
A Effect of signal-to-noise ratio and nonlinearity340

A.1 RF model341

In the RF model, varying r can easily be achieved analytically and yields interesting results, as shown342

in Fig. 106.343

In the top panel, we see that the parameter-wise profile exhibits double descent for all degrees of344

linearity r and signal-to-noise ratio SNR, except in the linear case r = 1 which is monotonously345

deceasing. Increasing the degree of nonlinearity (decreasing r) and the noise (decreasing the SNR)346

simply makes the nonlinear peak stronger.347

In the bottom panel, we see that the sample-wise profile is more complex. In the linear case r = 1,348

only the linear peak appears (except in the noiseless case). In the nonlinear case r < 1, the nonlinear349

peak appears is always visible; as for the linear peak, it is regularized away, except in the strong noise350

regime SNR > 1 when the degree of nonlinearity is small (r > 0.8), where we observe the triple351

descent.352

Notice that both in the parameter-wise and sample-wise profiles, the test loss profiles change smoothly353

with r, except near r = 1 where the behavior abruptly changes, particularly at low SNR.354

Figure 10: Analytical parameter-wise (top, N/D = 10) and sample-wise (bottom, P/D = 10) test
loss profiles of the RF model. Left: noiseless case, SNR = 1. Center: low noise, SNR = 2. Right:
high noise, SNR = 0.2. We set � = 10�1.

One can also mimick these results numerically by considering, as in [30], the following family of355

piecewise linear functions:356

�↵(x) =
[x]+ + ↵[�x]+ �

1+↵p
2⇡q

1
2 (1 + ↵2)� 1

2⇡ (1 + ↵)2
, (8)

for which357

r↵ =
(1� ↵)2

2 (1 + ↵2)� 2
⇡ (1 + ↵)2

. (9)

6We focus here on the practically relevant setup N/D � 1. Note from the (P,N ) phase-space that things
can be more complex at N/D . 1).
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Here, ↵ parametrizes the ratio of the slope of the negative part to the positive part and allows to adjust358

the value of r continuously. ↵ = �1 (r = 1) will correspond to a (shifted) absolute value, ↵ = 1359

(r = 0) will correspond to a linear function, ↵ = 0 will correspond to a (shifted) ReLU. In Fig. 11,360

we show the effect of sweeping ↵ uniformly from 1 to -1 (which causes r to range from 0 to 1). As361

expected, we see the linear peak become stronger and the nonlinear peak become weaker.362

(a) Nonlinearities used (b) Corresponding test loss

Figure 11: Moving from a purely nonlinear function to a purely linear function (dark to light colors)
strengthens the linear peak and weakens the nonlinear peak.

A.2 NN model363

We show in the top row of Fig. 12 the effect of varying the SNR on the (P,N ) phase space for364

� = Tanh in the NN model. Just like in the RF model, triple descent only appears at SNR < 1 (right365

panel).366

In the bottom row of the same figure, we show the effect of replacing Tanh (r ⇠ 0.92) by ReLU367

(r = 0.5). In the low SNR setup, we still distinguish the two peaks of triple descent, but the linear368

peak is much weaker, as expected from the stronger degree of nonlinearity.369

Notice that in the intermediate signal-to-noise scenario, 1 < SNR < 1, results are different from370

the RF model where we only observed the nonlinear peak. For Tanh, we observe only the linear peak,371

whereas for ReLU, we observe something intermediate between the linear peak and the nonlinear372

peak.373

B Origin of the linear peak374

In this section, we follow the lines of [28], where the test loss is decomposed in the following way375

(Eq. D.6):376

Lg = ⇢+Q� 2M (10)

⇢ =
1

D
k�k2 , M =

p
⇣

D
b · �, Q =

⇣

D
kbk2 +

⌘ � ⇣

P
kak2, b = ⇥a (11)

As before, � denotes the linear teacher vector and ⇥,a respectively denote the (fixed) first and377

(learnt) second layer of the student. This insightful expression shows that the loss only depends on378

the norm of the second layer kak, the norm of the linearized network kbk, and its overlap with the379

teacher b · �.380

We plot these three terms in Fig. 13, focusing on the triple descent scenario SNR < 1. In the left381

panel, we see that the overlap of the student with the teacher is monotically increasing, and reaches382

its maximal value at a certain point which increases from D to P as we decrease r from 1 to 0. In the383

central panel, we see that kak peaks at N = P , causing the nonlinear peak as expected, but nothing384

special happens at N = D (except for r = 1). However, in the right panel, we see that the norm of385

the linearized network peaks at N = D, where we know from the spectral analysis that the gap of the386

linear part of the spectrum is minimal. This is the origin of the linear peak.387
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(a) Tanh, SNR = 1 (b) Tanh, SNR = 2 (c) Tanh, SNR = 0.2

(d) ReLU, SNR = 1 (e) ReLU, SNR = 2 (f) ReLU, SNR = 0.2

Figure 12: Logarithmic plot of the test loss in the phase space defined by number of parameters. Left:
Single descent at low SNR. Center: Double descent at intermediate SNR. Right: Triple descent at
low SNR.

Figure 13: Terms entering Eq. 11, plotted at SNR = 0.2, � = 10�1.

C Structured datasets388

In this section, we examine how our results are affected by considering the realistic case of correlated389

data. To do so, we replace the Gaussian i.i.d. data by MNIST data, downsampled to 10⇥ 10 images390

for the RF model (D = 100) and 14⇥ 14 images for the NN model (D = 196).391

C.1 RF model392

We refer to the results in Fig 14. Interestingly, the triple descent profile is weakly affected by the393

correlated structure of this realistic dataset. However, the spectral properties of ⌃ = 1
NZ>Z are394

changed in an interesting manner: the two parts of the spectrum are now contiguous, there is no gap395

between the linear part and the nonlinear part.396
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(a) Random data

(b) MNIST

Figure 14: Spectrum of the covariance of the projected features ⌃ = 1
NZ>Z at various values of

N/D, with the corresponding loss curve shown above. We set � = Tanh, � = 10�5.

C.2 NN model397

As shown in the top row of Fig. 15, the NN model is qualitatively different on the structured dataset:398

the two peaks at N = D and N = P are not well separated at SNR < 1 anymore. The single peak399

which appears is somewhat intermediate between the N = D and N = P . However, by considering400

the time evolution in the bottom row of the same figure, we see that this peak shifts across the phase401

space during training, just like in the case of random data (Fig. 9).402

At early times, it is located along a line of constant N , which makes it akin to a linear peak. At late403

times, it is rather reminiscent of a nonlinear peak, though it does not seem to be located at P ⇠ N as404

before, but rather at N ⇠ P↵ with ↵ < 1. This sublinear scaling is a consequence of the fact that405

structured data is easier to memorize than random data [17], and may blur the distinction between the406

two peaks.407

Interestingly, at early times, the peak does not occur at N = D as expected, but rather at N = De↵ ⇠408

D/10 ⇠ 20. We hypothesize that De↵ may be related to the intrinsic dimension of the input data409

[39, 40, 41]. Although the linear peak still occurs at N = D for MNIST data in the RF model, in the410

NN setup feature learning occurs. When the dataset is highly correlated like MNIST, feature learning411

compresses the dataset down to a more compact representation, likely causing the N = D peak to412

shift to lower values. A study of this crucial question is deferred to future work.413
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(a) MNIST, SNR = 1 (b) MNIST, SNR = 2 (c) MNIST, SNR = 0.2

(d) Dynamics on MNIST at SNR = 0.2

Figure 15: Test loss phase space on MNIST with � = ReLU. Top: After 1000 epochs, for various
values of the SNR. Bottom: at three different times during training in the low SNR case.
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