
Appendix A Proofs

Proposition 2. Let N (x|µ, σ2) be the normal distribution with mean µ and variance σ2. For any
given α and β, ∫

Φ(α(x+ β))N (x|µ, σ2)dx = Φ

(
α(µ+ β)

(1 + α2σ2)1/2

)
, (5)

where Φ(x) =
∫ x
−∞N (z|0, 1)dz is the cumulative distribution function of the standard normal

distribution.

Proof. Let z = (x− µ)/σ, we have

y(µ, σ) =

∫
Φ(α(x+ β))N (x|µ, σ2)dx

=

∫
Φ(α(µ+ σz + β))

1

(2πσ2)1/2
exp{−1

2
z2}σdz

=

∫
Φ(α(µ+ σz + β))

1

(2π)1/2
exp{−1

2
z2}dz.

Take the derivative of y with respect to µ,

∂y(µ, σ)

∂µ
=

α

2π

∫
exp{−1

2
z2 − 1

2
α2(µ+ σz + β)2}dz

=
α

2π

∫
exp{−1

2
z2 − 1

2
α2(µ2 + σ2z2 + β2 + 2µσz + 2µβ + 2σzβ)}dz

=
α

2π

∫
exp{−1

2
(1 + α2σ2)(z2 +

2α2σ(µ+ β)

1 + α2σ2
z +

α2(µ2 + β2 + 2µβ)

1 + α2σ2
)}dz

=
α

2π

∫
exp{−1

2
(1 + α2σ2)((z +

α2σ(µ+ β)

1 + α2σ2
)2 − α4σ2(µ+ β)2

(1 + α2σ2)2
+
α2(µ+ β)2

1 + α2σ2
)}dz

=
α

2π

∫
exp{−1

2
(1 + α2σ2)(z +

α2σ(µ+ β)

1 + α2σ2
)2 +

1

2

α4σ2(µ+ β)2

1 + α2σ2
− 1

2
α2(µ+ β)2}dz

=
α

2π

∫
exp{−1

2
(1 + α2σ2)(z +

α2σ(µ+ β)

1 + α2σ2
)2 − 1

2

α2(µ+ β)2

1 + α2σ2
}dz

=
α

2π
exp{−1

2

α2(µ+ β)2

1 + α2σ2
}
∫

exp{−1

2
(1 + α2σ2)(z +

α2σ(µ+ β)

1 + α2σ2
)2}dz

=
1

(2π)1/2
α

(1 + α2σ2)1/2
exp{−1

2

α2(µ+ β)2

1 + α2σ2
}.

Similarly, take the derivative of y with respect to σ,

∂y(µ, σ)

∂σ
=

α

2π

∫
exp{−1

2
z2 − 1

2
α2(µ+ σz + β)2}zdz

=
α

2π
exp{−1

2

α2(µ+ β)2

1 + α2σ2
}
∫

exp{−1

2
(1 + α2σ2)(z +

α2σ(µ+ β)

1 + α2σ2
)2}zdz

= − 1

(2π)1/2
α3σ(µ+ β)

(1 + α2σ2)3/2
exp{−1

2

α2(µ+ β)2

1 + α2σ2
}.

Note that

∂Φ( α(µ+β)
(1+α2σ2)1/2

)

∂µ
=

1

(2π)1/2
α

(1 + α2σ2)1/2
exp{−1

2

α2(µ+ β)2

1 + α2σ2
},

∂Φ( α(µ+β)
(1+α2σ2)1/2

)

∂σ
= − 1

(2π)1/2
α3σ(µ+ β)

(1 + α2σ2)3/2
exp{−1

2

α2(µ+ β)2

1 + α2σ2
}.
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Thus, ∫
Φ(α(x+ β))N (x|µ, σ2)dx = Φ

(
α(µ+ β)

(1 + α2σ2)1/2

)
+ C,

for some constant C. When α = 0,

y(µ, σ) =

∫
Φ(0)N (z|0, 1)dz =

1

2
= Φ(0),

where Eq. (5) always holds. When α 6= 0, consider the case where µ = −β, σ = 1
α ,

y(−β, 1

α
) =

∫
Φ(z)N (z|0, 1)dz

=

∫
(Φ(z)− 1

2
)N (z|0, 1)dz +

∫
1

2
N (z|0, 1)dz

=

∫
1

2
N (z|0, 1)dz

=
1

2
= Φ(

α(µ+ β)

(1 + α2σ2)1/2
|µ=−β,σ= 1

α
),

which means C = 0.

=⇒
∫

Φ(α(x+ β))N (x|µ, σ2)dx = Φ(
α(µ+ β)

(1 + α2σ2)1/2
).

In the following, we align the function sigmoid(x) with Φ(λx) (where Φ is as defined in Proposition 1)
such that sigmoid(x) ≈ Φ(λx). Obviously, these two functions have the same maxima, minima, and
center (at x = 0). Thus, we only need to align their derivatives at x = 0. Now,

∂sigmoid(x)

∂x
|x=0 = e−x(1 + e−x)−2|x=0 =

1

4
,

∂Φ(λx)

∂x
|x=0 =

λ

(2π)1/2
exp{−1

2
(λx)2}|x=0 =

λ

(2π)1/2
.

This implies λ2 = π
8 .

Similarly, we also align (sigmoid(x))2 with Φ(λα(x+ β)), for some appropriate α and β. Again,
note that both functions have the same maxima and minima. The center of Φ(λα(x + β)) is at
(−β, 1/2). For alignment, we consider the point when (sigmoid(x))2 = 1/2 as its center point,
where x = log(

√
2 + 1). It is easy to see that β = − log(

√
2 + 1). As for the derivative at this center,

∂(sigmoid(x))2

∂x
|x=−β = 2e−x(1 + e−x)−3|x=−β = (2−

√
2)/2,

∂Φ(λα(x+ β))

∂x
|x=−β =

λα

(2π)1/2
exp{−1

2
(λα(x+ β))2}|x=−β =

λα

(2π)1/2
,

which implies α = 4− 2
√

2. Illustrations of the approximations are shown in Figure 6.

(a) sigmoid(x). (b) (sigmoid(x))2.

Figure 6: Approximations of sigmoid(x) and (sigmoid(x))2.
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Now, using Proposition 1 and the above approximations, we have

E[t] =

∫
1

σ
√

2π

1

1− t
exp(− (logit(t)− µ)

2σ2
)dt

=

∫
sigmoid(x)N (x|µ, σ2)dx '

∫
Φ(λx)N (x|µ, σ2)dx

= Φ(
λµ√

1 + λ2σ2
)

' sigmoid(
µ√

1 + λ2σ2
),

E[t2] =

∫
1

σ
√

2π

t

1− t
exp(− (logit(t)− µ)

2σ2
)dt

=

∫
sigmoid(x)2N (x|µ, σ2)dx

'
∫

Φ(λα(x+ β))N (x|µ, σ2)dx

= Φ(
λα(µ+ β)√
1 + λ2α2σ2

)

' sigmoid(
α(µ+ β)√
1 + λ2α2σ2

),

var[t] = E[t2]− E[t]2

' sigmoid(
α(µ+ β)√
1 + λ2α2σ2

)− (sigmoid(
µ√

1 + λ2σ2
))2

Appendix B Data set

B.1 LSTM-12K Data Set

We randomly sampled 12K cell structures from the same search space as used in [26]. The data set
consists of 9000 architectures with 7-node cells and 3000 architectures with 8-node cells. There are 4
choices of operations: ReLU, Sigmoid, Tanh, Identity. Each architecture is trained for 10 epochs on
the PTB data set [23]. Other training setups are the same as [26]. Specifically, we use SGD with a
learning rate of 20.0 to train our LSTM models and clip the norm of the gradient at 0.25. Besides,
we also adapt three same regularization techniques: (i) an `2-regularizer with weight decay parameter
10−7; (ii) dropout [9] with a rate of 0.4; (iii) tying of the word embeddings and softmax weights [11].
The models’ cell structures, numbers of parameters and perplexities are recorded. This data set can
be used to test the efficiency of NAS algorithms before applying them in the open domain.

B.2 NASNet Search Space

We follow the search space setting of DARTS [20], in which the architecture is obtained by stacking
the learned cell. Each cell consists of 4 blocks, two inputs (outputs of the previous cell and previous
previous cell), and one output. Each intermediate block contains two inputs and one output as follows:

x(i) = o(i,j)(xj) + o(i,k)(xk),

where x(i) is the block output, and x(j), x(k) are any two predecessors. There are 7 types of allowed
operations: 3× 3 and 5× 5 separable convolutions, 3× 3 and 5× 5 dilated separable convolutions,
3× 3 max pooling, 3× 3 average pooling and identity.

Similar to [19], we apply the same cell architecture for both “normal” and “reduction” layers. In the
proposed GCN predictor, each operation is treated as a node, and each data flow as an edge.

To train the architecture, we use the same setting as in [20]. We use momentum SGD (with learning
rate 0.025 (anneal cosine strategy), momentum 0.9, and weight decay 3× 10−4).
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Appendix C Illustration of Efficient Estimation

To demonstrate efficiency of the proposed estimation scheme using weight-sharing, Figure 7 shows
the search progress of BONAS on the open domain search in Section 4.3. Each point in the figure
represents a selected architecture. For each given number of samples searched, a Gaussian kernel
density estimator is fitted on the accuracy distribution of the selected architectures. The color
corresponds to the corresponding probability density function value. As can be seen, when very
few architectures are searched, the surrogate model cannot estimate the architecture accuracy well,
and the accuracy distribution of the selected models is diffuse. With more and more samples, the
GCN and BSR can perform the accuracy estimation better. After around 2000 samples, most of the
candidate models selected by BONAS have high estimated accuracies.

For sub-networks that are sampled in a particular search iteration, Figure 8 compares their actual
accuracies (obtained by full training) with the estimated accuracies obtained by the proposed method
(Section 3.2) and standard weight-sharing (which constructs the super-network by using all models in
the search space). As can be seen, the proposed weight-sharing among a smaller number of promising
models can achieve higher correlation.

Figure 7: Visualization of BONAS’s search
progress on open-domain search.

Figure 8: Actual accuracy versus estimated ac-
curacies obtained by the proposed method and
one-shot NAS.
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Appendix D Example Architectures Obtained

Figure 9 shows some example architectures that are obtained by the proposed method from open-
domain search on the NASNet search space (Section 4.3).

(a) BONAS-A. (b) BONAS-B.

(c) BONAS-C. (d) BONAS-D.

Figure 9: Example models obtained by BONAS in the NASNet search space.
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