
APPENDIX

A Formal definition of δ-FWER control

Now we give a more formal definition of the δ-FWER.
Definition A.1 (δ-family wise error rate). Given a family of (corrected) p-values p̂ = (p̂j)j∈[p] and a
threshold x ∈ (0, 1), the δ-FWER, also denoted FWERδx(p̂), is the probability to make at least one
false discovery at a distance at least δ from the true support:

FWERδx(p̂) = P(min
j∈Nδ

p̂j ≤ x) , (12)

with Nδ= {j∈ [p] :∀k ∈ Supp(B), d(j, k) ≥ δ} and d(j, k) is the distance between source j and k.
Definition A.2 (δ-FWER control). We say that the family of (corrected) p-values p̂ = (p̂j)j∈[p]
controls the δ-FWER if, for all x ∈ (0, 1):

FWERδx(p̂) ≤ x . (13)

B Extended Restricted Eigenvalue assumption

Here, we rewrite (Lounici et al., 2011, Assumption 3.1), adjusting it for the multi-task Lasso case
(particular case of the more general group Lasso). Notice that for a given value of T , the assumption
is equivalent to (Lounici et al., 2011, Assumption 4.1). Let 1 ≤ s ≤ p be an integer that gives an
upper bound on the sparsity |Supp(B)|. The extended Restricted Eigenvalue assumption RE(X, s) is
verified on X for sparsity parameter s and constant κ = κ(s) > 0, if:

min

{
‖XΘ‖√
nT ‖ΘJ‖

: |J | ≤ s,Θ ∈ Rp×T \ {0}, ‖ΘJC‖2,1 ≤ 3 ‖Θ‖2,1

}
≥ κ , (14)

where J ⊂ [p] and JC denotes its complementary i.e., JC = [p] \ J , and ΘJ refers to the matrix Θ
without the rows JC .

C Adaptive quantile aggregation of p-values and ecd-MTLasso algorithm

In this section, we provide some more details on the way we perform aggregation of p-values across
the p-values maps created through the clustering randomization, then we give the full ecd-MTLasso
algorithm.

For the j-th features (or source) we have a vector (p(b)j )b∈[B] of p-values, with one p-value computed
for each of the B clusterings. Then, the final p-value of the j-th feature is given by the adaptive
quantile aggregation, as proposed by Meinshausen et al. (2009):

pj = min

{
(1− log(γmin)) inf

γ∈(γmin,1)

(
γ-quantile

{p(b)j
γ

; b ∈ [B]
})

, 1

}
,

where we have taken γmin = 0.25 in our experiments. Taking a value of γmin not too small
(e.g., γmin ≥ 0.25) allows to recover sources that have received small p-values several times (e.g., at
least for B/4 different choices of clustering).

We give the full algorithm of ecd-MTLasso in Algorithm 2.

D Proofs

D.1 Probability lemma

Lemma D.1. Let ε ∈ RT be a centered Gaussian random vector with (symmetric positive definite)
covariance M ∈ RT×T . Then, the random variable ε>M−1ε follows a χ2

T distribution.
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Algorithm 2 ecd-MTLasso
input :X ∈ Rn×p,Y
param :C = 1000, B = 100

for b = 1, . . . , B do

X(b) = sample(X)
A(b) = Ward(C,X(b))
Z(b) = XA(b)

q(b) = min
{
1, C d-MTLasso(Z(b),Y)

}
// corr. cluster-wise p-val in bootstrap b

for j = 1, . . . , p do
p
(b)
j = q

(b)
r if j ∈ Gr // corrected feature-wise p-values in bootstrap b

for j = 1, . . . , p do
pj = aggregation(p(b)j , b ∈ [B]) // aggregated corrected feature-wise p-values

return pj for j ∈ [p]

Proof. Note first that since M is symmetric positive definite, its square-root N ∈ RT×T exists and is
a symmetric positive definite matrix satisfying N2 = M. Hence, this leads to the following displays

ε>M−1ε = (N−1ε)>(N−1ε).

We have that N−1ε is a centered Gaussian random vector, and its covariance matrix reads:

E
[
(N−1ε)(N−1ε)>

]
= E

[
N−1εε>N−1

]
= E

[
N−1εε>N−1

]
= N−1E

[
εε>

]
N−1

= N−1MN−1

= N−1N2N−1

= IdT .

To conclude N−1ε ∈ RT is a centered Gaussian vector with covariance IdT , hence its squared
Euclidean norm

∥∥N−1ε∥∥2 = (N−1ε)>(N−1ε) follows a χ2
T distribution.

D.2 Proof of Prop. 2.1

Now, we give a proof of Prop. 2.1:

Proof. First, let us fix an index j ∈ [p]. Then, using Equation (7) we have:

√
n(B̂

(d−MTLasso)
j,. −Bj,.) =

√
n

z>j E

z>j X.,j
−
∑
k 6=j

√
n z>j X.,k(B̂

MTL
k,. −Bk,.)

z>j X.,j

= Λj,. + ∆j,. ,

(15)

where Λj,. =
√
n

z>j E

z>j X.,j
and ∆j,. =

√
n
∑
k 6=j Pj,k(Bk,. − B̂MTL

k,. ) with

Pj,k =
z>j X.,k

z>j X.,j
.

Now, we show that Λj,. ∼ Np(0, Ω̂j,jM), or equivalently we show that E>zj ∼ N (0, n ‖zj‖2 M).
It is clear that E>zj is a centered Gaussian vector. Then, its covariance denoted by V(j), can be
computed as follows:

V(j) = E(E>zjz
>
j E) ∈ RT×T ,
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whose general term is given for t, t′ ∈ [T ] by

V
(j)
t,t′ = E(E>.,tzjz>j E.,t′)

= E(z>j E.,t′E
>
.,tzj) (scalar values commute)

= z>j E(E.,t′E
>
.,t)zj

= z>j E(
n∑
i=1

Ei,t′E
>
i,t)zj

= z>j

n∑
i=1

E(Ei,t′E
>
i,t)zj .

Then, the noise structure in Equation (2) yields V
(j)
t,t′ = z>j nMt,t′zj = n ‖zj‖2 Mt,t′ .

Now, we show that with high probability ‖∆‖2,1 = O

(
sλ
√

log(p)

κ2

)
. First, notice that:

‖∆‖2,1 ≤
√
nmax
k 6=j
|Pj,k|

∥∥∥B̂MTL −B
∥∥∥
2,1

.

For a convenient choice of the regularization parameters α, using Bühlmann and van de Geer (2011,
Lemma 2.1) and following the same approach as Dezeure et al. (2015, Appendix A.1), we obtain,
with high probability:

√
nmax
k 6=j
|Pj,k| = O

(√
log(p)

)
.

Bounds on ‖B̂MTL −B‖2,1 are also available in the literature (Lounici et al., 2011) for ρ = 0 and
can be extended to ρ > 0 similarly. Notably, provided ρ = 0, assuming A1 for a sparsity parameter
|Supp(B∗)| ≤ s, a given constant κ = κ(s) > 0, and a choice of λ large enough in Equation (4),
(Lounici et al., 2011, Theorem 3.1) gives directly the following bound, with high probability:∥∥∥B̂MTL −B

∥∥∥
2,1

= O

(
sλ

κ2

)
.

Remark D.1. Following van de Geer et al. (2014), to neglect ∆ we need to have ‖∆‖∞ = o(1).

This condition is verified if s = o
(

κ2

λ
√

log(p)

)
.

D.3 Proof of Prop. 2.2

Before starting the proof, let us give more precision on assumption A2, the complete assumption is
the following:

(A2) there exists Γ ∈ RC×T such that Γr,. =
∑
j∈Gr wjBj,. with wj ≥ 0 for all j ∈ [p], so that the

associated compression loss XB− ZΓ is bounded as follows:

‖XB− ZΓ‖22,2 ≤ ξ
Tφ2min(M)

n
= ξ

Tφ2min(R)σ2

n
, (16)

where ξ > 0 is an arbitrary small constant, φ2min(M) > 0 is the smallest eigenvalue of M and
φ2min(R) > 0 is the smallest eigenvalue of R, the temporal correlation matrix of the noise defined by
R = M/σ2. The hypothesis plainly means that the noise induced by design matrix compression is
small enough with respect to the model noise.

Now we give a proof of Prop. 2.2:

Proof. First, we derive the d-MTLasso for the compressed problem, for r ∈ [C]:
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Γ̂(d−MTLasso)
r,. =

a>r Y

a>r Z.,r
−
∑
l 6=r

a>r Z.,lΓ̂
MTL
r,.

a>r Z.,r
, (17)

where ar’s are the residuals obtained by nodewise Lasso on Z playing the same role as the zj’s in
Equation (7). Then, as done in Appendix D.2, we derive:

√
n(Γ̂(d−MTLasso)

r,. − Γr,.) =
√
n

a>r E

a>r Z.,r
−
∑
l 6=r

√
na>r Z.,l(Γ̂

MTL
l,. − Γl,.)

a>r Z.,r
+

√
na>r (XB− ZΓ)

a>r Z.,r

= Λ′r,. + ∆′r,. + Πr,. ,
(18)

We treat Λ′ and ∆′ as in Appendix D.2, assuming that the hypotheses that are used to bound (hence,
neglect) ∆′ are verified (notably A3).

Next, for r ∈ [C], we want to establish that
n‖Πr,.‖2M−1

T Ω̂′r,r
is negligible, i.e., that Π has a negligible

effect on all decision statistics, where the covariance Ω̂′ has the following generic diagonal term:

Ω̂′r,r =
n ‖ar‖2

|a>r Z.,r|2
.

Given that

‖Πr,.‖2M−1 =
n
∥∥a>r (XB− ZΓ)

∥∥2
M−1

|a>r Z.,r|2
(19)

≤ n
∥∥a>r ∥∥2
|a>r Z.,r|2

‖XB− ZΓ‖22,2
φ2min(M)

, (20)

where ‖·‖2,2 denotes the spectral norm. Then, we obtain that

n ‖Πr,.‖2M−1

T Ω̂′r,r
≤ n

T

‖XB− ZΓ‖22,2
φ2min(M)

≤ ξ . (21)

Then, if A2 is verified for ξ small enough, we can also neglect Π in front of Λ′.

Then, by neglecting Π and ∆′, we have:
√
n(Γ̂(d−MTLasso) − Γ) ∼ NC(0, Ω̂′r,rM) . (22)

Then we can construct p-values that test the r-th null hypothesis H(r)
0 : “Γj,. = 0”, applying the

same technique as in Sec. 2.4. By correcting these p-values —e.g., using the Bonferroni correction
(Dunn, 1961), we multiply by C the initial p-values—, we obtain cluster-wise corrected p-values that
control the FWER.

Since, for all r ∈ [C], Γr,. is a linear combination of Bj,. for j ∈ Gr, then Γr,. 6= 0 if at least there
exist j ∈ Gr such that Bj,. 6= 0.

Then, defining the feature-wise corrected p-values by the corrected p-values of the corresponding
cluster, and assuming that clusters are at most of size δ, such corrected p-values control the δ-FWER.

Remark D.2. In assumption A2, having a positive linear combination is not necessary, a simple
linear combination is sufficient.

However, we assumed that Γr,. was a positive linear combination of Bj,. for j ∈ Gr, to get the
following desired properties:

"If additionally for r ∈ [C], for all j ∈ Gr and all k ∈ Gr, we have sign(Bj,.) = sign(Bk,.), then
sign(Γr,.) = sign(Bj,.) (zero being booth positive and negative)."

This means that if all the features’ weights in a cluster have the same sign, there exists a compression
verifying A2 such that the cluster weight preserves the sign.
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D.4 Proof of Prop. 2.3

Proof. Assuming the hypotheses of Prop. 2.3 and applying Prop. 2.2, we can, for each of the B
compression of the problem in Equation (1), construct a corrected p-value family that control the
δ-FWER. Applying the quantile aggregate method in Equation (15), we derive a corrected p-value
family taking into account for each compression choice. Applying Meinshausen et al. (2009, Theorem
3.2), this aggregated corrected p-value family also controls the δ-FWER.

E Computational aspects

Here we give some elements about the computational aspect of the algorithms we propose.

For solving Lasso or multi-task Lasso problems, we rely for additional speed-up on celer6 (Massias
et al., 2018a, 2019), a solver which is much more efficient than the standard coordinate descent (speed
up by more than 10x on our experiments).

To compute d-MTLasso, we must solve p Lasso of size (n, (p − 1)), and 1 multi-task Lasso with
cross-validation on a dataset of size (n, p, T ). For n = 200, p = 7500 and T = 10, the algorithms
can be run on a standard laptop in around 10 hours (using only 1 CPU). However, the algorithm
is embarrassingly parallel and requires around 15 minutes if run on a machine with 50 CPUs. To
compute cd-MTLasso, we must solve C Lasso of size (n, (C − 1)). and 1 multi-task Lasso with
cross-validation on a dataset of size (n,C, T ). For n = 200, C = 1000 and T = 10, it can be run on
a standard local device in less than 1 minute (using only 1 CPU). Finally, to compute ecd-MTLasso,
we must solveB cd-MTLasso. ForB = 100 (25 is already a good value to get most of the advantages
of ensembling), n = 200, C = 1000 and T = 10, it can be run on a standard laptop in around 1 hour
(using only 1 CPU) and around 1 minute on a machine with 50 CPUs.

Although, when using coordinate-descent-like algorithms, the complexity depends on solver parame-
ters such as tolerance on stopping criteria, the complexity in C (or p) appears empirically to be cubic,
while it is linear in n and T . It is also linear in B.

F Detailed data description

For AEF and VEF, data contained one artifactual channel leading to n = 203, while for SEF
data were preprocessed for removal of environmental noise leading to an effective number of
samples of n = 64 (Taulu, 2006). For the AEF dataset, we report results for AEFs evoked by left
auditory stimulation with pure tones of 500 Hz. The analysis window for source estimation was
chosen from 50 ms to 200 ms based on visual inspection of the evoked data to capture the dominant
N100m component, leading to T = 6. For the SEF dataset, we analyzed SEFs evoked by bipolar
electrical stimulation (0.2 ms in duration) of the left median nerve. To capture the main peaks of
the evoked response and exclude the strong stimulus artifact, the analysis window was chosen from
18 ms to 200 ms based on visual inspection of the sensor signal.

Preprocessing was done following the standard pipeline from the MNE software (Gramfort et al.,
2014). Baseline correction using pre-stimulus data (from -200 ms to 0 ms) was used. Epochs with
peak-to-peak amplitudes exceeding predefined rejection parameters (3 pT for magnetometers and
400 pT/m for gradiometers, and 150µV for EOG on AEF and VEF and 350µV for SEF) were
assumed to be affected by artifacts and discarded. This resulted in 55 (AEF), 67 (SEF) and 111 (SEF)
artifact-free measurements which were average to produce the target matrix Y. The gain matrix was
computed using a set of p = 7498 cortical locations, and a three-layer boundary element model.

G Related Work

The topic of high-dimensional inference has been addressed in many recent works. Yet, to the best
of our knowledge, none of this literature has been applied to the source localization problem we
consider here.

6https://github.com/mathurinm/CELER
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• The idea of associating clustering with high-dimensional inference can also be found
in recent works with application to genetic data: Bühlmann et al. (2013) has used a fixed
clustering step, which is made adaptive in Mandozzi and Bühlmann (2016). Our contribution
deviates from these works in two regards: unlike Bühlmann et al. (2013), we do not consider
that a fixed clustering, however good it is, indeed captures the essence of the problem: this
is why we resort to an ensemble of different clustering solutions. Unlike Mandozzi and
Bühlmann (2016), we do not try to narrow down the inference in a hierarchical fashion,
because we do not consider that source imaging can in effect be traced down to the vertex
level: given the difficulty of the source imaging problem, we find it more satisfactory to
outline a region of putative activity.

• Another family of inference methods based on sample splits has been introduced by Mein-
shausen et al. (2009): train data are used to select regions, test data to assess their statistical
significance. The choice of splits can be varied and aggregated upon to mitigate the impact
of arbitrary splits selection. However, data splitting has a high cost in terms of statistical
power, making these approaches weakly sensitive Taylor and Tibshirani (2015).

• An alternative method yielding family-wise error rate (FWER) control is the stability
selection method, that builds on bootstrapped randomized sparse regression Meinshausen
and Bühlmann (2010). Yet, this approach has been found too weakly sensitive and it has not
been considered in further statistical inference works, see e.g., Dezeure et al. (2015).

• Post-selection inference Taylor and Tibshirani (2015) is an approach that typically relies
on a sparse estimator (such as Lasso) and then assesses the significance of the selected
variables. It accounts for the selection in the inference process, avoiding the undesirable bias
of selecting and testing on the same data. However, we have not not found an implementation
that scales in a numerically sound way to the problem size that we are considering here:
thousand features, even after clustering.

• Knockoff inference (with or without clustering) is probably the most recent alternative
developed for high-dimensional inference (Barber and Candès, 2019): it consists in ap-
pending noisy copy of the problem features and selecting only variables that are much
more significantly associated than their noisy copy. While this approach is computationally
relevant for the problem at hand, it suffers from the arbitrary knockoff variable set used;
it yields a control of the false discovery rate of the detection problem, that is not directly
comparable with the family-wise error rate (FWER) considered here. FWER control is
possible with knockoff Janson and Su (2016), yet very weakly sensitive.
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H Supplementary figures

Figure 5: Illustrating spatial tolerance of size δ = 20 mm and δ = 40 mm. The true source in
red has a 10 mm radius (distance measured on the cortical surface) and the spatial tolerance extend
this region by 20 mm on the left side and 40 mm on the right side in yellow. The δ-FWER is the
probability of making false discoveries outside of the extended region. Then, a false discovery made
in the yellow region is not counted neither as an error nor a true positive.
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Figure 6: Illustrating correlation in MNE sample MEG data. (left): Distribution of the maximum
correlation between a feature (resp. cluster) and another connected feature (resp. cluster). (Top)
the maximum connected feature correlation is close to 0.98 in average. (Bottom) the maximum
connected cluster correlation is lower, close to 0.9 on average. Clustering improves conditioning
significantly. (right): The density of the inter feature correlation (top) looks similar to the density of
the inter cluster correlation (bottom). By focusing the extreme values of correlation, we see a little
decrease of extreme values for the clustered data.
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Figure 7: Spatial Dispersion (SD) histograms. (left): SD on a fixed time point (Hauk et al., 2011).
All methods lead to comparable spatial dispersion. (right): SD for desparsified multi-task Lasso
(d-MTLasso) with increasing time points. See Figure 2 for PLE histograms on the same experiments.
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Figure 8: Precision-Recall. See Figure 3 for δ−Precision-Recall curves computed on the same data.
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Figure 9: ecd-MTLasso empirical δ-FWER and precision recall for different choice of cluster
sizes. (left): Running the same simulation as in Sec. 3.2, we observe that the spatial tolerance δ can
be reduced to 20 mm by increasing the number of clusters up to 4000. With C = 1000 clusters (resp.
C = 2000, C = 4000), the average cluster diameter is around 18 mm (resp. 13 mm and 9 mm). It
turns out that the δ-FWER is controlled for around twice the diameter (if the compressed design
matrix verifies assumption A1). (right): We see that this decrease in spatial tolerance comes with
a price regarding support recovery: the precision-recall curve declines with when C is increased.
(both): Note that we need to set the hyper-parameter c that is used to compute the regularization
parameters α (see note coming with Equation (5)). We found empirically that it should be inversely
proportional to C: for C = 1000, c = 0.5%; for C = 2000, c = 0.25%; for C = 4000, c = 0.15%.
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Figure 10: Comparison on audio dataset on both hemispheres. From left to right are compared
sLORETA, d-MTLasso without AR modeling (noise is assumed non-autocorrelated), d-MTLasso
with an AR1 noise model and the ecd-MTLasso using also an AR1. The results correspond to auditory
(top) evoked fields. Colormaps are fixed across datasets and adjusted based on meaningful statistical
thresholds in order to outline FWER control issues.

Figure 11: Results on real data keeping only EEG sensors. Auditory activations (top) have
historically been hard to infer with EEG sensors: sLORETA produces only false discoveries while
ecd-MTL and d-MTL make no discoveries. In the visual experiment (bottom): sLORETA and
ecd-MTL produce expected patterns, d-MTL produces expected patterns plus one false discovery
in the frontal lobe. In our work, we have emphasized MEG experiments: they offer more sensors
compared to EEG leading to improved statistical power.
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