
Leader Stochastic Gradient Descent for Distributed
Training of Deep Learning Models

(Supplementary Material)

Abstract
This Supplement presents additional details in support of the full article. These
include the proofs of the theoretical statements from the main body of the paper
and additional theoretical results. We also provide a toy illustrative example of the
difference between LSGD and EASGD. Finally, the Supplement contains detailed
description of the experimental setup and additional experiments and figures to
provide further empirical support for the proposed methodology.

6 LGD versus EAGD: Illustrative Example

Figure 7: Left: Trajectories of variables (x,y) during optimization. The dashed lines represent the
local minima. The red and blue circles are the start and end points of each trajectory, respectively.
Right: The value of the objective function L(x, y) for each worker during training.

We consider the following non-convex optimization problem:

min
x,y

L(x, y), where L(x, y) =
sin(

√
x2 + y2 · π)√
x2 + y2 · π

.

12



Both methods use 4 workers with initial points (−6,−4), (−15,−18), (20, 11) and (17, 8). The
communication period is set to 1. The learning rate for both EAGD and LGD equals 0.1. Furthermore,
EAGD uses β = 0.43 and LGD uses λ = 0.1.

Table 1 captures optima obtained by different methods.

Optimizer L(x, y)
EAGD -0.0912
LGD -0.2172

Table 1: Optimum L(x∗, y∗) recovered by EAGD and LGD.

Figure 7 captures the optimization trajectories of EAGD and LGD algorithms. Clearly, EAGD suffers
from the averaging policy, whereas LGD is able to recover a solution close to the global optimum.

7 Proofs of Theoretical Results

We provide omitted proofs from the main text.

7.1 Definitions and Notation

Recall that the objective function of Leader (Stochastic) Gradient Descent (L(S)GD) is defined as

min
x1,...,xp

L(x1, . . . , xp) :=

p∑
i=1

f(xi) +
λ

2
‖xi − x̃‖2 (6)

where x̃ = arg min{f(x1), . . . , f(xp)}. An L(S)GD step is a (stochastic) gradient step applied to L.
Writing z = x̃ at a particular (x1, . . . , xn), the update in the variable xi is

xi+ = xi − η(∇f(xi) + λ(xi − z))

Observe that this reduces to a (S)GD step for the variable which is the leader.

Practical variants of the algorithm do not communicate the updated leader at every iteration. Thus, in
our analysis, we will generally take z to be an arbitrary guiding point, which is not necessarily the
minimizer of x1, . . . , xp, nor even satisfy f(z) ≤ f(xi) for all i. The required properties of z will be
specified on a result-by-result basis.

When discussing the optimization landscape of LSGD, the term ‘LSGD objective function’ will refer
to (6) with x̃ defined as the argmin.

Communication periods are sequences of steps where the leader is not updated. We introduce the
notation xk,j for the j-th step in the k-th period, where the leader z is updated only at the beginning
of each period. We write bi(k) for the number of steps that xi takes during the k-th period. The
standard LSGD defined above has bi(k) = 1 for all i, k, in which case xik,1 = xik. In addition, let
x̃k = argmin{f(x1

k,1), . . . , f(xpk,1)}, the leader for the k-th period.

7.2 Stationary Points of EASGD

The EASGD [1] objective function is defined as

min
x1,...,xp,x̃

L(x1, . . . , xp, x̃) :=

p∑
i=1

f(xi) +
λ

2
‖xi − x̃‖2. (7)

Observe that unlike LSGD, x̃ is a decision variable of EASGD. A stationary point of EASGD is a
point such that∇L(x1, . . . , xp, x̃) = 0.

Proposition 8. There exists a Lipschitz differentiable function f : R → R such that for every
0 < λ ≤ 1, there exists a point (xλ, yλ, 0) which is a stationary point of EASGD with parameter λ,
but none of {xλ, yλ, 0} is a stationary point of f .

13



Proof. Define f(x) by

f(x) =

 ex+1 if x < −1
p(x) if − 1 ≤ x ≤ 1
e−x+1 if x > 1

where p(x) = a6x
6 +. . .+a1x+a0 is a sixth-degree polynomial. For f to be Lipschitz differentiable,

we will select p(x) to make f twice continuously differentiable, with bounded second derivative.
To make f twice continuously differentiable, we must have p(1) = 1, p′(1) = −1, p′′(1) = 1 and
p(−1) = −1, p′(−1) = 1, p′′(−1) = −1. Since we aim to have f ′(0) 6= 0, we also will require
f ′(0) = p′(0) = 1. The existence of p is equivalent to the solvability of a linear system, which is
easily checked to be invertible. Thus, we deduce that such a function f exists.

It remains to show that for any 0 < λ ≤ 1, there exists a stationary point (x, y, 0) of EASGD. Set
x = −y. The first-order condition yields f ′(x) + λx = 0. Since λ ≤ 1, we have λ(1) + f ′(1) ≤ 0.
For x ≥ 1, f ′(x) = −e−x+1 is an increasing function, so f ′(x) + λx is increasing, and we deduce
that there exists a solution yλ ≥ 1 with λyλ + f ′(yλ) = 0. By symmetry, −yλ ≤ −1 satisfies
f ′(−yλ) + λ(−yλ) = 0, since f ′(x) = ex+1 for x ≤ −1. Hence, (−yλ, yλ, 0) is a stationary point
of EASGD, but none of {−yλ, yλ, 0} are stationary points of f .

7.3 Technical Preliminaries

Recall the statement of Assumption 1:

Assumption 1 f is M -Lipschitz-differentiable and m-strongly convex, which is to say, the gradient
∇f satisfies ‖∇f(x)−∇f(y)‖ ≤M‖x− y‖, and f satisfies

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖2.

We write x∗ for the unique minimizer of f , and κ := M
m for the condition number of f .

We will frequently use the following standard result.

Lemma 9. If f is M -Lipschitz-differentiable, then

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
‖y − x‖2.

Proof. See [30, eq. (4.3)].

Lemma 10. Let f be m-strongly convex, and let x∗ be the minimizer of f . Then

f(w)− f(x∗) ≤ 1

2m
‖∇f(w)‖2 (8)

and
f(w)− f(x∗) ≥ m

2
‖w − x∗‖2 (9)

Proof. Equation (8) is the well-known Polyak-Łojasiewicz inequality. Equation (9) follows from the
definition of strong convexity, and∇f(x∗) = 0.

Lemma 11. Let f be M -Lipschitz-differentiable. If the gradient descent step size η < 2
M , then

‖∇f(x)‖2 ≤ α(f(x)− f(x+)), where α = 2
η(2−ηM) .

Proof. By Theorem 9,

f(x+) ≤ f(x)− η‖∇f(x)‖2 +
η2

2
M‖∇f(x)‖2

= f(x)− η

2
(2− ηM)‖∇f(x)‖2

Rearranging yields the desired result.

14



7.4 Proofs from Section 3.1.1

Lemma 12 (One-Step Descent). Let f satisfy Assumption 1. Let g̃(x) be an unbiased estimator for
∇f(x) with Var(g̃(x)) ≤ σ2 + ν‖∇f(x)‖2. Let x be the current iterate, and let z be another point,
with δ := x− z. The LSGD step x+ = x− η(g̃(x) + λ(x− z)) satisfies:

Ef(x+) ≤ f(x)− η

2
(1− ηM(ν + 1))‖∇f(x)‖2 − η

4
λ(m− 2ηMλ)‖δ‖2 (10)

− η
√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖ − ηλ(f(x)− f(z)) +

η2

2
Mσ2

where the expectation is with respect to g̃(x), and conditioned on the current point x. Hence, for
sufficiently small η, λ with η ≤ (2M(ν + 1))−1 and ηλ ≤ (2κ)−1, η

√
λ ≤ (κ

√
2m)−1,

Ef(x+)− f(x∗) ≤ (1−mη)(f(x)− f(x∗))− ηλ(f(x)− f(z)) +
η2M

2
σ2 (11)

Proof. The proof is similar to the convergence analysis of SGD. We apply Theorem 9 to obtain

f(x+) ≤ f(x)− η∇f(x)T (g̃(x) + λδ) +
η2

2
M‖g̃(x) + λδ‖2.

Taking the expectation and using Eg̃(x) = ∇f(x),

Ef(x+) ≤ f(x)− η‖∇f(x)‖2 − ηλ∇f(x)T δ +
η2λ2

2
M‖δ‖2 + η2λM∇f(x)T δ +

η2

2
ME[g̃(x)T g̃(x)]

Using the definition of m-strong convexity, we have f(z) ≥ f(x)−∇f(x)T δ+ m
2 ‖δ‖

2, from which
we deduce that −∇f(x)T δ ≤ −(f(x)− f(z) + m

2 ‖δ‖
2). Substituting this above, and splitting both

the terms η‖∇f(x)‖2, η2mλ‖δ‖
2 in half, we obtain

Ef(x+) = f(x)− η

2
‖∇f(x)‖2 +

η2

2
ME[g̃(x)T g̃(x)]

− η

4
mλ‖δ‖2 +

η2

2
λ2M‖δ‖2

− η

2
‖∇f(x)‖2 − η

4
mλ‖δ‖2 + η2λM∇f(x)T δ

− ηλ(f(x)− f(z))

We proceed to bound each line. For the first line, the standard bias-variance decomposition yields

E[g̃(x)T g̃(x)] ≤ (ν + 1)‖∇f(x)‖2 + σ2

and so we have

−η
2
‖∇f(x)‖2 +

η2

2
ME[g̃(x)T g̃(x)] ≤ −η

2
(1− ηM(ν + 1))‖∇f(x)‖2 +

η2

2
Mσ2.

For the second line, we obtain

−η
4
mλ‖δ‖2 +

η2

2
λ2M‖δ‖2 ≤ −η

4
λ(m− 2ηMλ)‖δ‖2.

For the third line, we apply the inequality a2 + b2 ≥ 2ab to obtain
η

2
‖∇f(x)‖2 +

η

4
mλ‖δ‖2 ≥ η√

2

√
mλ‖∇f(x)‖‖δ‖.

Using the Cauchy-Schwarz inequality, we then obtain

−η
2
‖∇f(x)‖2 − η

4
mλ‖δ‖2 + η2λ∇Mf(x)T δ ≤ −η

√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖.

Combining these inequalities yields the desired result.

15



Theorem 13. Let f satisfy Assumption 1. Suppose that the leader zk is always chosen so that
f(zk) ≤ f(xk). If η, λ are fixed so that η ≤ (2M(ν + 1))−1 and ηλ ≤ (2κ)−1, η

√
λ ≤ (κ

√
2m)−1,

then lim sup
k→∞

Ef(xk) − f(x∗) ≤ 1
2ηκσ

2. If η decreases at the rate ηk = Θ( 1
k ), then Ef(xk) −

f(x∗) = O( 1
k ).

Proof. This result follows (11) and Theorems 4.6 and 4.7 of [30].

7.5 Proofs from Section 3.1.2

Theorem 14. Let f satisfy Assumption 1. Suppose that η, λ are small enough that ηλ ≤ 1 and
η ≤ (2M(ν + 1))−1, ηλ ≤ (2κ)−1, η

√
λ ≤ (κ

√
2m)−1. If f(x) ≤ f(z), then Ef(x+) ≤ f(z) +

1
2η

2Mσ2.

Proof. This follows from (13), by combining f(x)− ηλ(f(x)− f(z)), and using f(z) ≥ f(x).

Theorem 15. Let f be m-strongly convex, and let x∗ be the minimizer of f . Fix a constant λ and
any point z, and define the function ψ(x) = f(x) + λ

2 ‖x− z‖
2. Since ψ is strongly convex, it has a

unique minimizer w. The minimizer w satisfies

f(w)− f(x∗) ≤ λ

m+ λ
(f(z)− f(x∗)) (12)

and5

‖w − x∗‖2 ≤ λ2

m(m+ λ)
‖z − x∗‖2 (13)

Proof. The first-order condition for w implies that ∇f(w) + λ(w − z) = 0, so λ2‖w − z‖2 =
‖∇f(w)‖2. Combining this with the Polyak-Łojasiewicz inequality, we obtain

λ

2
‖w − z‖2 =

1

2λ
‖∇f(w)‖2 ≥ m

λ
(f(w)− f(x∗))

We have ψ(w) ≤ ψ(z) = f(z), so f(w) − f(x∗) ≤ f(z) − f(x∗) − λ
2 ‖w − z‖

2. Substituting,
f(w)− f(x∗) ≤ f(z)− f(x∗)− m

λ (f(w)− f(x∗)), which yields the first inequality.

We also have ψ(w) = f(w)+ λ
2 ‖w−z‖

2 ≤ ψ(x∗) = f(x∗)+ λ
2 ‖x

∗−z‖2, whence f(w)−f(x∗) ≤
λ
2 (‖x∗ − z‖2 − ‖w − z‖2). Hence, we have

f(w)− f(x∗) ≤ λ

2
(‖x∗ − z‖2 − ‖w − z‖2)

≤ λ

2
‖z − x∗‖2 − m

λ
(f(w)− f(x∗))

so f(w) − f(x∗) ≤ λ2

2(m+λ)‖z − x
∗‖2. Finally, by Theorem 10, f(w) − f(x∗) ≥ m

2 ‖w − x
∗‖2,

which yields the result.

7.6 Proofs from Section 3.1.3

We first present two lemmas which consider the problem of selecting the minimizer from a collection,
based on a single estimate of the value of each item.
Lemma 16. Let µ1 ≤ µ2 ≤ . . . ≤ µp. Suppose that Y1, . . . , Yp is a collection of random variables
with EYi = µi and Var(Yi) ≤ σ2. Let µ̃ = µm where m = argmin{Y1, . . . , Yp}. Then

Pr(µ̃ ≥ µk) ≤ 4σ2

p∑
i=k

1

(µi − µ1)2

Therefore, for any a ≥ 0,
Pr(µ̃ ≥ µ1 + a) ≤ 4σ2 p

a2
.

5If we also assume that f is Lipschitz-differentiable (that is,∇2f(x) �MI), then we can obtain a similar
inequality to the second directly from the first, but this is generally weaker than the bound given here.

16



Proof. In order for µm ≥ µk, we must have Yj ≤ Y1 for some j ≥ k. Thus, {µ̃ ≥ µk} is a subset of
the event {Y1 ≥ min{Yk, . . . , Yp}}. Taking the union bound,

Pr(Y1 ≥ min{Yk, . . . , Yp}) ≤
p∑
i=k

Pr(Y1 ≥ Yi)

Applying Chebyshev’s inequality to Y1 − Yi, and noting that Var(Y1 − Yi) ≤ 4σ2 (if Y1, Yi are
independent, then this can be tightened to 2σ2), we have

Pr(Y1 − Yi ≥ 0) ≤ Pr(|Y1 − Yi − (µi − µ1)| ≥ µi − µ1) ≤ 4σ2

(µi − µ1)2
.

Lemma 17. Let µ̃ be defined as in Theorem 16. Then

Eµ̃− µ1 ≤ 4
√
pσ

Proof. Recall that the expected value of a non-negative random variable Z can be expressed as
EZ =

∫∞
0

Pr(Z ≥ t)dt. We apply this to the variable µ̃ − µ1. Using Theorem 16, we obtain, for
any a > 0,

Eµ̃− µ1 =

∫ ∞
0

Pr(µ̃− µ1 ≥ t)dt =

∫ a

0

Pr(µ̃− µ1 ≥ t)dt+

∫ ∞
a

Pr(µ∗ − µ1 ≥ t)dt

≤ a+

∫ ∞
a

Pr(µ̃− µ1 ≥ t)dt

≤ a+

∫ ∞
a

4σ2 p

t2
dt = a+ 4σ2 p

a

The AM-GM inequality implies that a+ 4σ2 p
a ≥ 4

√
pσ, with equality when a = 2

√
pσ.

We now apply this to stochastic leader selection in LSGD, where µi corresponds to the true value
f(xi), and Yi is a function estimator.
Lemma 18. Let f satisfy Assumption 1. Suppose that LSGD has a gradient estimator with
Var(g̃(x)) ≤ σ2 + ν‖∇f(x)‖2 and selects the stochastic leader with a function estimator f̃(x)

with Var(f̃(x)) ≤ σ2
f . Then, taking the expectation with respect to the gradient estimator and the

stochastic leader z, we have

Ef(x+) ≤ f(x) + 4ηλ
√
pσf +

η2

2
Mσ2

− η

2
(1− ηM(ν + 1))‖∇f(x)‖2 − η

4
λ(m− 2ηMλ)‖δ‖2 − η

√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖

Proof. From Theorem 12, we obtain

Ef(x+) ≤ f(x)− η

2
(1− ηM(ν + 1))‖∇f(x)‖2

− η

4
λ(m− 2ηMλ)‖δ‖2

− η
√
λ√
2

(
√
m− ηM

√
2λ)‖∇f(x)‖‖δ‖

− ηλ(f(x)− Ef(z)) +
η2

2
Mσ2

Note that in the last line, we have Ef(z) because z is now stochastic. Applying Theorem 17 to
the stochastic leader, we obtain Ef(z) ≤ f(ztrue) + 4

√
pσf . The true leader satisfies f(ztrue) ≤

f(x) by definition. Hence f(x) − Ef(z) ≥ f(x) − f(ztrue) − 4
√
pσf ≥ −4

√
pσf , and so

−ηλ(f(x)− Ef(z)) ≤ 4ηλ
√
pσf .

17



Theorem 19. Let f satisfy Assumption 1. If η, λ are fixed so that η ≤ (2M(ν + 1))−1 and
ηλ ≤ (2κ)−1, η

√
λ ≤ (κ

√
2m)−1, then lim sup

k→∞
Ef(xk) − f(x∗) ≤ 1

2ηκσ
2 + 4

mλ
√
pσf . If η, λ

decrease at the rate ηk = Θ( 1
k ), λk = Θ( 1

k ), then Ef(xk)− f(x∗) = O( 1
k ).

Proof. Interpret the term 4ηλ
√
pσf as additive noise. Note that if ηk, λk = Θ( 1

k ), then ηλ = Θ( 1
k2 ).

The proof is then similar to Theorem 13 and follows from Theorems 4.6 and 4.7 of [30].

7.7 Proofs from Section 3.2

Theorem 20. Let Ωi be the set of points (x1, . . . , xp) where xi is the unique minimizer among
(x1, . . . , xp)6. Let x∗ = (w1, . . . , wp) ∈ Ωi be a stationary point of the LGD objective function (6).
Then ∇f i(wi) = 0.

Proof. This follows from the fact that on Ωi, ∂L
∂xi = ∇f i(xi).

Lemma 21. Let f be M -Lipschitz-differentiable. Let x̃k denote the leader at the end of the k-th
period. If the LGD step size is chosen so that ηi < 2

M , then f(x̃k) ≤ f(x̃k−1).

Proof. Assume that x̃k−1 = x1
k−1. Since x1 is the leader during the k-th period, the LGD steps for

x1 are gradient descent steps. By Theorem 11, η1 has been chosen so that gradient descent on f is
monotonically decreasing, so we know that f(x1

k) ≤ f(x1
k−1). Hence f(x̃k) ≤ f(x1

k) ≤ f(x1
k−1) =

f(x̃k−1).

Theorem 22. Assume that f is bounded below and M -Lipschitz-differentiable, and that the LGD
step sizes are selected so that ηi < 2

M . Then for any choice of communication periods, it holds that
for every i such that xi is the leader infinitely often, lim infk ‖∇f(xik)‖ = 0.

Note that there necessarily exists an index i such that xi is the leader infinitely often.

Proof. Without loss of generality, we assume it to be x1. Let τ(1), τ(2), . . . denote the periods
where x1 is the leader, with b(k) steps in the period τ(k). By Theorem 21, f(x1

τ(k+1)) ≤ f(x1
τ(k)),

since the objective value of the leaders is monotonically decreasing. Now, by Theorem 11, we
have

∑b(k)−1
i=0 ‖∇f(x1

τ(k),i)‖
2 ≤ α(f(x1

τ(k),0)−f(x1
τ(k),b(k))) = α(f(x1

τ(k))−f(x1
τ(k+1))). Since

f is bounded below, and the sequence {f(x1
τ(k))} is monotonically decreasing, we must have

f(x1
τ(k))− f(x1

τ(k+1))→ 0. Therefore, we must have ‖∇f(x1
τ(k),i)‖ → 0.

7.8 Proofs from Section 3.3

The cone with center d and angle θc is defined to be

cone(d, θc) = {x : xT d ≥ 0, θ(x, d) ≤ θc}.

We record the following facts about cones which will be useful.

Proposition 23. Let C ⊆ cone(d, θc). If y is a point such that sy ∈ C for some s ≥ 0, then
y ∈ cone(d, θc).

Proof. This follows immediately from the fact that θ(y, d) = θ(sy, d) for all s ≥ 0.

Proposition 24. Let C = cone(d, θc) with θc > 0. The outward normal vector at the point x ∈ ∂C
is given by Nx = x − ‖x‖

cos(θc)‖d‖d. Moreover, if v satisfies NT
x v < 0, then for sufficiently small

positive λ, x+ λv ∈ cone(d, θc).

6The uniqueness of the minimizer on Ωi is only to avoid ambiguities in arg min.

18



Proof. The first statement follows from the second, by the supporting hyperplane theorem.

Write γ = cos(θc). LetNx = x− ‖x‖γ‖d‖d, and let v be a unit vector withNT
x v = xT v− ‖x‖γ‖d‖d

T v < 0.
The angle satisfies

cos(θ(x+ λv, d)) =
dT (x+ λv)

‖d‖‖x+ λv‖
=

dTx+ λdT v

‖d‖
√
‖x‖2 + λ2‖v‖2 + 2λxT v

Differentiating, the numerator g(λ) of ∂
∂λ cos(θ(x+ λv, d)) is given by

g(λ) = ‖x‖2vT d− xT vxT d+ λ · (2vT dxT d+ ‖v‖2(λv − x)T d− λ‖v‖2vT d− xT vvT d)

Evaluating at λ = 0 and using xT v − ‖x‖
γ‖d‖d

T v < 0, we obtain

g(0) = ‖x‖2vT d− xT vxT d = ‖x‖2vT d− xT v(γ‖x‖‖d‖)
= ‖x‖(‖x‖vT d− γ‖d‖xT v) > 0.

Therefore, for small positive λ, we have cos(θ(x + λv, d)) > cos(θ(x, d)) = γ, so x + θv ∈
cone(d, θc).

Proposition 25. Let x be any point such that θx = θ(dG(x), dN (x)) > 0, and let E = {z : f(z) ≤
f(x)}. Let C = cone(−x, θx), and let Nx be the outward normal −∇f(x) + ‖∇f(x)‖

cos(θx)‖x‖x of the
cone C at the point −∇f(x). Then⋃

λ>0

Iθ(x, λ) ⊇ E ∩ {z : NT
x z < NT

x x} (14)

and consequently, limλ→0 Vol(Iθ(x, λ)) ≥ 1
2 Vol(E).

Proof. First, note that if λ2 ≤ λ1, then for all z with −∇f(x) + λ1z ∈ C, we also have −∇f(x) +
λ2z ∈ C by the convexity of C. Therefore Iθ(x, λ2) ⊇ Iθ(x, λ1), so limλ→0 Vol(Iθ(x, λ)) exists.
We first prove the second statement. For any normal vector h and β > 0, Vol(E ∩{z : hT z < β}) ≥
1
2 Vol(E), since the center 0 ∈ {z : hT z < β}. The result follows because NT

x x > 0.

To prove (14), observe that z ∈ Iθ(x, λ) if equivalent to −∇f(x) + λ(z − x) ∈ cone(−x, θc). By
Theorem 24, there exists λ > 0 with−∇f(x) +λ(z−x) ∈ cone(−x, θc) if NT

x (z−x) < 0. Hence,
it follows that every point in E ∩ {z : NT z < NTx} is contained in Iθ(x, λ) for some λ > 0.

Lemma 26. There exists a direction x such that cos(θ(dG(x), dN (x))) = 2(
√
κ+
√
κ−1)−1. Thus,

for all r ≥ 2, there exists a direction x with cos(θ(dG(x), dN (x))) ≤ r√
κ

.

Proof. Take x =
√

αn

α1+αn
e1 +

√
α1

α1+αn
en. It is easy to verify that cos(θ(dG, dN )) = 2(

√
κ +

√
κ−1)−1.

Proposition 27. For any x, let θx = θ(dG(x), dN (x)). We have

max{‖z‖2 : f(z) ≤ f(x), zTx = 0} ≤ κ cos(θx)‖x‖2

Proof. Form the maximization problem
max
z

zT z

zTAz ≤ xTAx
zTx = 0

The KKT conditions for this problem imply that the solution satisfies z − µ1Az − µ2x = 0, for
Lagrange multipliers µ1 ≥ 0, µ2. Since zTx = 0, we obtain zT z = µ1z

TAz, and thus 1
M ≤ µ1 ≤ 1

m .
Since f(z) ≤ f(x), we find that zT z ≤ 1

mx
TAx. Using cos(θx) = xTAx

‖x‖‖Ax‖ , we obtain

zT z ≤ 1

m
cos(θx)‖x‖‖Ax‖ ≤ κ cos(θx)‖x‖2.

19



Theorem 28. Let Rκ = {r : r√
κ

+ r3/2

κ1/4 ≤ 1}. Let x ∈ Sr for r ∈ Rκ, and let E = {y : f(y) ≤
f(x)}, E2 = {z ∈ E : zTx ≤ 0}, θx = θ(dG(x), dN (x)). Then for all z ∈ E2 and any λ ≥ 0, the
LGD direction dz = −(∇f(x) + λ(x− z)) satisfies θ(dz, dN (x)) ≤ θx. Thus, E2 ⊆ Iθ(x, λ), and
therefore Vol(Iθ(x, λ)) ≥ Vol(E2) = 1

2 Vol(E).

Proof. Define D2 = {z − x : z ∈ E2}7. The set of possible LGD directions with z ∈ E2 is given
by D3 = {−∇f(x) + λδ : δ ∈ D2, λ ≥ 0}. Since dN (x) = −x, our desired result is equivalent to
D3 ⊆ cone(−x, θx).

Define the subset D′2 = {z − x : z ∈ E2, x
T z = 0}. We claim that it suffices to prove that D′2 ⊆

cone(−x, θx). To see this, consider any λδ for λ ≥ 0 and δ ∈ D2. We have xT (λδ) = λxT (z−x) ≤
−λxTx < 0, so there exists a scalar s with xT (sλδ) = −xTx, whence sλδ ∈ D′2 ⊆ cone(−x, θx).
By Theorem 23, λδ ∈ cone(−x, θx). Since −∇f(x) ∈ cone(−x, θx), convexity implies that
−∇f(x) + λδ ∈ cone(−x, θx). Thus, D′2 ⊆ cone(−x, θx) implies that D3 ⊆ cone(−x, θx).

To complete the proof, let δ = z − x ∈ D′2 and observe that cos(θ(δ, dN (x))) = xT (x−z)
‖x‖‖x−z‖ . By

Theorem 27 and the definition of Sr,

max{‖z‖ : z ∈ E2, z
Tx = 0} ≤

√
κ
√

cos(θx)‖x‖ =
√
rκ1/4‖x‖

We compute that

xT (x− z)− r√
κ
‖x‖‖x− z‖ ≥ ‖x‖2 − r√

κ
(‖x‖2 + ‖x‖‖z‖)

≥ ‖x‖2 − r√
κ
‖x‖2 − r√

κ
‖x‖(
√
rκ1/4‖x‖)

≥
(

1− r√
κ
− r3/2

κ1/4

)
‖x‖2 ≥ 0

By the definition of Rκ, this is non-negative, and thus θ(δ, dN (x)) ≤ θx. This completes the
proof.

8 Low-Rank Matrix Completion Experiments

Low-rank matrix completion problem is an example of a non-convex learning problem whose
landscape exhibits numerous symmetries. We consider the positive semi-definite case, where the
objective is to find a low-rank matrix minimizing

min
X

{
F (X) =

1

4
‖M −XXT ‖2F : X ∈ Rd×r

}
It is routine to calculate that∇F (X) = (XXT −M)X . The EAGD and LGD updates for X can be
expressed as

X+ = (1− ηλ)X + ηλZ − η∇F (X).

For EAGD, Z = X̃ , and X̃ is updated by

X̃+ = (1− pηλ)X̃ + pηλ

(
1

p

p∑
i=1

Xi

)
.

For LGD, Z = arg min{F (X1), . . . , F (Xp)}, and is updated at the beginning of every communica-
tion period τ .

The parameters were set to:

η = 5e-4, λ =
1

5
, p = 8, τ = 1

The learning rate η = 5e-4 was selected from a set {1e-1, 5e-2, 1e-3, . . .} by evaluating on a
sample problem until a value was found for which both methods exhibited monotonic decrease.

7Note the sign change from x− z to z − x here.

20



The dimension was d = 1000, and the ranks r ∈ {1, 10, 50, 100} were tested. For each rank, there
were 10 random trials performed. In each trial, M and starting points {Xi

0} are sampled. M is
generated by sampling U ∈ Rd×r with i.i.d entries from N(0, 1), and taking M = UUT . Initial
points for each worker node Xi were also sampled from N(0, 1). The same starting points were used
for EAGD and LGD.

Code for this experiment is available at https://github.com/wgao-res/lsgd_matrix_
completion.

9 Experimental Setup

9.1 Data preprocessing

For CIFAR-10 experiments we use the original images of size 3× 32× 32. We then normalize each
image by mean (0.4914, 0.4822, 0.4465) and standard deviation (0.2023, 0.1994, 0.2010). We also
augment the training data by horizontal flips with a probability of 0.5.

For CNN7 and ResNet20, we extract random crops of size 3 × 28 × 28 and present these to the
network in batches of size 128. The test loss and test error are only computed from the center patch
(3× 28× 28) of test images.

For VGG16 we pad the images to 3× 40× 40, extract random crops of size 3× 32× 32 and present
these to the network in batches of size 128. The test loss and test error are computed from the test
images.

For ImageNet experiments we normalize each image by mean (0.485, 0.456, 0.406) and standard
deviation (0.229, 0.224, 0.225). We sample the training data in the same way as [39]. For each image,
a crop of random size (chosen from 8% to 100% evenly) of the original size and a random aspect
ratio (chosen from 3/4 to 4/3 evenly) of the original aspect ratio is made. Then we resize the crop
to 3 × 224 × 224. We also augment the training data by horizontal flips with a probability of 0.5.
Finally we present these to the network in the batches of size 32. The test images are resized so that
the smaller edge of each image is 256. The test loss and test error are only computed from the center
patch (3× 224× 224) of test images.

9.2 Data prefetching

We use the dataloader and distributed data sampler8 from PyTorch. Each worker loads a subset of the
original data set that is exclusive to that worker for every epoch. If the size of data set is not divisible
by the batch size, the last incomplete batch will be dropped.

9.3 Hyperparameters

In Table 2 we summarize the learning rates and other hyperparameters explored for each method in
the CNN7 experiment on CIFAR-10. The setting of β for EASGD was obtained from the original
paper (its authors use this setting for all their experiments).

Table 2: Hyperparameters: CNN7 experiment on CIFAR-10
Name Learning Rates
SGD {0.1, 0.05, 0.01, 0.005, 0.001}

DOWNPOUR {0.05, 0.01, 0.005, 0.001, 0.0005}
EASGD {0.1, 0.05, 0.01, 0.005, 0.001} β = 0.43
LSGD {0.1, 0.05, 0.01, 0.005, 0.001} λ = {0.5, 0.2, 0.1, 0.05, 0.025}, λG = λ

In Table 3 we summarize the initial learning rates and other hyperparameters explored for each
method in the ResNet20 experiment on CIFAR-10. We do learning rate drop at 1500 seconds by a
factor of 0.1 for all the methods.

8https://pytorch.org/docs/stable/data.html

21

https://github.com/wgao-res/lsgd_matrix_completion
https://github.com/wgao-res/lsgd_matrix_completion


Table 3: Hyperparameters: ResNet20 experiment on CIFAR-10
Name Learning Rates
SGD {0.2, 0.1, 0.05}

DOWNPOUR {0.2, 0.1, 0.05, 0.01}
EASGD {0.2, 0.1, 0.05} β = 0.43
LSGD {0.2, 0.1, 0.05} λ = {0.5, 0.2, 0.1, 0.05, 0.025}, λG = λ

In Table 4 we summarize the learning rates and other hyperparameters explored for each method in
the VGG16 experiment on CIFAR-10. We do learning rate drop at 1500 seconds by a factor of 0.1
for all the methods.

Table 4: Hyperparameters: VGG16 experiment on CIFAR-10
Name Learning Rates
SGD {0.2, 0.1, 0.05}

DOWNPOUR {0.2, 0.1, 0.05, 0.01}
EASGD {0.2, 0.1, 0.05} β = 0.43
LSGD {0.2, 0.1, 0.05} λ = {0.2, 0.1}

In Table 5 we summarize the initial learning rates and other hyperparameters explored for each
method in the ResNet50 experiment on ImageNet. We do learning rate drop for every 30 epochs by a
factor of 0.1 for all the methods.

Table 5: Hyperparameters: ResNet50 experiment on ImageNet
Name Learning Rate

DOWNPOUR 0.1
EASGD 0.2 β = 0.43
LSGD 0.2 λ = 0.1

9.4 Implementation Details

To take advantage of both the efficiency of collective communication and the flexibility of peer-to-peer
communication, we incorporate two backends, namely NCCL and GLOO9, for GPU processors and
CPU processors, respectively.

The global and local servers (running on CPU processors) control the training process and the workers
(running on GPU processors) perform the actual computations. For each iteration each worker has
only one of the following two choices:

1. Local Training: Each worker is trained with one batch of the training data;

2. Distributed Training: Each worker communicates with other workers and updates its param-
eters based on the pre-defined distributed training method.

To minimize the cost of communication over Ethernet, the global server is running on the first
GPU node instead of a separate machine. Also, for a fair comparison, the center variable is being
maintained and updated by the first GPU node as well10.

9https://github.com/facebookincubator/gloo
10In the original implementation of [1] and [9], an individual parameter server is used for updating the center

variable based on the peer-to-peer communication scheme. However, there is no need to use an individual
parameter server under collective communication scheme as it will only induce extra communication cost.

22



Figure 8: At the beginning of each iteration, the local worker sends out a request to its local server and
then the local server passes on the worker’s request to the global server. The global server checks the
current status and replies to the local server. The local server passes on the global server’s message
to the worker. Finally, depending on the message from the global server, the worker will choose to
follow the local training or distributed training scheme.

10 Additional Experimental Results

10.1 Word-level Language Model

We train an LSTM model on Wikitext-2 for word-level text prediction. Our network consists of two
layers with 200 hidden units and we set the sequence length to 35. The implementation is adapted
from PyTorch example11. In Figure 9 we show that LSGD outperforms other comparators.

Figure 9: LSTM on Wikitext-2. Test perplexity for the center variable versus wall-clock time. The
number of workers is set to 4.

10.2 More results from Section 4.2

11https://github.com/pytorch/examples/tree/master/word_language_model

23

https://github.com/pytorch/examples/tree/master/word_language_model


Figure 10: CNN7 on CIFAR-10. Test loss for the center variable versus wall-clock time (original plot
on the left and zoomed on the right).

Figure 11: ResNet20 on CIFAR-10. Test loss for the center variable versus wall-clock time (original
plot on the left and zoomed on the right).

24



Figure 12: VGG16 on CIFAR-10. Test loss for the center variable versus wall-clock time (original
plot on the left and zoomed on the right).

Figure 13: ResNet50 on ImageNet. Test loss for the center variable versus wall-clock time (original
plot on the left and zoomed on the right).

11 Communication Efficiency

We report the proportion of communication costs with respect to the total time in Table 6. LSGD is
roughly twice more communication-efficient than EASGD. Note that EASGD and DOWNPOUR
require more time for data transmission and computation during communication as parameter updates
involve an additional center variable.

Table 6: Proportion of communication costs with repect to the total time. Communication cost
includes both data transmission and computation.

LSGD EASGD DOWNPOUR
CNN7: 4/16 workers 1%/2% 2%/4% 20%/57%

ResNet20: 4/16 workers 1%/2% 2%/4% 21%/50%
VGG16 2% 3% 34%

ResNet50 1% 2% 17%

25


	Introduction
	Leader (Stochastic) Gradient Descent ``L(S)GD'' Algorithm
	Motivating example
	Symmetry-breaking updates

	Theoretical Analysis
	Convergence Rates for Stochastic Strongly Convex Optimization
	Convergence Rates
	Communication Periods
	Stochastic Leader Selection

	Non-convex Optimization: Stationary Points
	Search Direction Improvement from Leader Selection

	Experimental Results
	Experimental setup
	Experimental Results

	Conclusion
	LGD versus EAGD: Illustrative Example
	Proofs of Theoretical Results
	Definitions and Notation
	Stationary Points of EASGD
	Technical Preliminaries
	Proofs from subsub:rates
	Proofs from subsub:comm
	Proofs from subsub:stochleader
	Proofs from sub:nonconvex
	Proofs from sub:improve

	Low-Rank Matrix Completion Experiments
	Experimental Setup
	Data preprocessing
	Data prefetching
	Hyperparameters
	Implementation Details

	Additional Experimental Results
	Word-level Language Model
	More results from Section 4.2

	Communication Efficiency

