
8 Appendix

8.1 Markov Chains

Given a discrete state space S with probability measure T, a discrete-time homogeneous Markov
chain (MC) is a collection of random variables with the following property on its transition matrix
T ∈ R|S|×|S|: Tss′ = P[St+1 = s′|St = s], ∀s, s′ ∈ S,∀t ≥ 0. Assuming the Markov chain
is ergodic, its invariant distribution8 ρ is the principal eigenvector of T, which verifies ρT = ρ
and summarizes the long-term behaviour of the chain. We define the marginal distribution of St as
pt(s) := P[St = s] = Tt

s:, and the initial distribution of S as p0(s).

8.2 Markov Decision Processes

A discrete-time, finite-horizon Markov Decision Process [Bellman, 1957, Puterman, 2014, MDP]
comprises a state space S, an action space9 A, a transition kernel T : S × A × S 7→ [0, 1], a
reward function r : S × A 7→ R and a discount factor γ ∈ [0, 1]. At every timestep t, an agent
interacting with this MDP observes the current state st ∈ S, selects an action at ∈ A, and observes
a reward r(st, at) ∈ R upon transitioning to a new state st+1 ∼ T (st, at, ·). The goal of an agent
in a discounted MDP is to learn a policy π : S × A 7→ [0, 1] such that taking actions at ∼ π(·|st)
maximizes the expected sum of discounted returns,

V π(s) = Eπ
[∞∑
t=0

γtr(st, at)|s0 = s

]
.

To convert a MDP into a MC, one can let Tπ
ss′ = Ea∼π(s,·)[T (s, a, s′)], an operation which can be

easily tensorized for computational efficiency in small state spaces [see Mazoure et al., 2020].

8.3 Link to invariant distribution

For a discrete state ergodic Markov chain specified by P and initial occupancy vector p0, its marginal
state distribution at time t is given by the Chapman-Kolmogorov form:

P[St = s] = p0P
t
·s, (7)

and its limiting distribution σ is the infinite-time marginal

lim
t→∞

P
(t)
ss′ = σs′ , s, s

′ ∈ S (8)

which, if it exists, is exactly equal to the invariant distribution ρ.

For the very restricted family of ergodic MDPs under fixed policy π, we can assume that pt converges
to a time invariant distribution ρ.

Therefore,

It(S, S′) =
∑
s′∈S

∑
s∈S

p0(Pt):sPss′

(
logPss′ − log{p0(Pt+1):s′}

)
(9)

Now, observe that It is closely linked to T/ρ when samples come from timesteps close to tmix(ε).
That is, interchanging swapping ρ(s) and pt(s) at any state swould yield at most δ(t) error. Moreover,
existing results [Levin and Peres, 2017] from Markov chain theory provide bounds on ||(Pt+1)s: −
(Pt)s:||TV depending on the structure of the transition matrix.

If P has a limiting distribution σ, then using the dominated convergence theorem allows to replace
matrix powers by σ, which is then replaced by the invariant distribution ρ:

lim
t→∞

It =
∑
s′∈S

∑
s∈S

ρsρs′

(
logPss′ − logρs′

)
= Eρ×ρ

(
logPss′ − logρs′

) (10)

8The existence and uniqueness of ρ are direct results of the Perron-Frobenius theorem.
9We consider discrete state and action spaces.

13

Of course, most real-life Markov decision processes do not actually have an invariant distribution
since they have absorbing (or terminal) states. In this case, as the agent interacts with the environment,
the DIM estimate of MI yields a rate of convergence which can be estimated based on the spectrum
of P.

Moreover, one could argue that since, in practice, we use off-policy algorithms for this sort of task,
the gradient signal comes from various timesteps within the experience replay, which drives the
model to learn features that are consistently predictive through time.

8.4 Predictability and Contrastive Learning

Information maximization has long been considered one of the standard principles for measuring
correlation and performing feature selection [Song et al., 2012]. In the MDP context, high values
of I([St, At], St+k) indicate that (St, At) and St+k have some form of dependence, while low
values suggest independence. The fact that predictability (or more precisely determinism) in Markov
systems is linked to the MI suggests a deeper connection to the spectrum of the transition kernel
T . For instance, the set of eigenvalues of T for a Markov decision process contains important
information about the connectivity of said process, such as mixing time or number of densely
connected clusters [Von Luxburg, 2007, Levin and Peres, 2017].

Consider the setting in which π is fixed at some iteration in the optimization process. In the rest
of this section, we let T denote the expected transition model T(s, s′) = Eπ[T (s, a, s′)] (it is a
Markov chain). We let νt(s, s′) = T(s,s′)

pt+1(s′)
be the ratio learnt when optimizing the infoNCE loss on

samples drawn from the random variables St and St+1 (for a fixed t) [Oord et al., 2018]. We also
let ν∞(s, s′) = T(s,s′)

ρ(s′) be that ratio when the Markov chain has reached its stationary distribution
ρ (see Section 8.1), and ν̃t(s, s′) be the scoring function learnt using InfoNCE (which converges to
νt(s, s

′) in the limit of infinite samples drawn from (St, St+1)).

Proposition 1 Let 0 < ε ≤ 1. Assume at time step t, training of ν̃t has close to converged on a pair
(s, s′), i.e. |νt(s, s′)− ν̃t(s, s′)| < ε. Then the following holds:

t ≥ tmix
(
ε

2
min
x
ρ(x)2

)
=⇒

∣∣∣∣νt(s, s′)− ν∞(s, s′)

∣∣∣∣ ≤ 2ε. (11)

Proof 1 Let us consider fixed 0 < ε ≤ 1, (s, s′) and t ≥ tmix(ε2 minx ρ(x)2). First, since
tmix(ε2 minx ρ(x)2) ≥ tmix(minx ρ(x)

2), we have

|p∗t+1(s′)− ρ(s′)| ≤ minx ρ(x)

2
.

Or in other terms: p∗t+1(s′) ≥ minx ρ(x)
2 . Now, we have:

|ν̃t(s, s′)− ν∞(s, s′)| ≤ |ν̃t(s, s′)− νt(s, s′)|+ |νt(s, s′)− ν∞(s, s′)|

≤ ε+

∣∣∣∣T(s, s′)

pt+1(s′)
− T(s, s′)

ρ(s′)

∣∣∣∣
≤ ε+

|pt+1(s′)− ρ(s′)|
pt+1(s′)ρ(s′)

≤ ε+
|pt+1(s′)− ρ(s′)|
minx ρ(x)

2 minx ρ(x)
.

By assumption on t, we know that |pt+1(s′)− ρ(s′)| ≤ ε
2 minx ρ(x)2, which concludes the proof.

Proposition 1 in conjunction with the result on Markov chain mixing times from Levin and Peres
[2017] suggests that faster convergence of ν̃t to ν∞ happens when the spectral gap 1− λ(2) of T is
large, or equivalently when λ(2) is small. It follows that, on one hand, mutual information is a natural
measure of concordance of (s, s′) pairs and can be maximized using data-efficient, batched gradient
methods. On the other hand, the rate at which the InfoNCE loss converges to its stationary value

14

(ie maximizes the lower bound on MI) depends on the spectral gap of T , which is closely linked
to predictability. This relation holds in very simple domains like the Markov Chains which were
presented across the paper, but for now, there is no reliable way to estimate the second eigenvalue of
the MDP transition operator under nonlinear function approximation that we are aware of.

8.5 Code snippet for DIM objective scores

The following snippet yields pointwise (i.e. not contracted) scores given a batch of data.

1 def temporal_DIM_scores(reference,positive,clip_val=20):
2 """
3 reference: n_batch × n_rkhs × n_locs
4 positive: n_batch x n_rkhs x n_locs
5 """
6 reference = reference.permute(2,0,1)
7 positive = positive.permute(2,1,0)
8 # reference: n_loc × n_batch × n_rkhs
9 # positive: n_locs × n_rkhs × n_batch

10 pairs = torch.matmul(reference, positive)
11 # pairs: n_locs × n_batch × n_batch
12 pairs = pairs / reference.shape[2]**0.5
13 pairs = clip_val * torch.tanh((1. / clip_val) * pairs)
14 shape = pairs.shape
15 scores = F.log_softmax(pairs, 2)
16 # scores: n_locs × n_batch × n_batch
17 mask = torch.eye(shape[2]).unsqueeze(0).repeat(shape[0],1,1)
18 # mask: n_locs × n_batch × n_batch
19 scores = scores * mask
20 # scores: n_locs × n_batch × n_batch
21 return scores

To obtain a scalar out of this batch, sum over the third dimension and then average over the first two.

8.6 Experiment details

All experiments involving RGB inputs (Ising, Ms.PacMan and Procgen) were ran with the settings
shown in Table 2. Parameters such as gradient clipping and n-step-returns were kept from the
codebase, ‘rlpyt‘, since it was observed that they helped achieve a more stable convergence.

The global DIM heads consist of a standard single hidden fully-connected layer network of 512 with
ReLU activations and a skip-connection from input to output layers. The action is transformed into
one-hot and then encoded using a 64 unit layer, after which it is concatenated with the state and
passed to the global DIM head.

The local DIM heads consist of a single hidden layer network made of 1× 1 convolution. The action
is tiled to match the shape of the convolutions, encoded using a 1× 1 convolutions and concatenated
along the feature dimension with the state, after which is is passed to the local DIM head.

In the case of the Ising model, there is no decision component and hence no concatenation of state
and action representations is required.

8.6.1 AMI of a biased random walk

We see from the formulation of the mutual information objective I(St+1, St) that it inherently
depends on the ratio of P/ρ. Recall that, for a 1-d random walk on integers [0, N), the stationary
distribution is a function of α

1−α and can be found using the recursion P[S = i] = αP[S =

i− 1] + (1− α)P[S = i+ 1]. It has the form

ρ(i) = P[S = i] = ri(1− r)(1− rN)−1, i ∈ [0, N), (12)

15

Name Description Value
εTexploration Exploration at t = 0 0.1
εTexploration Exploration at t = Texploration 0.01
Texploration Exploration decay 105

LR Learning rate 2.5× 10−4

γ Discount factor 0.99
Clip grad Gradient clip norm 10

N-step-return N-step return 7

Frame stack Number of stacked frames 1 (Ising and Procgen)
4 (Ms.PacMan)

Grayscale Grayscale or RGB RGB

Input size State input size 84× 84 (Ising and Ms.PacMan)
80× 104 (Procgen)

Twarmup Warmup steps 1000
Replay size Size of replay buffer 106

τ Target soft update coeff 0.95
Clip reward Reward clipping False

λ4t4 Global-global DIM 1 (Ms.PacMan and Procgen)
0 (Ising)

λ3t3 Local-local DIM 1 (Ms.PacMan and Ising)
0 (Procgen)

λ3t4 Local-global DIM 0
λ4t3 Global-local DIM 0

k DIM lookahead constant 1 (Ising and Ms.PacMan)
Variable between 1 and 5 (Procgen)

Table 2: Experiments’ parameters

for r = α
1−α .

The pointwise mutual information between states St and St+1 is therefore the random variable

İ(St+1, St) = logP[St+1|St]− logP[St+1]

= logα1(>0)(St+1−St) + log(1− α)1(<0)(St+1−St) − log ρ(St+1)
(13)

with expectation equal to the average mutual information which we can find by maximizing, among
others, the InfoNCE bound. We can then compute the AMI as a function of α

I(St+1, St;α) =

N∑
i=0

N∑
j=0

İ(j, i)α1(>0)(j−i)(1− α)1(<0)(j−i)ρ(i), (14)

which is shown in Figure 3c.

The figures were obtained by training the global DIM objective Φ4 on samples from the chain for
1,000 epochs with learning rate 10−3.

8.6.2 Ising model

We start by generating an 84 × 84 rectangular lattice which is filled with Rademacher random
variables v1,1, .., v84,84; that is, taking −1 or 1 with some probability p. For any p ∈ (0, 1), the joint
distribution p(v1,1, .., v84,84) factors into the product of marginals p(v1,1)..p(v84,84).

At every timestep, we uniformly sample a random index tuple (i, j), 21 ≤ i, j ≤ 63 and evolve
the set of nodes v = {vk,l : i − 21 ≤ k ≤ i + 21, j − 21 ≤ l ≤ j + 21} according to an Ising
model with temperature β−1 = 0.4, while the remaining nodes continue to independently take the
values {−1, 1} with equal probability. If one examines any subset of nodes outside of v, then the
information conserved across timesteps would be close to 0, due to observations being independent
in time.

However, examining a subset of v at timestep t allows models based on mutual information maximiza-
tion to predict the configuration of the system at t+ 1, since this region has high mutual information
across time due to the ratio T(v,v′)

pt+1(v′)
being directly proportional to the temperature parameter β−1.

16

To obtain the figure, we trained local DIM Φ3 on sample snapshots of the Ising model as 84 × 84
grayscale images for 10 epochs. The local DIM scores were obtained by feeding a snapshot of the
Ising model at t = 3; showing it snapshots from later timestep would’ve made the task much easier
since there would be a clear difference in granularities of the random pattern and Ising models.

8.6.3 Ms.PacMan

Figure 6: The simplified Ms.PacMan environment

In PacMan, the agent, represented by a yellow square, must collect food pellets while avoiding four
harmful ghosts. When the agent collects one of the boosts, it becomes invincible for 10 steps, allowing
it to destroy the enemies without dying. In their turn, ghosts alternate between three behaviours: 1)
when the agent is not within line-of-sight, wander randomly, 2) when the agent is visible and does not
have a boost, follow them and 3) when the agent is visible and has a boost, avoid them. The switch
between these three modes happens stochastically and quasi-independently for all four ghosts. Since
the food and boost pellets are fixed at the beginning of each episode, randomness in the MDP comes
from the ghosts as well as the agent’s actions.

The setup for our first experiment in the domain is as follows: with a fixed probability ε, each of the
4 enemies take a random action instead of following one of the three movement patterns.

The setup for our second experiment in the domain consists of four levels: in each level, only one
out of the four ghosts is lethal - the remaining three behave the same but do not cause damage. The
model trains for 5,000 episodes on level 1, then switches to level 3, then level 3 and so forth. This
specific environment tests for the ability of DIM to quickly figure out which of the four enemies is
the lethal one and ignore the remaining three based on color .

For our study, the state space consisted of 21× 19× 3 RGB images. The inputs to the model were
states re-scaled to 42 × 38 × 12 by stacking 4 consecutive frames, which were then concatenated
with actions using an embedding layer.

The third experiment consisted in overlaying the Ising model from the above section onto walls in the
Ms.PacMan game. Every rollout, the Ising model was reset to some (random) initial configuration
and allowed to evolve until termination of the episode. The color of the Ising distractor features was
chosen to be fuchsia.

8.6.4 Procgen

The training setting consists in fixing the first 500 levels of a given Procgen game, and train all
algorithms on these 500 levels in that specific order. Since we use the Nature architecture of DQN
rather than IMPALA (due to computational restrictions), our results can be different from other
Procgen baselines.

The data augmentation was tried only for DRIML-fix - DRIML-ada seems to perform well without
data augmentation. The data augmentation steps performed on St and St+k fed to the DIM loss

17

Figure 7: Upsampled screen cap of the Ms.PacMan task with Ising distractor features (in fuchsia).

consisted of a random crop (0.8 of the original’s size) with color jitter with parameters 0.4. Although
the data augmentation is helpful on some tasks (typically fast-paced, requiring a lot of camera
movements), it has shown detrimental effects on others. Below is a list of games on which data
augmentation was beneficial: bigfish, bossfight, chaser, coinrun, jumper, leaper and ninja.

The k parameter, which specifies how far into the future the model should make its predictions,
worked best when set to 5 on the games: bigfish, chaser, climber, fruitbot, jumper, miner, maze and
plunder. For the remaining games, setting k = 1 yielded better performance.

Baselines The baselines were implemented on top of our existing architecture and, for models
which use contrastive objectives, used the exactly same networks for measuring similarity (i.e. one
residual block for CURL and CPC). CURL was implemented based on the authors’ code included in
their paper and that of MoCo, with EMA on the target network as well as data augmentation (random
crops and color jittering) on St for randomly sampled t > 0.

The No Action baseline was tuned on the same budget as DRIML, over k = 1, 5 and with/without
data augmentation. Best results are reported in the main paper.

DRIML-noact (k=1) DRIML-noact (k=5)
bigfish 1.193 ± 0.04 1.33 ± 0.12
bossfight 0.466 ± 0.07 0.472 ± 0.01
caveflyer 8.263 ± 0.26 5.925 ± 0.18
chaser 0.224 ± 0.01 0.229 ± 0.02
climber 1.359 ± 0.13 1.574 ± 0.01
coinrun 13.146 ± 1.21 9.632 ± 2.8
dodgeball 1.221 ± 0.04 1.213 ± 0.09
fruitbot 0.714 ± 0.31 5.425 ± 1.33
heist 1.042 ± 0.02 0.861 ± 0.07
jumper 2.966 ± 0.1 4.314 ± 0.64
leaper 5.403 ± 0.09 3.521 ± 0.3
maze 0.984 ± 0.13 1.438 ± 0.26
miner 0.11 ± 0.01 0.116 ± 0.01
ninja 6.437 ± 0.22 5.9 ± 0.38
plunder 2.67 ± 0.08 3.2 ± 0.05
starpilot 3.699 ± 0.3 2.951 ± 0.31

Table 3: Ablation of the impact of predictive timestep in NCE objective (i.e. k) on the no action
model’s training performance (50M training frames).

18

