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Abstract

Neural architecture search (NAS) has demonstrated impressive performance in
automatically designing high-performance neural networks. The power of deep
neural networks is to be unleashed for analyzing a large volume of data (e.g.
ImageNet), but the architecture search is often executed on another smaller dataset
(e.g. CIFAR-10) to finish it in a feasible time. However, it is hard to guarantee that
the optimal architecture derived on the proxy task could maintain its advantages on
another more challenging dataset. This paper aims to improve the generalization of
neural architectures via domain adaptation. We analyze the generalization bounds
of the derived architecture and suggest its close relations with the validation error
and the data distribution distance on both domains. These theoretical analyses
lead to AdaptNAS, a novel and principled approach to adapt neural architectures
between domains in NAS. Our experimental evaluation shows that only a small
part of ImageNet will be sufficient for AdaptNAS to extend its architecture success
to the entire ImageNet and outperform state-of-the-art comparison algorithms.

1 Introduction
Neural architecture search (NAS) is to automate the design of neural architectures for networks.
Recently, convolutional neural networks (CNNs) designed by NAS methods have already reached
better performance than those manually designed ones on ImageNet. However, early NAS methods
are computationally intensive, because of their demand for training and evaluation of a large number
of architectures [20, 26]. This, therefore, makes it intractable to directly conduct the architecture
search on large-scale benchmarks like ImageNet. As a trade-off, many NAS methods search on proxy
tasks, such as CIFAR-10, and then retrain obtained architectures on ImageNet. However, even though
on CIFAR-10, it is common for most methods to cost thousands of GPU days.
In the past years, great efforts were undertaken to significantly reduce the architecture search cost.
Remarkably, the line of research on the differentiable manner for architecture search [17] have
reduced the search cost dramatically to several GPU days or several GPU hours on the CIFAR-10
dataset. DARTS [17] relaxes discrete NAS search space as continuous architecture parameters and
constructs a super network by weighted mixing of all candidate operations. In the super network,
network weights and architecture parameters can be jointly optimized with gradient descent. The
search cost of DARTS on CIFAR-10 is only 1 GPU day, but the parallel optimization of all candidate
operations demands large GPU memory. GDAS [7] tackles this issue by using a differentiable sampler
and sampling one operation per connection in each epoch. This dramatically reduces the usage of
GPU memory, and the search can be completed within about 4 to 5 GPU hours depending on the
setting. As GDAS reduces the width of the super network, P-DARTS [6] starts with a shallow super
network and progressively increases its depth. This method slightly increases the search cost to about
7 GPU hours but can reach a better test performance. Besides direct reducing the training cost, CARS
[24] proposes a novel efficient continuous evolutionary approach based on the historical evaluation.
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Similarly, PVLL-NAS [16] schedules their evaluation with a performance estimator, who samples
neural architectures for both architecture searching and iterative training of the estimator itself.
However, due to the inconsistent performance of architectures on different domains, searching on
proxy tasks and then reusing the obtained architectures on large-scale benchmarks has become a rut,
which may result in a huge generalization gap of the neural architecture on the two different domains.
This generalization gap could be either positive or negative, but reflecting in practice, it would cause
either omitting of good architectures or choosing of poor architectures and make the performance on
the desired domain uncontrollable.
A few attempts are trying to break out of the rut by directly executing the architecture search on
ImageNet. MnasNet [21] was established within the framework of reinforcement learning and
costed 288 TPU days for one search on ImageNet. By applying the differentiable NAS techniques,
ProxylessNAS [5] binarized architectures to boost search speed and reduced the search cost on
ImageNet to 8.33 GPU day, but it is still about 28 to 52 times slower than its counterparts [7, 6, 23, 25]
on CIFAR-10. NAS on CIFAR-10 is fast but deploying the searched architecture on ImageNet will
receive the accuracy fluctuation; directly searching on ImageNet is slow but its architecture accuracy
can be guaranteed. If it is infeasible to swallow the entire ImageNet, we ask whether a smaller part of
ImageNet on top of the efficient NAS on CIFAR-10 would rescue us from this dilemma.
In this paper, we consider the inconsistency in the generalization of architectures from a new
perspective of adapting neural architectures between domains. The proxy task such as CIFAR-10
for searching is considered as the source domain, and the large-scale benchmark such as ImageNet
to deploy searched architectures for testing or application is our aiming target domain. Firstly, the
relationship between the empirical source validation error and the expected target error of neural
architectures is analyzed. Since NAS approaches typically optimize network weights during the
training phase and then search for architectures during the validation phase, it is meaningful to find
a generalization bound by validation. Two versions of the generalization bound are proposed. One
associates with the source validation error, while another introduces an additional target validation
error calculated on a subset of target samples. Based on them, we propose a lightweight method to
explicitly minimize the cross-domain generalization gap of neural architectures during NAS. We
name it as Adaptable Neural Architecture Search (AdaptNAS). The generalisability and efficiency
of AdaptNAS are demonstrated with extensive experiments. On the three digits dataset, we show
that AdaptNAS generalizes better than baselines without generalization constraint. Then, large-scale
experiments are performed on CIFAR-10 and ImageNet and compared with different state-of-the-art
NAS methods that search either with proxy tasks or directly on ImageNet.

2 Related Work
Existing NAS methods with proxy typically use CIFAR-10 as a proxy task and directly generalize
their obtained architectures to ImageNet without any constraint. Early methods [20, 26] can easily
cost thousands of GPU days to find an architecture even on CIFAR-10. The emerging of differentiable
search methods, represented by DARTS [17], reduces search cost to one or several GPU days. A
variant of DARTS, GDAS [7], further reduces the search cost to several GPU hours by proposing
a differentiable architecture sampler. In terms of selection of the proxy task, P-DARTS [6] uses
CIFAR-100 as one of their proxy tasks. CIFAR-100 contains fine-grained categories but identical
sample size and number comparing to CIFAR-10 [14]. Thus, the search cost of P-DARTS on
CIFAR-10 and CIFAR-100 are similar (0.3 GPU days). FBNet [22] and HM-NAS [23] searches on a
subset of ImageNet with 100 classes rather than the entire 1000 classes. The 100-class ImageNet
can be considered as a new proxy task. ProxylessNAS [5] can directly search on the ImageNet to
avoid the gap in generalization, but the search cost increases to 8.33 GPU days. MdeNAS [25] also
directly searches on Imagenet, but they boost search speed by search with the MobileNetV2 [11] as a
backbone and reuse the structure found in [5] instead of search from scratch, which limits it potential.

3 Generalization Analysis for AdaptNAS
Let X be the input data space, Z be a latent representation space and Y be the label space. A
convolutional neural network (CNN) f : X ! Y can be disassembled into a representation mapping
R : X ! Z and a classification hypothesis h : Z ! Y . In general, h is usually a naive single layer
feed-forward network with weights wh, and R can have complex topology described by network
weights wR and the neural architecture A. The target of NAS is to find an optimum architecture
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A� 2 A that minimize the classification loss L(w�(A);A) = Exi�D[‘(f(xi; w�(A);A); yi)]:
A� = arg min

A
L(w�(A);A); (1)

where A is a predefined search space, D is a distribution over the input space X , ‘ is a loss function
and w�(A) is the optimal value of network weights w = fwR;whg depending on the current
architecture A. We consider the bi-level optimization form of NAS:

min
A

Lvalid(w�(A);A) (2)

s.t. w�(A) = arg min
w
Ltrain(w;A); (3)

where Ltrain and Lvalid are losses on the training distribution Dtrain and the held-out validation
distribution Dvalid, respectively. In such a bi-level form, w and A are optimized alternately with
Eqs. (3) and (2) until convergence or reach a maximum iteration number.
We define ProxyNAS as those existing NAS methods that conduct optimization on a relatively small
proxy task (e.g. CIFAR10) and evaluate the searched architectures on the large-scale task (e.g.
ImageNet). In this paper, we tend to revisit such a tradition of NAS training and evaluation from
the perspective of domain adaptation and propose the AdaptNAS. The smaller training data of the
architecture is taken as source domain, and we can also leverage a few data from the target domain
(e.g. ImageNet) to improve the generalization of the architecture.
Formally, a domain can be considered as a pair of a distribution D on input space X and a labeling
function f : X ! Y . We can thus define the source and target domains as hDS ; fSi and hDT ; fT i,
respectively. In this section, we first introduce a generalization bound in NAS constrained by
the source domain validation error and a domain distance. Then, we introduce the target domain
validation error into the boundary to utilize any accessible target domain information. Detailed proofs
are provided in the supplementary material.

3.1 Generalization Bounds via Validation of Source Domain
To quantify the generalization gap between domains, a domain distance measurement is necessary.
We use the A-distance [13] as the measurement. The A-distance is defined as follow:

Definition 1 (A-distance). Let D and D0 be distributions on X , and A be a collection of subsets of
X such that every A 2 A is measurable w.r.t D and D0. The A-distance between D and D0 is

dA(D;D0) := 2 sup
A2A
jPrD[A]� PrD0 [A]j; (4)

where PrD[A] is the probability of A under D.

The complexity of the A-distance can be limited by the symmetric difference hypothesis spaceH�H
[4]. For simplification, we discuss the binary classification scenario, where Y = f0; 1g. The theory
results can be easily generalized to the multi-class case. Under the binary setting, we haveH�H =
fh(z)� h0(z)jh; h0 2 Hg, where � is the XOR operation, andH is a hypothesis space. Based on
this, AH∆H can be defined as a collection of all subsets A such that A = fxjx 2 X ; h(x) 6= h0(x)g
for some h; h0 2 H. Letting A = AH∆H in Eq. 4, we can have the symmetric difference A-distance,
notated as dH∆H(D;D0). The advantage of using dH∆H(�; �) is that it satisfies:

8h; h0 2 H; j"S(h; h0)� "T (h; h0)j � 1

2
dH∆H(DS ;DT ); (5)

where "(�; �) measures the disagreement of two hypothesis. The measure in the source domain is
defined as "S(h; h0) = Ex�DS

[jh(x)� h0(x)j], and we use a similar definition for the target domain.
Similar to DS , DT , we notate the source and target latent distribution on Z as D̃S and D̃T . The
labelling functions from Z to X are represented by ~fS and ~fT , respectively. We define the expected
error of h in a domain S as the disagreement between h and ~fS , notated as "S(h) := "S(h; ~fS). The
similar notation is also used for the target domain. Then, Eq. 5 can lead to Lemma 1.

Lemma 1. [4] LetR be a representation functionR : X ! Z , and D̃S and D̃T be the source and
target distribution over Z , respectively. For h 2 H:

"T (h) � "S(h) +
1

2
dH∆H(D̃S ; D̃T ) + �; (6)

where � is combined error of the optimum hypothesis h� = arg minh2H "S(h) + "T (h) on both
domains: � = "S(h�) + "T (h�).
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Lemma 1 reveals that the cross-domain generalization gap is bounded by the expected source error and
theA-distance of latent distributions. This distance can be minimized by optimizing the representation
function R. In NAS, w = fwR;whg are optimized over the training data, while in the validation
phase, given the fixed w, the architecture A is further optimized to minimize the validation error (see
Eq. 2). We therefore proceed to extend the above analysis to the validation set. Let ŨS,train and
ŨS,valid be a training set and a held-out validation set of i.i.d. sample drawn from D̃S , respectively,
such that ŨS,train \ ŨS,valid = ?. The validation is of a subsetH0 ofH depending on ŨS,train but
is independent of ŨS,valid. The following theorem provides an analysis on the expected target error
in terms of the empirical source validation error on ŨS,valid and an empirical A-distance.

Theorem 2. Let m be the size of ŨS,valid, d0 be the VC-dimension ofH0, and ŨS and ŨT be sets of
unlabelled i.i.d. samples drawn from D̃S and D̃T , each with size m0. With probability at least 1� �,
for h 2 H0:

"T (h) � "̂S;valid(h) +
d0 logm� log �

3m
+

r
2(d0 logm� log �)

m

+
1

2
dH�H(eUS ; eUT ) + 4

r
d0 log(2m0) + log(4=�)

m0 + �:

(7)

Theorem 2 provides an empirical estimate of the cross-domain generalizability of architectures by
validation. The target expected error of an architecture A depends on two terms, the validation error
of the entire network (including bothR and h, but h is fixed during the validation) in source domain
and the A-distance of ŨS and ŨT generated by the neural architecture.

3.2 Generalization Bounds via a Hybrid Validation

In Theorem 2, ŨS,valid is requested to compute "̂S,valid(h). Besides the validation set on the source
domain, we could further have labeled samples from the target domain for the validation use in
practice. A hybrid validation set of m examples is therefore defined as the composition of �m source
examples and (1� �)m target examples, where � 2 [0; 1]. Validation errors on the source and target
domain are combined by weighted sum with � 2 [0; 1]:

"̂α,valid(h) = �"̂S,valid(h) + (1� �)"̂T,valid(h): (8)
The following lemma bounds the expected target error with the expected hybrid error. This bound
can be extended to the validation set as well.

Lemma 3. Let "α(h) be an expected hybrid error weighted by � 2 [0; 1] . For h 2 H:

"T (h) � "α(h) + �

(
1

2
dH∆H(D̃S ; D̃T ) + �

)
: (9)

By applying Lemma 3 to Theorem 2, we can have the following corollary.

Corollary 4. Let � 2 [0; 1] be the weight of the hybrid error, and � 2 [0; 1] be the ratio of i.i.d.
samples drawn from D̃S and D̃T in a held-out validation set. With probability at least 1 � �, for
h 2 H0:

"T (h) � "̂�;valid(h) +

�
�

�
+

1� �
1� �

� 
d0 logm� log �

3m
+

r
2(d0 logm� log �)

m

!

+ �

 
1

2
dH�H(eUS ; eUT ) + 4

r
d0 log(2m0) + log(4=�)

m0 + �

!
:

(10)

To utilize Corollary 4, � and � need to be determined. When � = 1 and the target validation error
is not considered, Corollary 4 will be reduced to Theorem 2. With � 2 (0; 1), we will introduce
both source and target samples for validation, and the generalizability of architectures could be
improved (see the � before A-distance). The selection of � is a trade-off. With a fixed source
validation set, a smaller � means more target samples and heavier computation cost. Besides, with a
� approaches 0 or 1, the source and target sample number becomes highly unbalanced and the factor
�=�+ (1��)=(1��) approaches infinite, which makes the architecture optimization unpredictable.
This therefore reminds us of carefully balancing the sample size in source and target domains. More
empirical discussions can be found in experiments.
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4 AdaptNAS Algorithm
Motivated by theorems in Section 3, we propose two versions of AdaptNAS. The former, AdaptNAS-
Source, following Theorem 2, optimizes network weights with source training samples and estimates
theA-distance in the training phase. In the searching phase, the architecture A is optimized to reduce
both the source validation loss and the A-distance. The latter, AdaptNAS-Combined, following
Corollary 4, uses a similar schema as AdaptNAS-S, but further considers a subset of target samples
to optimize both network weights and architectures by utilizing Eq. 8.
It is intractable to directly compute the A-distance, but we can approximate it with a domain
discriminator [3]. With a domain discriminator hd 2 H, we have:

dH�H(eUS ; eUT ) = 2

�
1� 2 min

hd2H
"̂d(hd)

�
; (11)

where "̂d(hd) = 1
2m0

∑2m0

i=1 jhd(zi)�yd,ij is the empirical discrimination error on zi 2 ŨS[ŨT , and
yd,i is the domain label. Although the optimal hd is normally unsolvable, the A-distance can still be
approximated arbitrarily well by optimizing it. An useful property of Eq. 11 is that dH∆H(ŨS ; ŨT ) /

1
minhd2H ε̂d(hd) . With such an observation, it is possible to learn a domain discriminator during NAS
and use adversarial learning to minimize theA-distance by maximizing discrimination error. In Adapt-
NAS, we first learn an hd to distinguish the latent representation produced byR in the training phase to
minimize a discrimination loss: Ld(hd; wR;A) = Exi�DS[DT

[‘(hd(R(xi; wR;A)); di)]. Then,
A ofR is optimized in the searching phase with an adversarial loss to maximize the discrimination
loss.
In AdaptNAS-S, the lower-level optimization in Eq. 3 can be reformed as Eq. 13, where
LS,train(h; wR;A) = Exi�DS;train

[‘(h(R(xi; wR;A)); yi)] is the source training loss. The simi-
lar notations are also used for the source validation loss and the target training and validation losses.
Similarly, the upper-level optimization in Eq. 2 can be reformed as Eq. 12.

min
A

LS;valid(h;wR;A)� Ld(hd;wR;A); (12)

s.t. max
hd

min
w;h

LS;train(h;wR;A)� Ld(hd;wR;A): (13)

However, the discriminator gradients at early stage could be noisy and will corrupt the entire network.
To control them in back-propagation, we apply a gradient reversal technique [8]. In the training phase,
with gradient reversal, h and hd are still updated with their own gradients, but wR is updated with
additional reversed discriminator gradients weighted by  as in Eq. 14. The weight term  2 [0; 1]
can be dynamically adjusted during optimization. In the searching phase, by utilizing differentiable
NAS [7, 17], architectures can be relaxed as continuous parameters and updated with adversarial
learning as in Eq. 15.

wR  wR � �
�
@LS;train(h;wR;A)

@wR
�  @Ld(hd;wR;A)

@wR

�
; (14)

A A � �
�
@LS;valid(h;wR;A)

@A
�  @Ld(hd;wR;A)

@A

�
: (15)

In AdaptNAS-C, we cannot simply replace LS(h; w;A) by Lα(h; w;A), because Corollary 4 has
already revealed that the A-distance term should also be weighted by �. We, therefore, rewrite the
optimization problem into the following form, where the source loss and discrimination loss are
weighted together:

min
A

� (LS;valid(h;wR;A)� Ld(hd;wR;A)) (16)
+ (1� �)LT;valid(h;wR;A);

s.t. max
hd

min
h;wR

� (LS;train(h;wR;A)� Ld(hd;wR;A)) (17)

+ (1� �)LT;train(h;wR;A):

Comparing to the origin bi-level optimization in Eqs. 2 and 3, AdaptNAS introduces an adversarial
loss to both levels, and the AdaptNAS-C version also introduces the target loss. This ensures the
generalizability of both levels. A general difficulty in the bi-level optimization setting is the upper-
level optimization highly depends on the lower-level one and is impacted by the quality of the
lower-level solution. Similarly, if the solution of lower-level problem has a large generalization gap,
it will be hard for the upper-level one to generalize well. The symmetrically constraint on both levels
can alleviate this issue.
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(a) MNIST (b) MNIST-M

(c) SVHN

Search Method Source MNIST MNIST MNIST-M
Target MNIST-M SVHN SVHN

Search on Source 98.56 94.70 95.28

AdaptNAS (ours) 98.75 95.63 95.48

Search on Target 98.61 95.60 95.60

(d) Test accuracy of obtained architectures on the target domain.
Figure 1: The generalisability of AdaptNAS. Figure (a), (b) and (c) shows sample images from each
domain. Table (d) shows test accuracy of obtained architectures on the target domain. The first row
corresponds to ProxyNAS method without generalization constraint. The last row is our aiming
performance. The middle row is our method.

A remaining problem is that for the hybrid loss calculation on CIFAR-10 and ImageNet, we cannot
directly use their labels. The reason is that to let the bound in Corollary 4 work, the hypothesis h
should be identical for both domains. In practice, the classifier depends on the dimension of output,
and there is a large gap between categories in CIFAR-10 and ImageNet (10 versus 1,000 different
classes). To bridge this gap, we apply self-supervised learning. In self-supervised learning, samples
are transformed and labeled based on some predefined rules. The labels are no longer correlated
to objects in samples but the rule we defined to transform the samples. Besides, self-supervised
learning has been demonstrated to learn feature mapping on one dataset and then well apply the
learned mapping to another dataset [10, 12]. To be specific, we utilize a rotation task [10] for its
impressive performance. In the rotation task, each sample in the dataset is rotated to different degrees
and labeled with them. We use four different degrees: 0�, 90�, 180� and 270�. We can therefore
learn a 4-class classification task with the identical categories on both CIFAR-10 and ImageNet.

5 Experiments
We perform extensive experiments on various domains to demonstrate the practical generalisability of
AdaptNAS. Firstly, we use three relatively small digits datasets to compare our result with the results
of searching on the source domain only and on the target domain directly. Then, we search with both
versions of our method under the standard NAS setting (i.e. with CIFAR-10 as the source domain
and ImageNet as the target domain) for multiple times with various hyperparameters to justify our
claims following Theorem 2 and 4. Finally, the obtained architectures with our optimal settings are
compared with the current state-of-the-arts.

5.1 Search Setting
Following many previous works [6, 7, 17, 25, 26], we use the NASNet search space [26]. There are 2
kinds of cells, including normal cells and reduction cells, and each cell has 7 nodes, including 2 input
nodes, 1 output node and 4 computation nodes. We use a set of 8 different candidate operations. The
source dataset, CIFAR-10, contains 50,000 samples in the training set. For target domain samples, we
construct a subset of 50,000 samples from ImageNet, containing 50 samples from each category, as
target samples that we have access to during searching. This is about 3.90% of the entire ImageNet.
More details of our experiments settings are available in the supplementary material.

5.2 Cross-Domain Generalization with AdaptNAS
We use three pairs of source and target domain of digits to demonstrate the generalisability of
AdaptNAS. The first pair is MNIST [15] and MNIST-M [9]. MNIST is a dataset of greyscale
handwritten digits (Figure 1(a)). MNIST-M modifies MNIST by blending greyscale images over
random patches of colour photos in BSDS500 [1] (Figure 1(b)). The blending introduces extra colour
and texture. In the second pair, we still use MNIST as the source domain, and the target domain
is SVHN [18], which includes natural images of street house numbers (Figure 1(c)). The last pair
still includes SVHN as the target domain, but the source domain is the more divergent MNIST-M.
Intuitively, the first setting is the simplest, the second one is the hardest, and the last one is moderate.
Figure 1(d) shows the test accuracy of all obtained architectures on the target domain. Our method
can consistently outperform the source only search method. It is also competitive to directly searching
on the target domain and can even occasionally outperform it. This is because we only remain archi-
tectures after search and retrain the network weights from scratch. It is possible for an architecture
whose generalisability is explicitly optimized to outperform another architecture searched on a single
domain.
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Figure 2: search curves

5.3 Better Generalization with The Hybrid Loss
Firstly, we test different parameters for the AdaptNAS-C, including � and �. We use 5 differ-
ent values for � from 0 to 1 with an interval of 0:25. When � = 1 and only the source loss
is considered, AdaptNAS-C becomes AdaptNAS-S, which is identical to the first row of Table
2. A relatively new case is when � = 0, and only the target loss is considered. We also
use 3 different values for �, including 0:50, 0:83 and 0:98. Table 1 shows the validation error

Table 1: Performance of various AdaptNAS-C set-
tings.

� �
Source Err. (%)

(CIFAR-10)
Target Err. (%)

(ImageNet)
Valid Test Valid Test

0.00 0.50 49.26 3.00 42.52 24.5
0.25 0.50 30.00 2.97 40.13 24.2
0.50 0.50 25.16 2.50 40.13 24.5
0.75 0.50 22.78 2.62 42.41 25.1
1.00 0.50 23.15 2.53 55.37 25.4

0.00 0.83 52.19 3.21 53.65 25.5
0.25 0.83 38.06 3.17 51.56 25.0
0.50 0.83 33.82 2.95 49.86 24.7
0.75 0.83 28.68 3.00 54.17 25.5
1.00 0.83 23.89 2.98 56.39 25.8

0.00 0.98 74.80 3.91 69.65 29.5
0.25 0.98 67.31 3.66 70.90 26.5
0.50 0.98 51.93 3.56 64.25 25.8
0.75 0.98 40.68 3.02 62.75 25.1
1.00 0.98 30.15 2.93 61.85 25.7

during search and the test error of retraining on
CIFAR-10 and the full ImageNet. In the first
group where � = 0:50, the source and target do-
main has the same number of samples (50,000
samples from each domain). With the extreme
setting that � = 0, the performance on CIFAR-
10 is the worst. The target error is same to the
one with � = 0:50 but is lower then the one
with � = 0:25. Although a decent performance
might be achieved by solely using target loss if
there are sufficient target samples, if there are
increasingly few target samples (e.g. the sec-
ond group where � = 0:83 and the third group
where � = 0:98), the effect of using domain dis-
criminator loss can be even more remarkable. In
the second group, the number of target samples
is decreased to 10,000, and in the third group,
the number is further decreased to 1,000. With
less target samples, using the hybrid loss can
improve the target domain performance by up
to 4:4%.

Table 2: Compare different versions of AdaptNAS.

Hybrid Loss Source Err. (%)
(CIFAR-10)

Target Err. (%)
(ImageNet)Train Search

N N 2.77 25.3
N Y 2.84 24.8
Y Y 2.50 24.5

We further compare AdaptNAS-S and C. When
we introduce the target loss to AdaptNAS-C,
we symmetrically introduce it to training and
searching phase, because the upper-level opti-
mization highly depends on the lower-level one.
Despite that, we explore one more setting, where
the target loss is solely introduce to the search-
ing phase. Table 2 shows the test error of retraining. By using hybrid loss, the target error of
architectures decreases. Even the hybrid loss is only used in searching, the improvement in target
domain is remarkable. By using hybrid loss in both training and searching phase, the lowest target
error is reached.

5.4 Gradient Reversal Scheduler in Adversarial Learning
We compare two different schedulers for  in Eqs. (14) and (15). An exponential scheduler is
proposed by Ganin et al.[8], which updates  by:

p =
2

1 + exp(�10 � p)
� 1; (18)

where p 2 [0; 1] is the training procedure calculated by dividing the current epoch by the total number
of epoch. However, as shown by the blue dashed line in Figure 2(a), the exponential scheduler rises
too fast. We also test a cosine-based scheduler, which rises slower:

p =
1� cos(p � �)

2
(19)
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Table 4: Comparison with state-of-the-art NAS methods searching on different domain. For error
rates on CIFAR-10, if a paper provides results with cutout, we use that version, because cutout always
yield their best performance, and we use it too. On ImageNet, cutout is normally not used.

Domain Method GPU
Days

CIFAR-10 ImageNet
Params

(M)
Err.
(%)

Params
(M)

+�
(M)

Err. (%)
Top-1 Top-5

CIFAR-10

NASNet-A [26] 2K 3.3 2.65 5.3 564 26.0 8.4
ENAS (micro) [19] 0.45 4.6 2.89 - - - -
DARTS (2nd order) [17] 1 3.3 2.76�0.09 4.7 574 26.7 8.7
GDAS [7] 0.21 3.4 2.93 5.3 581 26.0 8.5
P-DARTS [6] 0.3 3.4 2.50 4.9 557 24.4 7.4
Proxyless-G [5] 4.0 5.7 2.08 - - - -
HM-NAS (2nd order) [23] 1.4 1.8 2.41�0.05 - - - -
MdeNAS [25] 0.16 3.6 2.55 6.1 �600 25.5 7.9

CIFAR-100 P-DARTS [6] 0.3 3.6 2.62 5.1 577 24.7 7.5

ImageNet1

MnasNet-A3 [21] 3.8K2 - - 5.2 403 23.3 6.7
FBNet-C3 [22] 9 - - 5.5 375 25.1 -
Proxyless-R (Mobile) [5] 8.3 - - - - 25.4 7.8
Proxyless (GPU) [5] 8.3 - - 7.1 465 24.9 7.5
HM-NAS3 [23] �5 - - 3.6 482 26.2 -
MdeNAS (CPU)4 [25] 2 - - - �600 24.8 -
MdeNAS (GPU)4 [25] 2 - - - �600 25.9 -

Cross-Domain

AdaptNAS-S (Rot-1) 0.5 3.6 2.59 5.2 575 24.7 7.6
AdaptNAS-S (Rot-4) 1.8 3.5 2.77 5.0 552 25.3 7.8
AdaptNAS-C (Rot-1) 0.7 3.9 2.72 5.4 603 24.3 7.4
AdaptNAS-C (Rot-4) 2.0 3.7 2.50 5.3 583 24.2 7.4

1 Include methods using subset of ImageNet.
2 MnasNet takes 4.5 days on 64 TPUv2 for one search. The GPU days is estimated by [22].
3 FBNet and HM-NAS searches on a subset of ImageNet with 100 classes.
4 MdeNas searches with the MobileNetV2 [11] as backbone and accelerated by the structure in [5].

where the definition of p is the same as above. Both schedulers are experimented with AdaptNAS-S,
which does not consider the target domain loss, to emphasize the impact of the discriminator.

Table 3: Test error of searching with different 
schedulers.

Scheduler Source Err. (%)
(CIFAR-10)

Target Err. (%)
(ImageNet)

Exponential 2.93 25.1

Cosine 2.77 25.3

Figure 2 shows accuracy curves during search.
We also retrain obtained architectures on CIFAR-
10 and the entire ImageNet after search (Table
3). As shown in Figure 2(a), the initial accu-
racy of both discriminators is similar, and the
one with an exponential scheduler immediately
drops, while the one with cosine scheduler can
achieve relatively high accuracy, and then de-
clines as  increases. Common sense is a strong
discriminator usually leads to small loss and vanishing gradients [2], which makes the network hard to
learn. This is verified by Figure 2(b) and 2(c). Although the cosine scheduler corresponds to a better
performance in the source domain, its target domain performance is overtaken by the exponential
scheduler, which means the network trained with exponential generalized better. In Table 3, the test
performance by retraining also shows the same conclusion. When the cosine scheduler is used, the
error is low on CIFAR-10 but is high on ImageNet which indicates the architecture is not adapted
successfully.

5.5 Comparison with State-of-the-arts
Table 4 compares AdaptNAS with current state-of-the-art NAS methods, including methods both
searching with proxy tasks or directly searching on ImageNet. We notice one drawback of using
self-supervised learning is it dramatically increases the searching time. In the rotation task, where
we rotate an image to 4 different degrees, the sample number increases 4 times. To balance the
performance and efficiency trade-off, we add a simplified Rot-1 setting, where each sample is
randomly rotated to only 1 of 4 degrees in each epoch. The origin task is then notated as Rot-4.
Comparing to methods searching on CIFAR-10, our method can reach lower ImageNet top-1 error
and competitive CIFAR-10 error. The simplified AdaptNAS-S Rot-1 is our fastest setting and is
even faster than several differentiable NAS methods on CIFAR-10 including DARTS, HM-NAS, and
Proxyless-G. Our best top-1 error on ImageNet is reached by AdaptNAS-C with Rot-4, which costs
2 GPU days for searching. Even it is slower than many ProxyNAS methods, it is faster than most
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NAS methods that directly search on ImageNet, including the ones using a subset of ImageNet. Only
MdeNAS, which searches with acceleration, can reach a similar search cost.

6 Conclusion
In this paper, the generalization issue in ProxyNAS is studied, and two versions of generalization
bound are proposed. Motivated by the generalization bound, we design a AdaptNAS method to find
architectures with better generalizability. We provide a new perspective in NAS: instead of direct
searching on ImageNet or its subset, optimizing the generalizability of architectures by adding domain
distance constraint during the search can reach better performance with lower computation cost.
Extensive experiments on CIFAR-10 and ImageNet demonstrate that AdaptNAS is a more affordable
searching method with more controllable generalizability comparing to the current state-of-the-art
proxy or proxyless NAS methods.

Broader Impact
This paper provides a novel perspective of cross-domain generalization in neural architecture search
towards the efficient design of neural architectures with strong generalizability. This will lead to a
better understanding of the generalizability of neural architectures. The proposed method will be
used to design neural architectures for computer vision tasks with affordable computation cost.
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