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1 Proof of Theorem 3.1

Proof of Theorem 3.1. We first prove the Lipschitz constant of the posterior mean νN (x) and the
modulus of continuity of the standard deviation σN (x), before we derive the bound of the regression
error. The norm of the difference between the posterior mean νN (x) evaluated at two different points
is given by

‖νN (x)− νN (x′)‖ = ‖(k(x,XN )− k(x′,XN ))α‖

with

α = (K(XN ,XN ) + σ2
nIN )−1yN . (1)

Due to the Cauchy-Schwarz inequality and the Lipschitz continuity of the kernel we obtain

‖νN (x)− νN (x′)‖ ≤ Lk
√
N ‖α‖ ‖x− x′‖,

which proves Lipschitz continuity of the mean νN (x). In order to calculate a modulus of continuity
for the posterior standard deviation σN (x) observe that the difference of the variance at two points
x,x′ ∈ X can be expressed as

|σ2
N (x)− σ2

N (x′)| = |σN (x)− σN (x′)||σN (x) + σN (x′)|. (2)

Since the standard deviation is positive semidefinite we have

|σN (x) + σN (x′)| ≥ |σN (x)− σN (x′)| (3)

and hence, we obtain

|σ2
N (x)− σ2

N (x′)| ≥ |σN (x)− σN (x′)|2. (4)

Therefore, it is sufficient to bound the difference of the variance at two points x,x′ ∈ X and take
the square root of the resulting expression. Due to the Cauchy-Schwarz inequality and Lipschitz
continuity of k(·, ·) the absolute value of the difference of the variance can be bounded by

|σ2
N (x)− σ2

N (x′)| ≤ 2Lk‖x− x′‖
+ ‖k(x,XN )− k(x′,XN )‖

∥∥(K(XN ,XN ) + σ2
nIN )−1

∥∥ ‖k(XN ,x) + k(XN ,x
′)‖ . (5)

On the one hand, we have

‖k(x,XN )− k(x′,XN )‖ ≤
√
NLk‖x− x′‖ (6)

due to Lipschitz continuity of k(x,x′). On the other hand we have

‖k(x,XN ) + k(x′,XN )‖ ≤ 2
√
N max
x,x′∈X

k(x,x′). (7)
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The modulus of continuity ωσN (τ) follows from substituting (6) and (7) in (5) and taking the square
root of the resulting expression. Finally, we prove the probabilistic uniform error bound by exploiting
the fact that for every grid Xτ with |Xτ | grid points and

max
x∈X

min
x′∈Xτ

‖x− x′‖ ≤ τ (8)

it holds with probability of at least 1− |Xτ |e−β(τ)/2 that [1]

|f(x)− νN (x)| ≤
√
β(τ)σN (x) ∀x ∈ Xτ . (9)

Choose β(τ) = 2 log
(
|Xτ |
δ

)
, then

|f(x)− νN (x)| ≤
√
β(τ)σN (x) ∀x ∈ Xτ (10)

holds with probability of at least 1− δ. Due to continuity of f(x), νN (x) and σN (x) we obtain

min
x′∈Xτ

|f(x)− f(x′)| ≤ τLf ∀x ∈ X (11)

min
x′∈Xτ

|νN (x)− νN (x′)| ≤ τLνN ∀x ∈ X (12)

min
x′∈Xτ

|σN (x)− σN (x′)| ≤ ωσN (τ) ∀x ∈ X. (13)

Moreover, the minimum number of grid points satisfying (8) is given by the covering number
M(τ,X). Hence, we obtain

P
(
|f(x)− νN (x)| ≤

√
β(τ)σN (x) + γ(τ), ∀x ∈ X

)
≥ 1− δ, (14)

where

β(τ) = 2 log

(
M(τ,X)

δ

)
(15)

γ(τ) = (Lf + LνN )τ +
√
β(τ)ωσN (τ). (16)

2 Proof of Theorem 3.2

In order to proof Theorem 3.2, several auxiliary results are necessary, which are derived in the
following. The first lemma concerns the expected supremum of a Gaussian process.
Lemma 2.1. Consider a Gaussian process with a continuously differentiable covariance func-
tion k(·, ·) and let Lk denote its Lipschitz constant on the set X with maximum extension
r = maxx,x′∈X ‖x− x′‖. Then, the expected supremum of a sample function f(x) of this Gaussian
process satisfies

E

[
sup
x∈X

f(x)

]
≤ 12

√
6dmax

{
max
x∈X

√
k(x,x),

√
rLk

}
. (17)

Proof. We prove this lemma by making use of the metric entropy criterion for the sample continuity
of some version of a Gaussian process [2]. This criterion allows to bound the expected supremum of
a sample function f(x) by

E

[
sup
x∈X

f(x)

]
≤

max
x∈X

√
k(x,x)∫

0

√
log(N(%,X))d%, (18)

where N(%,X) is the %-packing number of X with respect to the covariance pseudo-metric

dk(x,x′) =
√
k(x,x) + k(x′,x′)− 2k(x,x′). (19)

Instead of bounding the %-packing number, we bound the %/2-covering number, which is known to
be an upper bound. The covering number can be easily bounded by transforming the problem of
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covering X with respect to the pseudo-metric dk(·, ·) into a coverage problem in the original metric
of X. For this reason, define

ψ(%′) = sup
x,x′∈X
‖x−x′‖∞≤%′

dk(x,x′), (20)

which is continuous due to the continuity of the covariance kernel k(·, ·). Consider the inverse
function

ψ−1(%) = inf {%′ > 0 : ψ(%′) > %} . (21)

Continuity of ψ(·) implies % = ψ(ψ−1(%)). In particular, this means that we can guarantee
dk(x,x′) ≤ %

2 if ‖x− x′‖ ≤ ψ−1(%2 ). Due to this relationship it is sufficient to construct an
uniform grid with grid constant 2ψ−1(%2 ) in order to obtain a %/2-covering net of X. Furthermore,
the cardinality of this grid is an upper bound for the %/2-covering number, i.e.

M(%/2,X) ≤
⌈

r

2ψ−1(%2 )

⌉d
. (22)

Therefore, it follows that

N(%,X) ≤
⌈

r

2ψ−1(%2 )

⌉d
. (23)

Due to the Lipschitz continuity of the covariance function, we can bound ψ(·) by

ψ(%′) ≤
√

2Lk%′. (24)

Hence, the inverse function satisfies

ψ−1
(%

2

)
≥
(

%

2
√

2Lk

)2

(25)

and consequently

N(%,X) ≤
(

1 +
4rLk
%2

)d
(26)

holds, where the ceil operator is resolved through the addition of 1. Substituting this expression in
the metric entropy bound (18) yields

E

[
sup
x∈X

f(x)

]
≤ 12

√
d

max
x∈X

√
k(x,x)∫

0

√
log

(
1 +

4rLk
%2

)
d%. (27)

As shown in [3] this integral can be bounded by

max
x∈X

√
k(x,x)∫

0

√
log

(
1 +

4rLk
%2

)
d% ≤

√
6 max

{
max
x∈X

√
k(x,x),

√
rLk

}
(28)

which proves the lemma.

Based on the expected supremum of Gaussian process it is possible to derive a high probability bound
for the supremum of a sample function.
Lemma 2.2. Consider a Gaussian process with a continuously differentiable covariance func-
tion k(·, ·) and let Lk denote its Lipschitz constant on the set X with maximum extension
r = maxx,x′∈X ‖x− x′‖. Then, with probability of at least 1 − δL the supremum of a sample
function f(x) of this Gaussian process is bounded by

sup
x∈X

f(x) ≤

√
2 log

(
1

δL

)
max
x∈X

√
k(x,x) + 12

√
6dmax

{
max
x∈X

√
k(x,x),

√
rLk

}
. (29)
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Proof. We prove this lemma by exploiting the wide theory of concentration inequalities to derive a
bound for the supremum of the sample function f(x). We apply the Borell-TIS inequality [4]

P

(
sup
x∈X

f(x)− E

[
sup
x∈X

f(x)

]
≥ c

)
≤ exp

− c2

2 max
x∈X

k(x,x)

 . (30)

Due to Lemma 2.1 we have

E

[
sup
x∈X

f(x)

]
≤ 12

√
6dmax

{
max
x∈X

√
k(x,x),

√
rLk

}
. (31)

The lemma follows from substituting (31) in (30) and choosing c =

√
2 log

(
1
δL

)
max
x∈X

√
k(x,x).

Finally, we exploit the fact that the derivative of a sample function is a sample function from another
Gaussian process to prove the high probability Lipschitz constant in Theorem 3.2.

Proof of Theorem 3.2. Continuity of the sample function f(x) follows directly from [5, Theorem
5]. Furthermore, this theorem guarantees that the derivative functions ∂

∂xi
f(x) are samples from

derivative Gaussian processes with covariance functions

k∂i(x,x
′) =

∂2

∂xi∂x′i
k(x,x′). (32)

Therefore, we can apply Lemma 2.2 to each of the derivative processes and obtain with probability of
at least 1− δL

d

−Lf∂i ≤ sup
x∈X

∂

∂xi
f(x) ≤ Lf∂i , (33)

where

Lf∂i =

√
2 log

(
2d

δL

)
max
x∈X

√
k∂i(x,x) + 12

√
6dmax

{
max
x∈X

√
k∂i(x,x),

√
rL∂ik

}
(34)

and L∂ik is the Lipschitz constant of derivative kernel k∂i(x,x′). Applying the union bound over all
partial derivative processes i = 1, . . . , d finally yields the result.

3 Proof of Theorem 3.3

Proof of Theorem 3.3. Due to Theorem 3.1 with βN (τ) = 2 log
(
M(τ,X)π2N2

3δ

)
and the union bound

over all N > 0 it follows that

sup
x∈X
|f(x)− νN (x)| ≤

√
βN (τ)σN (x) + γN (τ) ∀N > 0 (35)

with probability of at least 1 − δ/2. A trivial bound for the covering number can be obtained by
considering a uniform grid over the cube containing X. This approach leads to

M(τ,X) ≤
(

1 +
r

τ

)d
, (36)

where r = maxx,x′∈X ‖x− x′‖. Therefore, we have

βN (τ) ≤ 2d log
(

1 +
r

τ

)
+ 4 log(πN)− 2 log(3δ). (37)

Furthermore, the Lipschitz constant LνN is bounded by

LνN ≤ Lk
√
N
∥∥(K(XN ,XN ) + σ2

nIN )−1yN
∥∥ (38)
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due to Theorem 3.1. Since the Gram matrix K(XN ,XN ) is positive semidefinite and f(·) is
bounded by f̄ , we can bound

∥∥(K(XN ,XN ) + σ2
nIN )−1yN

∥∥ by∥∥(K(XN ,XN ) + σ2
nIN )−1yN

∥∥ ≤ ‖yN‖
ρmin(K(XN ,XN ) + σ2

nIN )

≤
√
Nf̄ + ‖ξN‖

σ2
n

, (39)

where ξN is a vector of N i.i.d. zero mean Gaussian random variables with variance σ2
n. Therefore,

it follows that ‖ξN‖
2

σ2
n
∼ χ2

N . Due to [6], with probability of at least 1− exp(−ηN ) we have

‖ξN‖2 ≤
(

2
√
NηN + 2ηN +N

)
σ2
n. (40)

Setting ηN = log(π
2N2

3δ ) and applying the union bounds over all N > 0 yields∥∥(K(XN ,XN ) + σ2
nIN )−1yN

∥∥ ≤ √Nf̄ +
√

2
√
NηN + 2ηN +Nσn
σ2
n

∀N > 0 (41)

with probability of at least 1 − δ/2. Hence, the Lipschitz constant of the posterior mean function
νN (·) satisfies with probability of at least 1− δ/2

LνN ≤ Lk
Nf̄ +

√
N(2
√
NηN + 2ηN +N)σn
σ2
n

∀N > 0. (42)

Since ηN grows logarithmically with the number of training samples N , it holds that LνN ∈ O(N)
with probability of at least 1 − δ/2. The modulus of continuity ωσN (·) of the posterior standard
deviation can be bounded by

ωσN (τ) ≤

√√√√√2Lkτ

N max
x̃,x̃′∈X

k(x̃, x̃′)

σ2
n

+ 1

 (43)

because ‖(K(XN ,XN ) + σ2
nIN )−1‖ ≤ 1

σ2
n

. Due to the union bound (35) holds with probability of
at least 1− δ with

γN (τ) ≤

√√√√√2Lkτβ(τ)

N max
x̃,x̃′∈X

k(x̃, x̃′)

σ2
n

+1

+Lfτ+Lk
Nf̄+

√
N(2
√
NηN+2ηN+N)

σ2
n

τ.

(44)

This function must converge to 0 for N →∞ in order to guarantee a vanishing regression error. This
is only ensured if τ(N) decreases faster than O((N log(N))−1). Therefore, set τ(N) ∈ O(N−2) in
order to guarantee

lim
N→∞

γN (τN ) = 0. (45)

However, this choice of τ(N) implies that βN (τ(N)) ∈ O(log(N)) due to (37). Since there exists
an ε > 0 such that σN (x) ∈ O

(
log(N)−

1
2−ε
)

, ∀x ∈ X by assumption, we have√
βN (τ(N))σN (x) ∈ O(log(N)−ε) ∀x ∈ X, (46)

which concludes the proof.

4 Proof of Theorem 4.1

Lyapunov theory provides the following statement [7].
Lemma 4.1. A dynamical system ẋ = f(x,u) is globally ultimately bounded to a set B ⊂ X,
containing the origin, if there exists a positive definite (so called Lyapunov) function, V : X→ R+,0,
for which V̇ (x) < 0, for all x ∈ X \ B.
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This allows to proof Theorem 4.1 as following.

Proof of Theorem 4.1. Consider the Lyapunov function V (x) = 1
2r

2

V̇ (x) =
∂V

∂r
ṙ = r

(
f(x)− f̂(x)− kcr

)
≤ |r||f(x)− νN (x)| − kc|r|2 ≤ 0 ∀|r| > f(x)− νN (x)

kc

Based on Theorem 3.1, the model error is bounded with high probability, which allows to conclude

P
(
V̇ (x) < 0 ∀x ∈ X \ B

)
≥ 1− δ.

The global ultimate boundedness of the closed-loop system, is thereby shown according to Lemma 4.1.

5 Report on Computational Complexity of the Numerical Evaluation

Simulations are performed in MATLAB 2019a on a i5-6200U CPU with 2.3GHz and 8GB RAM.
The simulation in Sec. 5.1 took 77s and used 1 MB of workspace memory. The simulation in Sec. 5.2
took 39s and used 134 MB of workspace memory. The code is available as supplementary material.
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