
Pearson correlation
Env Factor SkewFit WSC (Ours)

Push
n = 1

obj x 0.94± 0.03 0.95± 0.03
obj y 0.66± 0.17 0.94± 0.04

Push
n = 2

obj1 x 0.59± 0.50 0.69± 0.37
obj1 y 0.44± 0.68 0.86± 0.05

Push
n = 3

obj1 x 0.44± 1.05 0.78± 0.11
obj1 y 0.38± 1.44 0.89± 0.01

Table 2: Is the learned policy interpretable? We
measure the correlation between the true factor value
of the final state in the trajectory vs. the corresponding
latent dimension of the latent goal zg used to condition
the policy. We show 95% confidence over 5 seeds.
Our method attains higher correlation between latent
goals and final states, meaning that it learns a more
interpretable goal-conditioned policy.

Pearson correlation
Env Factor VAE (SkewFit) WSC (Ours)

Push
n = 1

hand x 0.97± 0.04 0.97± 0.01
hand y 0.85± 0.07 0.93± 0.02
obj x 0.78± 0.28 0.97± 0.01
obj y 0.65± 0.31 0.95± 0.01

Push
n = 3

hand x 0.95± 0.03 0.98± 0.01
hand y 0.50± 0.33 0.94± 0.03
obj1 x 0.12± 0.18 0.96± 0.01
obj1 y 0.15± 0.03 0.92± 0.02

Table 3: Is the learned state representation disen-
tangled? We measure the correlation between the true
factor value of the input image vs. the latent dimension
of the encoded image on the evaluation dataset (95%
confidence over 5 seeds). We find that unsupervised
VAEs are often insufficient for learning a disentangled
representation.

A Additional Experimental Results

A.1 Is the learned state representation disentangled?

To see whether weak supervision is necessary to learn state representations that are disentangled, we
measure the correlation between true factor values and the latent dimensions of the encoded image
in Table. 3. For the VAE, we took the latent dimension that has the highest correlation with the
true factor value. The results illustrate that unsupervised losses are often insufficient for learning a
disentangled representation, and utilizing weak labels in the training process can greatly improve
disentanglement, especially as the environment complexity increases.

A.2 How much weak supervision is needed?

Our method relies on learning a disentangled representation from weakly-labelled data, D =

{(s(i)1 , s
(i)
2 , y(i))}Ni=1. However, the total possible number of pairwise labels for each factor of

variation is N =
(
M
2

)
, where M ∈ {256, 512} is the number of images in the dataset. In this

section, we investigate how much weak supervision is needed to learn a sufficiently-disentangled
state representation such that it helps supervise goal-conditioned RL.

Number of factors that are labelled: There can be many axes of variation in an image observation,
especially as the complexity of the environment grows. For example, the PushLights environment
with n = 3 objects has nine factors of variation, including the positions of the robot arm and objects,
and lighting (see Figure 2).

In Figure 8, we investigate whether WSC requires weak labels for all or some of the factors of
variation. To do so, we compared the performance of WSC as we vary the set of factors of variation
that are weakly-labelled in the dataset D. We see that WSC performs well even when weak labels are
not provided for task-irrelevant factors of variation, such as hand position and lighting.

Number of weak labels: In Table 4, we evaluate the quality of the learned disentangled representa-
tion model as we vary the number of weak labels, N . We measure disentanglement by evaluating
the Pearson correlation between the true factor value compared to the latent dimension. We ob-
serve that, even with only 1024 pairwise labels, the resulting representation has a good degree of
disenganglement, i.e. Pearson correlation of 0.8 or higher.

In Figure 9, we evaluate the downstream performance of our method on visual goal-conditioned tasks
as we vary the number of weak labels. We see that our method outperforms SkewFit when provided at
least 1024, 1024, 256, and 128 weak labels for Push n = 1, PushLights n = 3, PickupLightsColors,
and DoorLights, respectively. Further, we find that 1024 pairwise labels is generally sufficient for
good performance on all domains.
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Figure 8: How many factors of variation need to be labelled? WSC outperforms SkewFit even without
being provided weak labels for task-irrelevant factors, such as hand position and lighting.

PushLights n = 3
N hand x hand y obj1 x obj1 y obj2 x obj2 y obj3 x obj3 y light

128 0.79± 0.04 0.64± 0.05 0.44± 0.08 0.32± 0.05 0.60± 0.03 0.51± 0.05 0.49± 0.07 0.41± 0.06 0.86± 0.04
256 0.87± 0.02 0.75± 0.05 0.58± 0.04 0.57± 0.04 0.60± 0.04 0.66± 0.03 0.65± 0.07 0.50± 0.06 0.90± 0.02
512 0.93± 0.01 0.86± 0.01 0.71± 0.03 0.70± 0.05 0.70± 0.04 0.58± 0.05 0.76± 0.04 0.67± 0.05 0.85± 0.04

1024 0.97± 0.01 0.91± 0.01 0.86± 0.01 0.81± 0.02 0.83± 0.02 0.80± 0.03 0.83± 0.03 0.80± 0.02 0.94± 0.02
2048 0.98± 0.00 0.94± 0.01 0.89± 0.01 0.87± 0.03 0.87± 0.01 0.86± 0.02 0.86± 0.02 0.84± 0.02 0.92± 0.01
4096 0.97± 0.00 0.94± 0.01 0.93± 0.01 0.88± 0.01 0.90± 0.01 0.88± 0.02 0.91± 0.01 0.85± 0.01 0.95± 0.00
VAE 0.00± 0.00 0.00± 1.00 0.02± 2.00 0.00± 3.00 0.01± 4.00 0.01± 5.00 0.02± 6.00 0.02± 7.00 0.02± 8.00

PickupLightsColors
N hand y hand z obj y obj z light table color obj color

128 0.94± 1.00 0.91± 2.00 0.72± 4.00 0.31± 5.00 0.88± 6.00 0.43± 7.00 0.62± 8.00
256 0.95± 1.00 0.96± 2.00 0.85± 4.00 0.47± 5.00 0.95± 6.00 0.62± 7.00 0.77± 8.00
512 0.96± 1.00 0.97± 2.00 0.91± 4.00 0.61± 5.00 0.97± 6.00 0.79± 7.00 0.82± 8.00
1024 0.95± 1.00 0.96± 2.00 0.94± 4.00 0.69± 5.00 0.97± 6.00 0.87± 7.00 0.92± 8.00
2048 0.95± 1.00 0.98± 2.00 0.95± 4.00 0.75± 5.00 0.96± 6.00 0.90± 7.00 0.93± 8.00
4096 0.95± 1.00 0.96± 2.00 0.94± 4.00 0.80± 5.00 0.96± 6.00 0.89± 7.00 0.96± 8.00
VAE 0.08± 0.00 0.25± 1.00 0.07± 2.00 0.09± 3.00 0.24± 4.00 0.09± 5.00 0.04± 6.00

DoorLights
door angle light

0.89± 3.00 0.84± 4.00
0.95± 3.00 0.92± 4.00
0.89± 3.00 0.95± 4.00
0.91± 3.00 0.94± 4.00
0.91± 3.00 0.94± 4.00
0.92± 3.00 0.95± 4.00
0.01± 0.00 0.34± 1.00

Table 4: How many weak labels are needed to learn a sufficiently-disentangled state representation? We
trained disentangled representations on varying numbers of weakly-labelled data samples {(s(i)1 , s

(i)
2 , y(i))}Ni=1

(N ∈ {128, 256, . . . , 4096}), then evaluated how well they disentangled the true factors of variation in the
data. On the evaluation dataset, we measure the Pearson correlation between the true factor value of the input
image vs. the latent dimension of the encoded image. For the VAE (obtained from SkewFit), we took the latent
dimension that has the highest correlation with the true factor value. We report the 95% confidence interval
over 5 seeds. Even with a small amount of weak supervision (e.g. around 1024 labels), we are able to attain a
representation with good disentanglement.

A.3 Noisy data experiments

While the weakly-labelled data can be collected at scale from crowd-sourcers and does not require
expertise, the human labellers may mistakenly provide inaccurate rankings. Thus, we evaluated the
robustness of the disentangled representation learning on more realistic, noisy datasets which are far
less clean than the toy datasets used by Shu et al. [68].

Real-world dataset: We collected 1,285 RGB images (1,029 train, 256 test) on a real Franka robot
with 5 blocks (see Fig. 10a). We collected the images under various indoor lighting settings and at
different times of the day, but we did not provide labels for the environment lighting conditions. We
found that the robot arm often caused occlusion, hiding blocks from the camera view, so we used two
RGB cameras placed at different locations, and stacked the RGB images into 6 channels (i.e., image
arrays of shape 48× 48× 6). We then had a human provide weak labels for the block positions. In
Fig. 10b, we show that the learned disentangled model attains a sufficiently high Pearson correlation
between the true XY-position of the block (relative to the image frame) vs. the corresponding
latent dimension of the encoded image. The results suggest that weakly-supervised disentangled
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Figure 9: How many weak labels are needed to help visual goal-conditioned RL? We evaluate the perfor-
mance of our method (WSC) on visual goal-conditioned tasks as we vary the number of weak pairwise labels
N ∈ {128, 256, . . . , 4096}. We find that 1024 pairwise labels is generally sufficient for good performance on
all domains.

(a) Franka robot with 5 blocks

Block Pearson correlation
color x y

Red 0.747± 0.046 0.715± 0.016
Blue 0.649± 0.034 0.673± 0.042

Green 0.718± 0.057 0.625± 0.066
Yellow 0.663± 0.052 0.673± 0.057
Purple 0.505± 0.041 0.518± 0.055

(b) Disentangled representation performance

Figure 10: Real-world dataset: (a): We collected 1,285 RGB camera images (1,029 train, 256 test) on a
real Franka robot with 5 block objects, and then had a human provide weak labels for the block positions. We
collected the images under various lighting conditions, and used two camera viewpoints to overcome object
occlusion. (b): Our method attains a sufficiently high Pearson correlation between the true XY-position of
the block (relative to the image frame) vs. the latent dimension of the encoded image, suggesting that weakly-
supervised disentangled representation learning may be useful for training robots in the real-world. Results are
taken over 6 seeds.

representation learning may be useful for training robots in the real-world, despite challenges such as
environment stochasticity and object occlusion.

Noisy labels: We generated noisy datasets for PushLights with n ∈ {1, 2, 3} objects, where each
factor label was corrupted with probability 5% or 10%. In Table 5, we evaluate the quality of the
learned disentangled representation model on the noisy datasets. Our method learns a robustly-
disentangled representation with 5% noise (around 80% correlation), but achieves lower performance
with 10% noise (around 60-70% correlation).

A.4 Latent policy visualizations: WSC vs. SkewFit

We provide additional visualizations of the policy’s latent space on more complex environments,
previously discussed in Section 5.3. In Figure 11, we compare the latent space of policies trained
by WSC and SkewFit. We see that our method produces a more semantically-meaningful goal-
conditioned policy, where the latent goal values directly align with the final position of the target
object. The difference between WSC and SkewFit grows larger as we increase the complexity of the
environment (i.e., increase the number of objects from one to three).

B Algorithm implementation details

Both the disentanglement model (for WSC) and VAE (for SkewFit, RIG, HER) were pre-trained
using the same dataset (size 256 or 512). A separate evaluation dataset of 512 image goals is used to
evaluate the policies on visual goal-conditioned tasks. We used soft actor-critic [33] as the base RL
algorithm. All results are averaged over 5 random seeds.
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PushLights n = 1
Noise hand x hand y obj1 x obj1 y light All

5% 0.952± 0.012 0.822± 0.124 0.730± 0.276 0.606± 0.298 0.875± 0.094 0.797± 0.298
10% 0.721± 0.507 0.718± 0.296 0.520± 0.502 0.501± 0.270 0.730± 0.279 0.638± 0.410

PushLights n = 2
Noise hand x hand y obj1 x obj1 y obj2 x obj2 y light All

5% 0.949± 0.024 0.793± 0.226 0.864± 0.103 0.844± 0.145 0.842± 0.147 0.873± 0.032 0.936± 0.041 0.872± 0.118
10% 0.853± 0.165 0.588± 0.357 0.665± 0.422 0.518± 0.506 0.747± 0.185 0.864± 0.02 0.916± 0.04 0.736± 0.400

PushLights n = 3
Noise hand x hand y obj1 x obj1 y obj2 x obj2 y obj3 x obj3 y All

5% 0.786± 0.144 0.78± 0.164 0.728± 0.217 0.698± 0.180 0.791± 0.117 0.858± 0.057 0.877± 0.013 0.833± 0.038 0.794± 0.661
10% 0.632± 0.487 0.551± 0.295 0.587± 0.264 0.547± 0.315 0.613± 0.307 0.817± 0.023 0.864± 0.033 0.851± 0.068 0.610± 0.643

Table 5: Noisy labels: We trained disentangled representations on noisy PushLights datasets for n ∈ {1, 2, 3}
objects, where each factor label was corrupted with probability 5% or 10%. We then measured the Pearson
correlation between the true factor values vs. the corresponding latent dimension. Our method learns robustly-
disentangled representations with 5% noise (around 80% correlation), but achieves lower performance with 10%
noise (around 60-70% correlation). Results are taken over 5 seeds.

Disentangled representation learning: We describe the disentangled model network architecture
in Table 7, which was slightly modified from [68] to be trained on 48× 48 image observations from
the Sawyer manipulation environments. The encoder is not trained jointly with the generator, and is
only trained on generated data from G(z) (see Eq. 1). All models were trained using Adam optimizer
with β1 = 0.5, β2 = 0.999, learning rate 1e-3, and batch size 64 for 1e5 iterations. The learned
disentangled representation is fixed during RL training (Phase 2 in Figure 3).

Goal-conditioned RL: The policy and Q-functions each are feedforward networks with (400, 300)
hidden sizes and ReLU activation. All policies were trained using Soft Actor-Critic [33] with batch
size 1024, discount factor 0.99, reward scale 1, and replay buffer size 1e5. The episodic horizon
length was set to 50 for Push and Pickup environments, and 100 for Door environments. We used the
default hyperparameters for SkewFit from [61], which uses 10 latent samples for estimating density.
For WSC, we relabelled between 0.2 and 0.5 goals with zg ∼ p(ZI) (see Table 6). All RL methods
(WSC, SkewFit, RIG, HER) relabel 20% of goals with a future state in the trajectory. SkewFit and
RIG additionally relabel 50% of goals with zg ∼ pskew(s) and zg ∼ N (0, I), respectively.

VAE: The VAE was pre-trained on the images from the weakly-labelled dataset for 1000 epochs, then
trained on environment observations during RL training. We trained the VAE and the policy separately
as was done in [61], and found that jointly training them end-to-end (i.e., with backpropagation
between VAE loss and policy loss) did not perform well. We used learning rate 1e-3, KL regularization
coefficient β ∈ {20, 30}, and batch size 128. The VAE network architecture and hyperparameters are
summarized in Table 8.

SkewFit+pred (Section 5.1): We added a dense layer on top of the VAE encoder to predict the factor
values, and added a MSE prediction loss to the β-VAE loss. We also tried using the last hidden layer
of the VAE encoder instead of the encoder output, but found that it did not perform well.

SkewFit+DR (Figure 5): We tried with and without adding the VAE distance reward to the disentan-
gled reward Rzg (s) in Eq. 3, and report the best αVAE in Table 6:

RDR(s) = Rzg (s)− αVAE‖eVAE(s)− zVAE
g ‖ (4)

Computing infrastructure: Experiments were ran on GTX 1080 Ti, Tesla P100, and Tesla K80.
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Environment M Factors (User-specified factor indices are bolded) WSC pgoal αDR

Push n = 1 256 hand x, hand y, obj x, obj y 0.2 1
Push n = 2 256 hand x, hand y, obj1 x, obj1 y, obj2 x, obj2 y 0.3 1
Push n = 3 512 hand x, hand y, obj1 x, obj1 y, obj2 x, obj2 y, obj3 x, obj3 y 0.4 0

PushLights n = 1 256 hand x, hand y, obj x, obj y, light 0.4 1
PushLights n = 2 512 hand x, hand y, obj1 x, obj1 y, obj2 x, obj2 y, light 0.4 1
PushLights n = 3 512 hand x, hand y, obj1 x, obj1 y, obj2 x, obj2 y, obj3 x, obj3 y, light 0.5 0

Pickup 512 hand y, hand z, obj y, obj z 0.4 –
PickupLights 512 hand y, hand z, obj y, obj z, light 0.3 –
PickupColors 512 hand y, hand z, obj y, obj z, table color, obj color 0.4 –

PickupLightsColors 512 hand y, hand z, obj y, obj z, light, table color, obj color 0.3 –
Door 512 door angle 0.3 –

DoorLights 512 door angle, light 0.5 –

Table 6: Environment-specific hyperparameters: M is the number of training images. “WSC pgoal” is the
percentage of relabelled goals in WSC (Alg. 1). αDR is the VAE reward coefficient for SkewFit+DR in Eq. 4.

Encoder
N (z;µ(s), σ(s))

Input:
48× 48× 3 image

4× 4 Conv, 32 ch, str 2
Spectral norm
LeakyReLU

4× 4 Conv, 32 ch, str 2
Spectral norm
LeakyReLU

4× 4 Conv, 64 ch, str 2
Spectral norm
LeakyReLU

4× 4 Conv, 64 ch, str 2
Spectral norm
LeakyReLU

Flatten
128 Dense layer
Spectral norm
LeakyReLU

2 ·K Dense layer
Output:

µ, σ ∈ RK

Generator
G(z)

Input:
z ∈ RK

128 Dense layer
Batch norm

ReLU
3 · 3 · 64 Dense layer

Batch norm
ReLU

Reshape 3× 3× 64
3× 3 Conv, 32 ch, str 2

Batch norm
LeakyReLU

3× 3 Conv, 16 ch, str 2
Batch norm
LeakyReLU

6× 6 Conv, 3 ch, str 4
Batch norm

Sigmoid
Output:

48× 48× 3 image

Discriminator Body

Input:
48× 48× 3 image

4× 4 Conv, 32 ch, str 2
Spectral norm
LeakyReLU

4× 4 Conv, 32 ch, str 2
Spectral norm
LeakyReLU

4× 4 Conv, 64 ch, str 2
Spectral norm
LeakyReLU

4× 4 Conv, 64 ch, str 2
Spectral norm
LeakyReLU

Flatten
256 Dense layer
Spectral norm
LeakyReLU

256 Dense layer
Spectral norm
LeakyReLU

Output: Hidden layer h

Discriminator
D(s1, s2, y)

Input:
Weakly-labelled data

(s1, s2, y) ∈ D

Output: Prediction
o1 + o2 + odiff ∈ [0, 1]

Table 7: Disentangled representation model architecture: We slightly modified the disentangled model
architecture from [68] for 48 × 48 image observations. The discriminator body is applied separately to s1
and s2 to compute the unconditional logits o1 and o2 respectively, and the conditional logit is computed as
odiff = y · (h1 − h2), where h1, h2 are the hidden layers and y ∈ {±1}.

VAE encoderN (z;µ(s), σ(s))

Input: 48× 48× 3 image
5× 5 Conv, 16 ch, str 2

ReLU
3× 3 Conv, 32 ch, str 2

ReLU
3× 3 Conv, 64 ch, str 2

ReLU
Flatten

2 · LVAE Dense layer
Output: µ, σ ∈ RLVAE

VAE decoder

Input: z ∈ RLVAE

3 · 3 · 64 Dense layer
Reshape 3× 3× 64

3× 3 Conv, 32 ch, str 2
ReLU

3× 3 Conv, 16 ch, str 2
ReLU

Output:
48× 48× 3 image

Best latent dim LVAE

Env β WSC SkewFit, RIG, HER

Push 20 256 4
Pickup 30 256 16
Door 20 256 16

Table 8: VAE architecture & hyperparameters: β is the KL regularization coefficient in the β-VAE loss. We
found that a smaller VAE latent dim LVAE ∈ {4, 16} worked best for SkewFit, RIG, and HER (which use the
VAE for both hindsight relabelling and for the actor & critic networks), but a larger dim LVAE = 256 benefitted
WSC (which only uses the VAE for the actor & critic networks).
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Figure 11: Interpretable control: Trajectories generated by WSC (left) and SkewFit (right), where the policies
are conditioned on varying latent goals (z1, z2) ∈ R2. For SkewFit, we varied the latent dimensions that have
the highest correlation with the object’s XY-position, and kept the remaining latent dimensions fixed. The blue
object always starts at the center of the frame in the beginning of each episode. The white lines indicate the
target object’s position throughout the trajectory. For WSC, we see that the latent goal values directly align with
the direction in which the policy moves the blue object.
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