the size of this term.

In a way, see details in (B.11), we can derive the iteration formula, ignoring the discretization error in
η,

∆m+1 =ym+1 − xm+1 = ∆m + (ym+1 − ym)− (xm+1 − xm)

=∆m − h (∇f(ym)−∇f(xm))−
∫ (m+1)h

mh

(∇f(ys)−∇f(ym)) ds

− h(∇f(xm)− Fm) .

The second term on the right hand side, by using the Lipschitz continuity, will provide −Lh∆m,
and it produces desirable property when combined with the first ∆m. The third term encodes the
discretization error in h, and was shown to be small in [3]. The last term is the error that comes from
the random coordinate selection process. We discuss it in details in Section D. We note that this term,
due to the complicated random coordinate selection process, cannot be uniquely controlled by ∆m,
but rather, the entire trajectory of the selection process has to enter. To overcome that, we define a the
Lyapunov function that singles out ∂rmf(xm)− ∂rmf(ym), a term that has the rm dependence. The
boundedness of this term, and the iteration formula for ∆m combined give the decay of the Lyapunov
function. See definition in (B.8).

Now we prove the theorem in details. After a lengthy definition of all notations, we will present
Lemma B.1 and Lemma B.2. They are to bound, iteratively ∆m and ∂rmf(xm)− ∂rmf(ym) term
respectively. The proof of the theorem then follows by combining the two lemmas to control the
Lyapunov function.

As presented in the main text, the first step of RCAD-O-LMC uses the finite differencing approxima-
tion for every direction, namely, setting g0 ∈ Rd to be:

g0i =
f(x0 + ηei)− f(x0 − ηei)

2η
, i = 1, 2, · · · , d .

In the following iterations, one random direction is selected for the updating,

gm+1
rm =

f(xm + ηerm)− f(xm − ηerm)

2η

with other directions untouched: gm+1
i = gmi for all i 6= rm. Define:

Fm = gm + d
(
gm+1 − gm

)
,

then the updating formula is:

xm+1 = xm − Fmh+
√

2hξm , (B.1)

where h is the time stepsize, and ξm i.i.d. drawn from N (0, Id). Denote

Em = ∇f(xm)− Fm , (B.2)

then this updating formula (B.1) writes to:

xm+1 = xm −∇f(xm)h+ Emh+
√

2hξm . (B.3)

This is the formula we use for the analysis under Assumptions 3.1 and 3.2.
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To show the theorem, we let y0 be a random vector drawn from target distribution induced by p such
that W 2

2 (qO0 , p) = E|x0 − y0|2, and set

yt = y0 −
∫ t

0

∇f(ys) ds+
√

2

∫ t

0

dBs , (B.4)

where we construct the Brownian motion that always satisfies

Bh(m+1) −Bhm =
√
hξm . (B.5)

Then yt is drawn from target distribution as well. On the discrete level, let ym = ymh, then:

ym+1 = ym −
∫ (m+1)h

mh

∇f(ys) ds+
√

2hξm .

Noting
W 2

2 (qOm, p) ≤ E|xm − ym|2 ,
where E takes all randomness into account. We now essentially need to show the difference be-
tween (B.1) and (B.4), also see [1].

As for a preparation, we now define an a set of auxiliary gradients.

• g̃0 is the true derivative used at the initial step:

g̃0 = ∇f(x0) , (B.6)

• g̃m+1 is the continuous version of gm+1:

g̃m+1
rm = ∂rmf(xm) and g̃m+1

i = g̃mi if i 6= rm , (B.7)

• F̃m is the continuous version of Fm:

F̃m = g̃m + d
(
g̃m+1 − g̃m

)
.

• Define βm using (B.6),(B.7) with the same rm but replacing xm with ym:

β0 = ∇f(y0)

and
βm+1
rm = ∂rmf(ym) and βm+1

i = βmi if i 6= rm .

Indeed in the later proof we will give an upper bound for the following Lyapunov function:

Tm = Tm1 + cpT
m
2 = E|ym − xm|2 + cpE|g̃m − βm|2 . (B.8)

where cp will be carefully chosen later.

We further define
Ẽm = ∇f(xm)− F̃m = Em + Fm − F̃m ,

this leads to Em = Ẽm − Fm + F̃m. The properties of Ẽm will be discussed in Appendix D. To
quantify Fm − F̃m is straightforward: it can be bounded using mean-value theorem. Since:

|g̃0i −g0i |2 =

∣∣∣∣f(xm + ηei)− f(xm − ηei)− 2η∂if(xm)

2η

∣∣∣∣2 ≤ ∣∣∣∣ (∂if(z)− ∂if(xm))2η

2η

∣∣∣∣2 ≤ L2η2

where z ∈ Rd is a point between xm + ηei and we use the fact that ∇f is L-Lipschitz. Similarly, for
all m:

|g̃m − gm|2 ≤ L2η2d ,

we have:∣∣∣F̃m − Fm∣∣∣2 ≤2|g̃m − gm|2 + 2d2|g̃m+1
rm − gm+1

rm |2 < 2L2η2d+ 8L2η2d2 . . (B.9)

Now we present the iteration formula for Tm+1
1 , Tm+1

2 , in Lemma B.1 and Lemma B.2 respectively:
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Lemma B.1. Under conditions of Theorem 5.1, for any a > 0, we can upper bound Tm1 :

Tm+1
1 ≤ (1 + a)ATm1 + (1 + a)BTm2 + (1 + a)h3C +

(
1 +

1

a

)
h4D (B.10)

where
A = 1− 2µh+ 3(1 + 3d)L2h2 , B = 9h2d ,

C = 2L2d+ 72L2d3
[
hL2d

µ
+ 1

]
, D = (H2 + 16L2)d2 + (L3 + 4L2)d .

Note that for the proof to proceed, one at least needs the coefficient (1 + a)A < 1. This can be made
possible only if a is small enough. For small a, the h4D term is magnified, but it may not matter as
h4 serves as a high order error so the term is negligible so long as a� h4.

Proof. Define ∆m = ym − xm, we first divide ∆m+1 into several parts:

∆m+1 =∆m + (ym+1 − ym)− (xm+1 − xm)

=∆m +

(
−
∫ (m+1)h

mh

∇f(ys) ds+
√

2hξm

)
−

(
−
∫ (m+1)h

mh

Fm ds+
√

2hξm

)

=∆m −

(∫ (m+1)h

mh

(∇f(ys)− Fm) ds

)

=∆m −

(∫ (m+1)h

mh

(∇f(ys)−∇f(ym) +∇f(ym)−∇f(xm) +∇f(xm)− Fm) ds

)

=∆m − h (∇f(ym)−∇f(xm))−
∫ (m+1)h

mh

(∇f(ys)−∇f(ym)) ds

− h(∇f(xm)− Fm)

=∆m − hUm − (V m + hΦm)− hEm

=∆m − (V m + h(F̃m − Fm))− h(Um + Φm + Ẽm)

,

(B.11)
where we set1

Um = ∇f(ym)−∇f(xm) ,

V m =

∫ (m+1)h

mh

(
∇f(ys)−∇f(ym)−

√
2

∫ s

mh

H(f)(yr) dBr

)
ds ,

Φm =

√
2

h

∫ (m+1)h

mh

∫ s

mh

H(f)(yr) dBr ds .

Upon getting equation (B.11) it is time to analyze each term and hopefully derive an induction
inequality that states E|∆m+1|2 ≈ cE|∆m|2 + d with c < 1 and d being of high order in η and h,
some parameters we can tune. Indeed the ∆m term is what we would like to preserve, and the Um
term depends on ∆m with a Lipschitz coefficient. The opposite signs of these two terms essentially
indicate that c can be made < 1. The V m + hΦm completely depends on the one-time step error. In
some sense, it is close to the forward Euler error obtained in one timestep. The Ẽm term is the most
crucial term and the only term that reflects the error introduced by the algorithm in one time step. By
choosing the right discretization in the algorithm to approximate∇f , one could expect this term to
be small. We leave the analysis of this term to Appendix D, and focus on how the other terms interact
here.

We first control last two terms in the last line of (B.11). According to Lemma 6 of [3], we first have

E|V m|2 ≤ h4

2

(
H2d2 + L3d

)
, E|Φm|2 ≤ 2L2hd

3
, (B.12)

1In particular, it is obvious that the square of all terms except ∆m contribute small values and will enter d,
and the cross terms would dominate.
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and thus:

E|V m + h(F̃m − Fm)|2 ≤ 2
(
E|V m|2 + h2E|F̃m − Fm)|2

)
≤ h4

(
H2d2 + L3d

)
+ 2h2

(
2L2η2d+ 8L2η2d2

)
≤ (H2 + 16L2)h4d2 + (L3 + 4L2)h4d = h4D ,

(B.13)

where we use (B.9) and (B.12) in the second inequality and the condition of h and η in (15) in last
inequality. We also have:

E|Um + Φm + Ẽm|2

≤3E|Um|2 + 3E|Φm|2 + 3E|Ẽm|2 ,

≤3L2Tm1 + 2L2hd+ 9dL2Tm1 + 9dTm2 + 72hL2d3
[
hL2d

µ
+ 1

]
.

(B.14)

where we used the Lipschitz continuity of f for controlling Um, (B.12) for Φm, and Appendix D for
Ẽm.

We then handle the cross terms. For example, due to the independence, (D.1), and the convexity, we
have:

E 〈∆m,Φm〉 = 0 , E
〈

∆m, Ẽm
〉

= 0 , 〈∆m, Um〉 ≥ µ|∆m|2 , (B.15)

this means the cross term between first and the third term in the last line (B.11) leads to−2µhE|∆m|2.
The cross term produced by the first and the last term, however can be hard to control, mostly because
E 〈∆m, V m〉 is unknown. We now employ Young’s inequality, meaning, for any a > 0:

Tm+1
1 = E|∆m+1|2

≤ (1 + a)E|∆m+1 + V m + h(F̃m − Fm)|2 +

(
1 +

1

a

)
E|V m + h(F̃m − Fm)|2 .

(B.16)
While the second term is already investigated in (B.13), the first term of (B.16), according to (B.11)
becomes:

E|∆m+1 + V m + h(F̃m − Fm)|2 =E|∆m − h(Um + Φm + Ẽm)|2

=E|∆m|2 − 2hE
〈

∆m, Um + Φm + Ẽm
〉

+ h2E|Um + Φm + Ẽm|2

≤(1− 2µh)E|∆m|2 + h2E|Um + Φm + Ẽm|2

, (B.17)

where we used (B.15). Plug(B.14) into (B.17), we have have, using the definition of the coefficients
A,B,C:

E|∆m − h(Um + Φm + Ẽm)|2 ≤ ATm1 + Ch3 +BTm2 , (B.18)
and plug it together with (B.13) in (B.16) to conclude (B.10).

Lemma B.2. Under conditions of Theorem 5.1, we have the upper bound for Tm+1
2 :

Tm+1
2 ≤ ÃTm1 + B̃Tm2 (B.19)

where Ã = L2

d and B̃ = 1− 1/d.

Note that the coefficient B̃ is automatically < 1 and the gap 1/d is independent of h and η. This
gives us some room to tune the parameters.

Proof. We now expand E
∣∣βm+1
i − g̃m+1

i

∣∣2:

Erm
∣∣βm+1
i − g̃m+1

i

∣∣2 = Erm
[∣∣βm+1

i − g̃m+1
i

∣∣2 − |βmi − g̃mi |2]+ |βmi − g̃mi |
2

=
1

d

[
|∂if(ym)− ∂if(xm)|2 − |βmi − g̃mi |

2
]

+ |βmi − g̃mi |
2

=

(
1− 1

d

)
|βmi − g̃mi |

2
+

1

d
|∂if(ym)− ∂if(xm)|2

.
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Therefore, we have

E
∣∣βm+1 − g̃m+1

∣∣2 =

(
1− 1

d

)
E

d∑
i=1

|βmi − g̃mi |
2

+
1

d
E|∇f(ym)−∇f(xm)|2

≤
(

1− 1

d

)
E |βm − g̃m|2 +

L2

d
E|∆m|2

(B.20)

Now, we are ready to prove Theorem 5.1 by adjusting a and cp.

Proof of Theorem 5.1. Plug (B.10) and (B.19) into (B.8), we have

Tm+1 ≤
(

(1 + a)A+ cpÃ
)
Tm1 +

(
(1 + a)B

cp
+ B̃

)
cpT

m
2

+ (1 + a)h3C +

(
1 +

1

a

)
h4D .

(B.21)

To show the proof amounts to choosing proper cp and a. Note that according to the definitions,
A ∼ 1− µh, Ã ∼ 1/d, B ∼ h2 and B̃ ∼ 1− 1/d, this suggests cp ∼ h2 to cancel out the order in
B, and in the end we have estimates of the form:

(1 + a)A+ cpÃ = 1−O(h) ,
(1 + a)B

cp
+ B̃ = 1−O(h) .

Indeed, let us choose
cp = 18(1 + a)h2d2 ,

so that

(1 + a)A+ cpÃ = (1 + a)(1− 2µh+ 3(1 + 9d)L2h2) , and
(1 + a)B

cp
+ B̃ = 1− 1

2d
.

Since h satisfies (15), this relaxes them to

(1 + a)A+ cpÃ ≤ (1 + a)(1− µh) , and
(1 + a)B

cp
+ B̃ = 1− 1

2d
≤ 1− µh

2
.

Setting a = µh/2
1−µh so that

(1 + a)(1− µh) = 1− µh

2
, and 1 + 1/a ≤ 2/µh ,

and this finally leads to

Tm+1 ≤ (1− µh/2)Tm1 + (1− µh/2)cpT
m
2 + 2h3C +

2

µh
h4D

≤ (1− µh/2)Tm + 2
(
h3C + h3D/µ

)
.

(B.22)

Noting
W 2

2 (qOm, p) ≤ Tm

and
T 0 = E|y0 − x0|2 + cpE|g0 − β0|2 = E|y0 − x0|2 + cpE|∇f(x0)−∇f(y0)|2

≤ (1 + cpL
2)E|y0 − x0|2 ≤ (1 + µ2/L2)W 2

2 (qO0 , p) ≤ (1 + 1/κ2)W 2
2 (qO0 , p) ,

where we use cpL2 ≤ 36h2L2d2 and hLd < µ/(27L), by iteration, we finally have

W 2
2 (qOm, p) ≤ exp(−µhm/2)(1 + 1/κ2)W 2

2 (qO0 , p) + 4
(
h2C/µ+ h2D/µ2

)
. (B.23)

The proof is concluded considering

C/µ ≤ d3
(
2L2/(d2µ) + 75L2/µ

)
≤ 77d3κ2µ ,

D/µ2 ≤ d2(H2/µ2 + 20κ2 + κ3µ/d) .
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C Proof of convergence of RCAD-U-LMC (Theorem 5.2)

Recall the definitions:

• Em: Em = ∇f(xm)− Fm

• g̃0 : g̃0 = ∇f(x0)

• g̃m+1: g̃m+1
rm = ∂rmf(xm) and g̃m+1

i = g̃mi if i 6= rm ,

• F̃m: F̃m = g̃m + d
(
g̃m+1 − g̃m

)
• Ẽm: Ẽm = ∇f(xm)− F̃m = Em + Fm − F̃m

Similarly, we also have

|g̃m − gm|2 ≤ L2η2d,
∣∣∣F̃m − Fm∣∣∣2 =

∣∣∣Ẽm − Em∣∣∣2 ≤ 2L2η2d+ 8L2η2d2 . (C.1)

According to the algorithm, RCAD-U-LMC can be seen as drawing (x0, v0) from distribution induced
by qU0 , and update (xm, vm) using the following coupled SDEs:

Vt = vme−2(t−mh) − γ
∫ t

mh

e−2(t−s) dsFm +
√

4γe−2(t−mh)
∫ t

mh

e2sdBs

Xt = xm +

∫ t

mh

Vsds

, (C.2)

where Bs is the Brownian motion and (xm+1, vm+1) = (X(m+1)h,V(m+1)h).

We then define wm = xm + vm, and denote um(x,w) the probability density of (xm, wm) and
u∗(x,w) the probability density of (x,w) if (x, v = w − x) is distributed according to density
function p2. One main reason to change (x, v) to (x,w) is that in [2], the authors showed that the
map (x0, w0)→ (xt, wt) induced from (5) is a contracting map for for t. From [2], we also have:

|xm − x|2 + |vm − v|2 ≤ 4(|xm − x|2 + |wm − w|2) ≤ 16(|xm − x|2 + |vm − v|2) (C.3)

and
W 2

2 (qUm, p2) ≤ 4W 2
2 (um, u

∗) ≤ 16W 2
2 (qUm, p2) . (C.4)

Similar to RCAD-O-LMC, define another trajectory of sampling by setting (x̃0, ṽ0) to be drawn
from the distribution induced by p2, and that x̃m = X̃hm, ṽ

m = Ṽhm, w̃
m = x̃m + ṽm are samples

from
(

X̃t, Ṽt

)
that satisfy
Ṽt = ṽ0e

−2t − γ
∫ t

0

e−2(t−s)∇f
(

X̃s

)
ds+

√
4γe−2t

∫ t

0

e2sdBs

X̃t = x̃0 +

∫ t

0

Ṽsds

, (C.5)

with the same Brownian motion as before. This leads to
ṽm+1 = ṽme−2h − γ

∫ (m+1)h

mh

e−2((m+1)h−s)∇f(X̃s) ds+
√

4γe−2h
∫ (m+1)h

mh

e2sdBs

x̃m+1 = x̃m +

∫ (m+1)h

mh

Ṽsds

.

(C.6)

Clearly
(
X̃t, Ṽt

)
can be seen as drawn from target distribution for all t, and initially we can pick

(x̃0, ṽ0) such that

W 2
2 (qU0 , p2) = E

(
|x0 − x̃0|2 + |v0 − ṽ0|2

)
, and W 2

2 (u0, u
∗) = E

(
|x0 − x̃0|2 + |w0 − w̃0|2

)
.
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We then also define βm
β0 = ∇f(x̃0)

and
βm+1
rm = ∂rmf(x̃m) and βm+1

i = βmi if i 6= rm ,

We will be showing the decay of the following Lyapunov function:

Tm , Tm1 + cpT
m
2 = E

(
|x̃m − xm|2 + |w̃m − wm|2

)
+ cpE|g̃m − βm|2 , (C.7)

where cp will be carefully chosen later.

The following lemma gives bounds for Tm+1
1 , Tm+1

2 using Tm1 , T
m
2 , and the proof of the theorem

amounts to selecting the correct cp.
Lemma C.1. Under conditions of Theorem 5.2, we have

Tm+1
1 <D1T

m
1 +D2T

m
2 +D3 , (C.8)

Tm+1
2 ≤ L2

d
Tm1 +

(
1− 1

d

)
Tm2 , (C.9)

where

D1 = 1− h/(2κ) + 244h2d, D2 = 84γ2h2d, D3 = 672γh4d4 + 30h3d/µ+ 260h6d2 .

Proof. The proof for bounding Tm2 is the same as the one in Appendix B Lemma B.2 and is omit
from here. We only prove the first inequality.

• Step 1: We firstly define |∆m|2 = |w̃m − wm|2 + |x̃m − xm|2, and compare (C.2) and (C.6) for:

|∆m+1|2 =

∣∣∣∣∣(ṽm − vm)e−2h + (x̃m − xm) +

∫ (m+1)h

mh

Ṽs −Vs ds

− γ
∫ (m+1)h

mh

e−2((m+1)h−s)
[
∇f

(
X̃s

)
−∇f(xm)

]
ds

+γ

∫ (m+1)h

mh

e−2((m+1)h−s)Em ds

∣∣∣∣∣
2

+

∣∣∣∣∣(x̃m − xm) +

∫ (m+1)h

mh

Ṽs −Vs ds

∣∣∣∣∣
2

= |Jm1 |
2

+ |Jm2 |
2

=
∣∣∣Jr,m1 + JE,m1

∣∣∣2 + |Jm2 |
2
,

where we denote

Jr,m1 = (ṽm − vm)e−2h + (x̃m − xm) +

∫ (m+1)h

mh

Ṽs −Vs ds

− γ
∫ (m+1)h

mh

e−2((m+1)h−s)
[
∇f

(
X̃s

)
−∇f(xm)

]
ds

and

JE,m1 = γ

∫ (m+1)h

mh

e−2((m+1)h−s)Em .

To control Jm1 , we realize that JE,m1 term, produced by Em, is not perpendicular to the rest of the

terms, namely Jr,m1 , and it will lead to a lot of cross terms. We thus replace it by JẼ,m1 induced
by Ẽm. This allows us to eliminate all cross terms. Since Em − Ẽm is small, such replacement
brings only small perturbation. In particular, with Young’s inequality:

E |Jm1 |
2 ≤(1 + h2)E

∣∣∣Jm1 + JẼ,m1 − JE,m1

∣∣∣2 + (1 + 1/h2)E
∣∣∣JẼ,m1 − JE,m1

∣∣∣2
≤(1 + h2)E

∣∣∣Jm1 + JẼ,m1 − JE,m1

∣∣∣2 + γ2(h2 + 1)(2L2η2d+ 8L2η2d2)

, (C.10)
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where we use the smallness of Em − Ẽm in (C.1). The first term of (C.10) can be separated into
three terms:

E
∣∣∣Jm1 + JẼ,m1 − JE,m1

∣∣∣2 = E
∣∣∣Jr,m1 + JẼ,m1

∣∣∣2
=E |Jr,m1 |2 + E

∣∣∣JẼ,m1

∣∣∣2 + 2E
〈

Jr,m1 , JẼ,m1

〉 .

Firstly note that

E
∣∣∣JẼ,m1

∣∣∣2 ≤ γ2h2E ∣∣∣Ẽm∣∣∣2 .
And to bound the third term, note that

E
〈

Jr,m1 , JẼ,m1

〉
= E

〈∫ (m+1)h

mh

Ṽs −Vs ds , JẼ,m1

〉
due to the fact that

E〈A, Ẽm〉 = E〈A,ErmẼm〉 = 0 (C.11)
for all A that has no rm dependence. To further bound this term, we plug in the definition and have:

2E

〈∫ (m+1)h

mh

Ṽs −Vs ds, γ

∫ (m+1)h

mh

e−2((m+1)h−s) dsẼm

〉

=− 2E

〈∫ (m+1)h

mh

Vs ds, γ

∫ (m+1)h

mh

e−2((m+1)h−s) dsẼm

〉

=2E

〈
γ

∫ (m+1)h

mh

∫ s

mh

e−2(s−t) dtdsEm, γ

∫ (m+1)h

mh

e−2((m+1)h−s) dsẼm

〉

≤γ2h3(3E
∣∣∣Ẽm∣∣∣2 + 4L2η2d+ 16L2η2d2)

,

where we used (C.11) again in the first and second equalities and

E
〈
Em, Ẽm

〉
≤ 3E|Ẽm|2 + 2E

∣∣∣Ẽm − Em∣∣∣2
together with (C.1) in the last inequality.

In conclusion, we have

Tm+1
1 = E

∣∣∆m+1
∣∣2 ≤(1 + h2)E |Jr,m1 |2 + |Jm2 |

2
+ γ2(h2 + 1)(2L2η2d+ 8L2η2d2)

+ (1 + h2)

(
γ2h2E

∣∣∣Ẽm∣∣∣2 + γ2h3(3E
∣∣∣Ẽm∣∣∣2 + 4L2η2d+ 16L2η2d2)

)
.

(C.12)

Using γL = 1, h < 1, η < h3, we have

Tm+1
1 = E

∣∣∆m+1
∣∣2 ≤(1 + h2)E |Jr,m1 |2 + |Jm2 |

2
+ 2γ2(h2 + 3h3)E

∣∣∣Ẽm∣∣∣2
+ 60h6d2

. (C.13)

• Step 2: Now, we study first two terms in (C.13). We try to bound (1 + h2)E |Jr,m1 |2 + |Jm2 |
2 using

Tm1 and E|Ẽm|2. We first try to separate out (xm, x̃m, vm, ṽm) from Jr,m1 and Jm2 . Denote

Am =(ṽm − vm)(h+ e−2h) + (x̃m − xm)

− γ
∫ (m+1)h

mh

e−2((m+1)h−s) [∇f(x̃m)−∇f(xm)] ds ,
(C.14)

Bm =

∫ (m+1)h

mh

Ṽs −Vs − (ṽm − vm) ds

− γ
∫ (m+1)h

mh

e−2((m+1)h−s)
[
∇f

(
X̃s

)
−∇f(x̃m)

]
ds

, (C.15)
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Cm = (x̃m − xm) +

∫ (m+1)h

mh

ṽm − vm ds = (x̃m − xm) + h(ṽm − vm) , (C.16)

Dm =

∫ (m+1)h

mh

Ṽs −Vs − (ṽm − vm) ds , (C.17)

then we have
Jr,m1 = Am +Bm, Jm2 = Cm +Dm .

By Young’s inequality, we have

(1 + h2)E|Jr,m1 |2 + E|Jm2 |2 =(1 + h2)E|Am +Bm|2 + E|Cm +Dm|2

≤(1 + a)
(
(1 + h2)E|Am|2 + E|Cm|2

)
+ (1 + 1/a)((1 + h2)E|Bm|2 + E|Dm|2) ,

(C.18)

where a > 0 will be carefully chosen later. Now, the first term of (C.18) only contains information
from previous step, using f is strongly convex, we can bound it using |∆m|2 (showed in Lemma
E.3). To bound the second term, we need to consider difference between x, v at tm+1 and tm,
which can be bounded by |∆m|2 and |Em|2 (showed in Lemma E.2).

According to Lemma E.2-E.3, we first have

(1 + h2)E|Jr,m1 |2 + E|Jm2 |2

≤(1 + a)
[
1− h/κ+Dh2

]
Tm1

+ (1 + 1/a)
[
80h4Tm1 + 5γ2h4E|Em|2 + 5γh4d

]
=C1T

1
m + 5(1 + 1/a)γ2h4E|Em|2 + 5(1 + 1/a)γh4d ,

(C.19)

where in the first inequality we use 1 + h2 < 2 and

C1 = (1 + a)[1− h/κ+Dh2] + 80(1 + 1/a)h4 .

Plug (C.19) in (C.13) and also replace E(|Em|2) with Lemma E.4 equation (E.7), we have

Tm+1
1 ≤C1T

m
1 + γ2

[
10(1 + 1/a)h4 + 8h2

]
E
∣∣∣Ẽm∣∣∣2

+ 100(1 + 1/a)h10d2 + 5(1 + 1/a)γh4d+ 60h6d2 ,
(C.20)

where we use γL = 1, η < h3 and h < 1.

• Step 3: To ensure the decay of Tm1 , we need to choose a such that the coefficient in front of Tm1 is
strictly smaller than 1. Noting in

C1 = (1 + a)[1− h/κ+Dh2] + 80(1 + 1/a)h4

the second term is of high order, while the first one is of 1 − O(h) amplified by 1 + a, so it is
possible to choose a small enough to make the entire term 1−O(h). Indeed, since h ≤ 1

(1+D)κ ,
we have

1− h/κ+Dh2 ≤ 1− 2h/(3κ) ,

and thus by setting a so that

1 + a =
1− h/(2κ)

1− 2h/(3κ)
.

The entire coefficient is 1−h/2κ+480κh3 and is smaller than 1 for moderately small h. Moreover,
due to the definition of a, we have

1 + 1/a ≤ 6κ/h ,

plugging the calculation in (C.20) we have

Tm+1
1 ≤

{
1− h/(2κ) + 480κh3

}
Tm1

+ γ2
[
60κh3 + 8h2

]
E
∣∣∣Ẽm∣∣∣2

+ 600κh9d2 + 30γκh3d+ 60h6d2 .

(C.21)
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We further bound E|Ẽm|2 by plugging in Lemma E.4 equation (E.6) and use γL = 1, κh < 1 ≤
d, γκ = 1/µ, we have

Tm+1
1 ≤

{
1− h/(2κ) + 480κh3

}
Tm1

+ 84h2dE|x̃m − xm|2

+ 28γ2h2(24Lh2d4 + 3dE |βm − g̃m|2)

+ 600κh9d2 + 30γκh3d+ 60h6d2

<
{

1− h/(2κ) + 244h2d
}
Tm1

+ 84γ2h2dE |βm − g̃m|2

+ 672γh4d4 + 30h3d/µ+ 260h6d2

, (C.22)

where we use E|x̃m − xm|2 ≤ E|∆m|2 = Tm1 and try to absorb small terms into large terms to
simplify the formula:

60κh3 + 8h2 < 28h2, 600κh9d2 + 60h6d2 < 260h6d2,

and
480κh3 + 84h2d ≤ 244h2d, 30γκh3d = 30h3d/µ

This proves (C.8).

Now we are ready to prove Theorem 5.2 by adjusting cp.

Proof of Theorem 5.2. Plug (C.8) and (C.9) into (C.7):

Tm+1 ≤
{
D1 +

cpL
2

d

}
Tm1 +

(
1− 1

d
+
D2

cp

)
cpT

m
2 +D3 .

Note that according to the definition D3 is of O(h3), and D2 is of O(h2) while D1 ∼ 1−O(h), so
it makes sense to choose cp small enough so that the coefficient for Tm1 keeps being of 1 − O(h).
Indeed, we let

cp = 168γ2h2d2 ,

and will have

Tm+1 ≤
{

1− h/(2κ) + 412h2d
}
Tm1 +

(
1− 1

2d

)
Tm2

+ 672γh4d4 + 30h3d/µ+ 260h6d2
, (C.23)

where we use γL = 1.

Using (17), we can verify

max{1− h/(2κ) + 412h2d, 1− 1/2d} ≤ 1− h/(4κ).

Plug into (C.23), we have

Tm+1 ≤ (1− h/(4κ))Tm + 672γh4d4 + 30h3d/µ+ 260h6d2 ,

by induction

Tm ≤ (1− h/(4κ))mT 0 + 2688γκh3d4 + 120κh2d/µ+ 1040κh5d2

≤ (1− h/(4κ))mT 0 + 2688h3d4/µ+ 120κh2d/µ+ 1040κh5d2
.

Finally, consider

T 0 = E|x̃0 − x0|2 + E|w̃0 − w̃0|2 + cpE|g0 − β0|2

= E|x̃0 − x0|2 + E|w̃0 − w̃0|2 + cpE|∇f(x0)−∇f(y0)|2

≤ (1 + cpL
2)(E|x̃0 − x0|2 + E|w̃0 − w̃0|2) ≤ 2W 2

2 (qO0 , p) ,

where we use 168γ2h2d2L2 < 1. Taking square root on each term and use (C.4), we finally obtain
(18).
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D Calculation of E
∣∣∣Ẽm

∣∣∣2 for RCAD-O-LMC

According to the definition of (B.6)-(B.7):

Erm g̃m+1 = g̃m +
1

d
(∇f(xm)− g̃m) , Erm

(
g̃m+1 − g̃m

)
=

1

d
(∇f(xm)− g̃m) ,

and
Erm

∣∣g̃m+1 − g̃m
∣∣2 =

∑
i

Erm(g̃m+1
i − g̃mi )2 =

1

d

∑
i

|∂if(xm)− g̃mi |2 .

Naturally
Erm F̃m = g̃m + (∇f(xm)− g̃m) = ∇f(xm) .

Accordingly,
Erm

(
Ẽm
)

= ∇f(xm)− Erm(F̃m) = 0 (D.1)

and

Erm
∣∣∣Ẽm∣∣∣2 =

d∑
i=1

Erm |Ẽmi |2 =
d∑
i=1

Erm
∣∣∂if(xm)− g̃mi − d

(
g̃m+1
i − g̃mi

)∣∣2
= (d− 1)|∇f(xm)− g̃m|2 .

. (D.2)

Taking the expectation over the random trajectory:

E
∣∣∣Ẽm∣∣∣2 = E

(
Erm |Ẽm|2

)
< dE|∇f(xm)− g̃m|2 .

To analyze each entry of ∂if(xm)− gmi , we note:

|∂if(xm)− g̃mi |
2 ≤ 3 |∂if(xm)− ∂if(ym)|2 + 3 |∂if(ym)− βmi |

2
+ 3 |βmi − g̃mi |

2
. (D.3)

The first term, after taking expectation and summing over i, becomes

3E|∇f(xm)−∇f(ym)|2 ≤ 3L2E|∆m|2 = 3L2Tm1 . (D.4)

The last term, with the same procedure, becomes 3Tm2 . They both will be left in the estimate. We
now focus on giving an upper bound of the second term. To do so we adopt a technique from [1, 5].
Define p = 1/d, for fixed m ≥ 1 and 1 ≤ i ≤ d, we have

P(βmi = ∂if(y0)) = (1− p)m + (1− p)m−1p

and
P(βmi = ∂if(yj)) = (1− p)m−1−jp, 1 ≤ j ≤ m− 1

15



E
d∑
i=1

|∂if(ym)− βmi |2 =

d∑
i=1

m−1∑
j=0

E(E(|∂if(ym)− βmi |2|βmi = ∂if(yj)))P(βmi = ∂if(yj))

=

m−1∑
j=0

d∑
i=1

E(|∂if(ym)− ∂if(yj)|2)P(βmi = ∂if(yj))

≤(I)
m−1∑
j=0

E(|∇f(ym)−∇f(yj)|2)P(βm1 = ∂1f(yj))

≤L2
m−1∑
j=0

E(|ym − yj |2)P(βm1 = ∂1f(yj))

≤L2
m−1∑
j=0

E(|ym − yj |2)(1− p)m−1−jp

+ L2E(|ym − y0|2)(1− p)m

≤(II)L2
m−1∑
j=0

E


∣∣∣∣∣∣
∫ mh

jh

∇f(ys)ds−
√

2h

m−1∑
i=j

ξi

∣∣∣∣∣∣
2
 (1− p)m−1−jp

+ L2E

∣∣∣∣∣
∫ mh

0

∇f(ys)ds−
√

2h

m−1∑
i=0

ξi

∣∣∣∣∣
2
 (1− p)m

≤(III)L2
m−1∑
j=0

[
2h2(m− j)2Ep|∇f(y)|2 + 4hd(m− j)

]
(1− p)m−1−jp

+ L2
[
2h2m2Ep|∇f(y)|2 + 4hdm

]
(1− p)m

≤(IV )2ph2L2Ep|∇f(y)|2
 m∑
j=1

j2(1− p)j−1 +m2(1− p)m/p


+ 4phL2d

 m∑
j=1

j(1− p)j−1 +m(1− p)m/p


≤(V ) 8h2L2Ep|∇f(y)|2

p2
+

8hL2d

p

≤(V I)8hL2d2
[
hL2d

µ
+ 1

]

,

(D.5)
where in (I) we use P(βmi = ∂if(yj)) are same for different i, (II) comes from (B.4),(B.5), (III)
comes from yt ∼ p for any t, (IV) comes from changing of variable, in (V) we use the bound for
terms in the bracket and in (VI) we use Ep|x− x∗|2 ≤ d/µ according to Theorem D.1 in [1], where
x∗ is the maximum point of f .

In conclusion, we have

E
∣∣∣Ẽm∣∣∣2 ≤3dL2Tm1 + 3dTm2 + 24hL2d3

[
hL2d

µ
+ 1

]
. (D.6)
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E Key lemma in proof of RCAD-U-LMC

Lemma E.1. Under conditions of Theorem 5.2,
(

X̃t, Ṽt

)
are defined in (C.5), we have

E
∫ (m+1)h

mh

∣∣∣X̃t − x̃m
∣∣∣2 dt ≤ h3γd

3
(E.1)

and

E
∫ (m+1)h

mh

∣∣∣(Ṽt −Vt

)
− (ṽm − vm)

∣∣∣2 dt ≤16h3E|∆m|2 + γ2h3E|Em|2 + 0.4γh5d , (E.2)

Lemma E.2. Under conditions of Theorem 5.2, and Bm, Dm are defined in (C.15),(C.17), we have

E|Bm|2 ≤ 32h4E|∆m|2 + 2γ2h4E|Em|2 + 2γh4d (E.3)

E|Dm|2 ≤ 16h4E|∆m|2 + γ2h4E|Em|2 + 0.4γh6d (E.4)
Lemma E.3. Under conditions of Theorem 5.2, and Am, Cm defined in (C.14),(C.16), there exists a
uniform constant D such that

E((1 + h2)|Am|2 + |Cm|2) ≤
[
1− h/κ+Dh2

]
E|∆m|2 (E.5)

where κ = L/µ is the condition number of f .

Lemma E.4. Under conditions of Theorem 5.2, we have estimation for approximation gradient

E|Ẽm|2 ≤ 3dL2E|x̃m − xm|2 + 24Lh2d4 + 3dE |βm − g̃m|2 (E.6)

and
E|Em|2 ≤ 2E|Ẽm|2 + 20L2h6d2 . (E.7)

We prove these four lemmas below.

Proof of Lemma E.1. First we prove (E.1). According to (C.5), we have

E
∫ (m+1)h

mh

∣∣∣X̃t − x̃m
∣∣∣2 dt = E

∫ (m+1)h

mh

∣∣∣∣∫ t

mh

Ṽsds

∣∣∣∣2 dt
≤
∫ (m+1)h

mh

(t−mh)

∫ t

mh

E
∣∣∣Ṽs

∣∣∣2 dsdt
=

∫
|v|2p2(x, v) dx dv

∫ (m+1)h

mh

(t−mh)2dt =
h3γd

3
,

(E.8)

where in the first inequality we use Hölder’s inequality, and for the second equality we use p2 is a
stationary distribution so that

(
X̃t, Ṽt

)
∼ p2 and Ṽt ∼ exp(−|v|2/(2γ)) for any t.

Second, to prove (E.2), using (C.2),(C.5), we first rewrite
(

Ṽt −Vt

)
− (ṽm − vm) as(

Ṽt −Vt

)
− (ṽm − vm) = (ṽm − vm) (e−2(t−mh) − 1)

− γ
∫ t

mh

e−2(t−s)
[
∇f(X̃s)−∇f(xm)

]
ds

+ γ

∫ t

mh

e−2(t−s) dsEm

=I(t) + II(t) + III(t) .

(E.9)

for mh ≤ t ≤ (m+ 1)h. Then we bound each term seperately:

17



•

E
∫ (m+1)h

mh

|I(t)|2 dt ≤ hE
∫ (m+1)h

mh

∣∣∣(ṽm − vm) (e−2(t−mh) − 1)
∣∣∣2 dt

≤ h
∫ (m+1)h

mh

(2(t−mh))2E |ṽm − vm|2 dt

≤ 4h3

3
E |ṽm − vm|2 ,

(E.10)

where we use Hölder’s inequality in the first inequality and 1 − e−x < x in the second
inequality.

•

E
∫ (m+1)h

mh

|II(t)|2 dt ≤ γ2E
∫ (m+1)h

mh

∣∣∣∣∫ t

mh

e−2(t−s)
[
∇f(X̃s)−∇f(xm)

]
ds

∣∣∣∣2 dt

≤2γ2E
∫ (m+1)h

mh

∣∣∣∣∫ t

mh

e−2(t−s)
[
∇f(X̃s)−∇f(x̃m)

]
ds

∣∣∣∣2 dt

+ 2γ2E
∫ (m+1)h

mh

∣∣∣∣∫ t

mh

e−2(t−s) [∇f(x̃m)−∇f(xm)] ds

∣∣∣∣2 dt

≤2γ2
∫ (m+1)h

mh

(t−mh)E
∫ t

mh

∣∣∣∇f(X̃s)−∇f(x̃m)
∣∣∣2 dsdt

+ 2γ2
∫ (m+1)h

mh

(t−mh)E
∫ t

mh

|∇f(x̃m)−∇f(xm)|2 dsdt

≤2γ2L2

∫ (m+1)h

mh

(t−mh)E
∫ t

mh

∣∣∣X̃s − x̃m
∣∣∣2 dsdt

+ 2γ2L2

∫ (m+1)h

mh

(t−mh)E
∫ t

mh

|x̃m − xm|2 dsdt

≤2γ3L2d

∫ (m+1)h

mh

(t−mh)4

3
dt+ 2γ2L2

∫ (m+1)h

mh

(t−mh)2 dtE |x̃m − xm|2

≤2γ3L2h5d

15
+

2γ2L2h3

3
E |x̃m − xm|2 ,

(E.11)
where in the third inequality we use gradient of f is L-Lipschitz function and we use (E.1)
in the fourth inequality.

•

E
∫ (m+1)h

mh

|III(t)|2 dt = γ2E
∫ (m+1)h

mh

∣∣∣∣∫ t

mh

e−2(t−s) dsEm
∣∣∣∣2 dt

≤ γ2
∫ (m+1)h

mh

(t−mh)2 dtE(|Em|2)

≤ γ2h3

3
E(|Em|2) ,

(E.12)

Plug (E.10),(E.11),(E.12) into (E.9) and using γL = 1, we have

E
∫ (m+1)h

mh

∣∣∣(Ṽt −Vt

)
− (ṽm − vm)

∣∣∣2 dt

≤3

(
E
∫ (m+1)h

mh

|I(t)|2 dt+ E
∫ (m+1)h

mh

|II(t)|2 dt+ E
∫ (m+1)h

mh

|III(t)|2 dt

)
≤4h3

(
E |x̃m − xm|2 + E |ṽm − vm|2

)
+ γ2h3E(|Em|2) + 0.4γh5d ,

using (C.3), we get the desired result.
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Proof of Lemma E.2. First, we seperate Bm into two parts:

E|Bm|2 ≤2E

∣∣∣∣∣
∫ (m+1)h

mh

(
Ṽt −Vt

)
− (ṽm − vm) dt

∣∣∣∣∣
2

+ 2E

∣∣∣∣∣γ
∫ (m+1)h

mh

e−2((m+1)h−t)
[
∇f(X̃t)−∇f(x̃m)

]
dt

∣∣∣∣∣
2

.

And each terms can be bounded:

•

E

∣∣∣∣∣
∫ (m+1)h

mh

(
Ṽt −Vt

)
− (ṽm − vm) dt

∣∣∣∣∣
2

≤hE
∫ (m+1)h

mh

∣∣∣(Ṽt −Vt

)
− (ṽm − vm)

∣∣∣2 dt

≤16h4E|∆m|2 + γ2h4E(|Em|2) + 0.4γh6d ,

(E.13)

where we use Lemma E.1 (E.2) in the second inequality.

•

E

∣∣∣∣∣γ
∫ (m+1)h

mh

e−2((m+1)h−t)
[
∇f(X̃t)−∇f(x̃m)

]
dt

∣∣∣∣∣
2

≤hγ2E
∫ (m+1)h

mh

∣∣∣e−2((m+1)h−t)
[
∇f(X̃t)−∇f(x̃m)

]∣∣∣2 dt

≤hγ2L2E
∫ (m+1)h

mh

∣∣∣X̃t − x̃m
∣∣∣2 dt

≤h
4γ3L2d

3
≤ h4γd

3
,

(E.14)

where we use Lemma E.1 (E.1) and γL = 1 in the last two inequalities.

Combine (E.13),(E.14) together, we finally have

E|B|2 ≤ 32h4E|∆m|2 + 2γ2h4E(|Em|2) + 0.8h6γd+ 2h4γd/3 ,

which implies (E.3) if we further use h < 1.

Next, estimation of
(
E|D|2

)1/2
is a direct result of (E.13).

Proof of Lemma E.3. Let x̃m− xm = a and w̃m−wm = b. First, by the mean-value theorem, there
exists a matrix H such that µId � H � LId and

∇f(x̃m)−∇f(xm) = Ha .

By calculation,
∫ (m+1)h

mh
e−2((m+1)h−t) dt = 1−e−2h

2 and

Am = (h+ e−2h)(ṽm − vm) +

(
Id −

(1− e−2h)

2
γH

)
(x̃m − xm)

=

((
1− h− e−2h

)
Id −

(1− e−2h)

2
γH

)
a+ (h+ e−2h)b

.

Cm = (1− h)a+ hb .

Since ‖γH‖2 ≤ 1 and we also have following calculation

h+ e−2h = h+ e−2h − 1 + 1 = 1− h+O(h2) ,

1− h− e−2h = h+O(h2) ,
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1− e−2h = 2h+O(h2) .

If we further define matrixMA andMC such that

|Am|2 = (a, b)
>MA (a, b) , |Cm|2 = (a, b)

>MC (a, b) ,

then, we have ∥∥∥∥MA −
[

0 hId − γhH
hId − γhH (1− 2h)Id

]∥∥∥∥
2

≤ D1h
2 ,

and ∥∥∥∥MB −
[
(1− 2h)Id hId

hId 0

]∥∥∥∥
2

≤ D1h
2 ,

where D1 is a uniform constant since h < 1/1648 by (17). This further implies

(1 + h2)|Am|2 + |Cm|2 = (a, b)
>
[

(1− 2h)Id 2hId − γhH
2hId − γhH (1− 2h)Id

]
(a, b) + h2 (a, b)

>
Q (a, b)

where ‖Q‖2 ≤ D2 and D2 is a uniform constant. Calculate the eigenvalue of the dominating matrix
(first term), we need to solve

det
{

(1− 2h− λ)2Id − (2hId − γhH)2
}

= 0 ,

which implies eigenvalues {λj}dj=1 solve

(1− 2h− λj)2 − (2h− γhΛj)
2 = 0 ,

where Λj is j-th eigenvalue of H . Since γΛj ≤ γL = 1 and h < 1, we have

λj ≤ 1− γΛjh ≤ 1− µhγ = 1− h/κ

for each j = 1, . . . , d. This implies∥∥∥∥[ (1− 2h)Id 2hId − γhH
2hId − γhH (1− 2h)Id

]∥∥∥∥
2

≤ 1− h/κ ,

and
(1 + h2)|Am|2 + |Cm|2 ≤ (1− h/κ+Dh2)(|a|2 + |b|2) ,

where D is a uniform constant. Take expectation on both sides, we obtain (E.5).

Proof of Lemma E.4. The proof is mostly the same as that in the calculation in Appendix D. Inequal-
ity (D.3) still holds true except the second term needs to be treated differently. Following the step in
Appendix D, we define p = 1/d, and then for fixed m ≥ 1 and 1 ≤ i ≤ d, we have

P(βmi = ∂if(x̃0)) = (1− p)m + (1− p)m−1p ,

and
P(βmi = ∂if(x̃j)) = (1− p)m−1−jp, 1 ≤ j ≤ m− 1 .
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E
d∑
i=1

|∂if(x̃m)− βmi |2 =

d∑
i=1

m−1∑
j=0

E(E(|∂if(x̃m)− βmi |2|βmi = ∂if(x̃j)))P(βmi = ∂if(x̃j))

≤
m−1∑
j=0

d∑
i=1

E(|∂if(x̃m)− ∂if(x̃j)|2)P(βmi = ∂if(x̃j))

≤
m−1∑
j=0

E(|∇f(x̃m)−∇f(x̃j)|2)P(βm1 = ∂1f(x̃j))

≤L2
m−1∑
j=0

E(|x̃m − x̃j |2)P(βm1 = ∂1f(x̃j))

≤L2
m−1∑
j=0

E(|x̃m − x̃j |2)(1− p)m−1−jp

+ L2E(|x̃m − x̃0|2)(1− p)m

≤(II)L2
m−1∑
j=0

E

∣∣∣∣∣
∫ mh

jh

Ṽsds

∣∣∣∣∣
2
 (1− p)m−1−jp

+ L2E

∣∣∣∣∣
∫ mh

0

Ṽsds

∣∣∣∣∣
2
 (1− p)m

≤(III)L2
m−1∑
j=0

[
2h2(m− j)2Ep2 |Ṽ|2

]
(1− p)m−1−jp

+ L2
[
2h2m2Ep2 |Ṽ|2

]
(1− p)m

≤(IV )2ph2L2Ep2 |Ṽ|2
 m∑
j=1

j2(1− p)j−1 +m2(1− p)m/p


≤(V ) 8h2L2Ep2 |Ṽ|2

p2

≤(V I)8γh2L2d3 = 8h2Ld3 ,
(E.15)

where (II) comes from (C.5), (III) comes from
(

X̃t, Ṽt

)
∼ p2 for any t, (IV) comes from changing

of variable, in (V) we use the bound for terms in the bracket and in (VI) we use Ep2 |v|2 ≤ γd. This
inequality differ from the derivation in Appendix D only through (II).

Next, to prove (E.7), we only need to notice

E|Em|2 ≤ 2E|Ẽm|2 + 2E|Fm − F̃m|2 ,

(B.9) and η < h3 and follow the same calculation as in done in Appendix D.
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