1 Supplementary Charts and Experiments

We include supplementary experiments and additional details about our training procedure, the
estimators we evaluate, the image modification process and test-set accuracy below. In addition, as
can be seen in Fig.[I] we also consider the scenario where pixels are kept according to importance
rather than removed.

1.1 Training Procedure

We carefully tuned the hyperparamters of each dataset ImageNet, Birdsnap and Food 101 separately.
We find that the Birdsnap and Food 101 converge within the same amount of training steps and a
larger learning rate than ImageNet. These are detailed in Table.[T.2] These hyper parameters, along
with the mean accuracy reported on the unmodified dataset, are used consistently across all estimators.
ImageNet dataset achieves a mean accuracy of 76.68%. This is comparable to the performance
reported by [? ]. On Birdsnap and Food 101, our unmodified datasets achieve 66.65% and 84.54%
respectively. The baseline test-set accuracy for Food101 or Birdsnap is comparable to that reported
by [? ]. In Table. |2} we include the test-set performance for each experiment variant that we consider.
The test-set accuracy reported is the average of 5 independent runs.

ROAR KAR
10 ImageNet 1o ImageNet
08 0.8
~———
806 T Zos T
£ g4l — baseline 5G-SQ-GRAD t il s — baseline 5G-5Q-GRAD
K] — RANDOM — SGSQIG 8 04/ — RANDOM — S5G-5Q-IG
- SOBEL ‘v SG.SQ-GB - SOBEL v SG-SQ-GB
02 GRAD 4% VAR-GRAD 02 GRAD 4% VAR-GRAD
— G J—k VARG 4 — G J—k VAR-IG
oGP * % VAR-GB 1 oo GP %% VAR-GB
0.0 0.0
E | ] S ] 3 R 8 8 ° E] ] B g 2 3 2 8 8
% of input features replaced % of input features replaced
10 Food 101 10 Food 101

baseline

5G-5Q-GRAD

baseline

SG-SQ-GRAD

Test accuracy
Test accuracy

04/ — RANDOM — 5G-5Q-1G ) 04/ — RANDOM — 5G-5Q-IG
- SOBEL - SG-SQ-GB -~ SOBEL . SG-5Q-GB
02 GRAD 4 VAR-GRAD 02 GRAD 4 VAR-GRAD
] *—k VARG y —1G *—k VARG
eGP *k VAR-GB one GP %% VAR-GB
0 > = o o S o o FE S S < B o s o 3 s
] ] ] g ] 8 g 8 8 2 ] ] 8 2 3 2 8 8
% of input features replaced % of input features replaced
10 Birdsnap 1o Birdsnap
08 03

SG-SQ-GRAD

baseline 5G-SQ-GRAD

Test accuracy

04/ — RANDOM ——-56-5Q.IG. — RANDOM  — SG-SQIG
== SOBEL ~ SG-SQ-GB == SOBEL ++ SG-5Q-GB
0.2 GRAD % VAR-GRAD - o 0.2 GRAD % VAR-GRAD
— G =k VAR-IG T — G F—k VAR-IG
e GP “* % VAR-GB *'.: oo GP %% VAR-GB
0.0 0.0

) 9 2 2 2 3 ° 3 2
S < 2 2 © ° ) 2 2 2 3

70
80
90

K ]

2 2 2 2 2 2 3
% of input features replaced % of input features replaced

Figure 1: Evaluation of all estimators according to Keep and Retrain KAR vs. ROAR. Left inset:
For KAR, Keep And Retrain, we keep a fraction of features estimated to be most important and
replace the remaining features with a constant mean value. The most accurate estimator is the one
that preserves model performance the most for a given fraction of inputs removed (the highest test-set
accuracy).Right inset: For ROAR, Rem(ve And Retrain we remove features by replacing a fraction
of the inputs estimated to be most important according to each estimator with a constant mean value.
The most accurate estimator is the one that degrades model performance the most for a given fraction
of inputs removed. Inputs modified according to KAR result in a very narrow range of model accuracy.
ROAR is a more discriminative benchmark, which suggests that retaining performance when the
most important pixels are removed (rather than retained) is a harder task.



Squaring Provides Small Gains in Accuracy
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Figure 2: Certain transformations of the estimate can substantially improve accuracy of all estimators.
Squaring alone provides small gains to the accuracy of all estimators, and is slightly better than a
random guess. Left inset: The three base estimators that we consider (Gradients (GRAD), Integrated
Gradients (IG) and Guided Backprop (GB)) perform worse than a random assignment of feature
importance. At all fractions considered, a random assignment of importance degrades performance
more than removing the pixels estimated to be most important by base methods. Right inset: Average
test-set accuracy across 5 independent iterations for estimates that are squared before ranking and
subsequent removal. When squared, base estimators perform slightly better than a random guess.
However, this does not compare to the gains in accuracy of averaging a set of noisy estimates that are
squared (SmoothGrad-Squared)

Dataset ToplAccuracy Train Size Test Size Learning Rate Training Steps

Birdsnap 66.65 47,386 2,443 1.0 20,000
Food_101 84.54 75,750 25,250 0.7 20,000
ImageNet 76.68 1,281,167 50,000 0.1 32,000

Table 1: The training procedure was carefully finetuned for each dataset. These hyperparameters are
consistently used across all experiment variants. The baseline accuracy of each unmodified data set is
reported as the average of 10 independent runs.

1.2 Generation of New Dataset

We evaluate ROAR on three open source image datasets: ImageNet, Birdsnap and Food 101. For
each dataset and estimator, we generate 10 new train and test sets that each correspond to a different
fraction of feature modification ¢ = [0.1,0.3,0.5,0.7,0.9] and whether the most important pixels
are removed or kept. This requires first generating a ranking of input importance for each input
image according to each estimator. All of the estimators that we consider evaluate feature importance
post-training. Thus, we generate the rankings according to each intepretability method using a stored
checkpoint for each dataset.
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Figure 3: A single example from each dataset generated from modifying Food 101 according to both
ROAR and KAR. We show the modification for base estimators (Integrated Gradients (IG), Guided
Backprop (GB), Gradient Heatmap (GRAD) and derivative ensemble approaches - SmoothGrad,
(SG-GRAD, SG-IG, SG-GB), SmoothGrad-Squared (SG-SQ-GRAD, SG-SQ-IG, SG-SQ-GB) and
VarGrad (VAR-GRAD, VAR-IG, VAR-GB. In addition, we consider two control variants a random
baseline, a sobel edge filter.

We use the ranking produced by the interpretability method to modify each image in the dataset (both
train and test). We rank each estimate, e into an ordered set {e¢}1¥ ;. For the top ¢ fraction of this
ordered set, we replace the corresponding pixels in the raw image with a per channel mean. Fig. [3§]and
Fig. @] show an example of the type of modification applied to each image in the dataset for Birdsnap
and Food 101 respectively. In the paper itself, we show an example of a single image from each

ImageNet modification.

We evaluate 18 estimators in total (this includes the base estimators, a set of ensemble approaches
wrapped around each base and finally a set of squared estimates). In total, we generate 540 large-scale
modified image datasets in order to consider all experiment variants (180 new test/train for each
original dataset).

1.3 [Evaluating Keeping Rather Than Removing Information

In addition to ROAR, as can be seen in Fig.[I} we evaluate the opposite approach of KAR, Keep
And Retrain. While ROAR removes features by replacing a fraction of inputs estimated to be most
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Figure 4: A single example from each dataset generated from modifying Imagenet according to the
ROAR and KAR. We show the modification for base estimators (Integrated Gradients (IG), Guided
Backprop (GB), Gradient Heatmap (GRAD) and derivative ensemble approaches - SmoothGrad,
(SG-GRAD, SG-IG, SG-GB), SmoothGrad-Squared (SG-SQ-GRAD, SG-SQ-IG, SG-SQ-GB) and
VarGrad (VAR-GRAD, VAR-IG, VAR-GB. In addition, we consider two control variants a random
baseline, a sobel edge filter.

important, KAR preserves the inputs considered to be most important. Since we keep the important
information rather than remove it, minimizing degradation to test-set accuracy is desirable.

In the right inset chart of Fig. [I| we plot KAR on the same curve as ROAR to enable a more
intuitive comparison between the benchmarks. The comparison suggests that KAR appears to be
a poor discriminator between estimators. The x-axis indicates the fraction of features that are
preserved/removed for KAR/ROAR respectively.

We find that KAR is a far weaker discriminator of performance; all base estimators and the ensemble
variants perform in a similar range to each other. These findings suggest that the task of identifying
features to preserve is an easier benchmark to fulfill than accurately identifying a fraction of input
that will cause the maximum damage to the model performance.



1.4 Squaring Alone Slightly Improves the Performance of All Base Variants

The surprising performance of SmoothGrad-Squared (SG-SQ) deserves further investigation; why is
averaging a set of squared noisy estimates so effective at improving the accuracy of the ranking? To
disentangle whether both squaring and then averaging are required, we explore whether we achieve
similar performance gains by only squaring the estimate.

Squaring of a single estimate, with no ensembling, benefits the accuracy of all estimators that we
considered. In the right inset chart of Fig.2] we can see that squared estimates perform better than
the raw estimate. When squared, an estimate gains slightly more accuracy than a random ranking of
input features. In particular, squaring benefits GB; at ¢ = .9 performance of SQ-GB relative to GB
improves by 8.43% + 0.97.

Squaring is an equivalent transformation to taking the absolute value of the estimate before ranking
all inputs. After squaring, negative estimates become positive, and the ranking then only depends
upon the magnitude and not the direction of the estimate. The benefits gained by squaring furthers
our understanding of how the direction of GB, IG and GRAD values should be treated. For all these
estimators, estimates are very much a reflection of the weights of the network. The magnitude may
be far more telling of feature importance than direction; a negative signal may be just as important
as positive contributions towards a model’s prediction. While squaring improves the accuracy of all
estimators, the transformation does not explain the large gains in accuracy that we observe when we
average a set of noisy squared estimates.

1.5 Limitations on the use of ROAR

In this work we propose ROAR as a method for estimating feature importance in deep neural networks.
However, we do note that ROAR is not suitable for certain algorithms such as decision stump Y=(A
or D) where there is also feature redundancy. For these algorithms, in order to use ROAR correctly
feature importance must be recomputed after each re-training step. This is because a decision stump
ignores a subset of input features at inference time which means it is possible for a random estimator
to appear to perform better than the best possible estimator. For the class of models evaluated in the
paper (linear models, multi-layer perceptrons and deep neural networks) as well as any model that
allows all features to contribute to a prediction at test time ROAR remains valid. To make ROAR
valid for decisions stumps, one can re-compute the feature importance after each re-training step. The
scale of our experiments preclude this, and our experiments show that it is not necessary for deep
neural networks (DNNs).



Keep Remove

Threshold 100 300 500 700 900 100 30.0 50.0 70.0 90.0
Birdsnap Random 3724 4641 5129 5538 5992 60.11 5565 51.10 4645 38.12
Sobel 4481 5211 5536 55.69 59.08 59.73 5694 5630 53.82 44.33
GRAD 57.51 61.10 60.79 6196 6249 62.12 61.82 5829 5891 56.08
IG 62.64 65.02 6542 6546 6550 64.79 6491 64.12 63.64 60.30
GP 62.59 6235 60.76 61.78 62.44 5847 57.64 5547 5728 59.76
SG-GRAD 64.64 6587 6532 6549 6578 6544 66.08 6533 6544 65.02
SG-1G 6536 6645 6638 6637 6635 66.11 66.56 66.65 6637 64.54
SG-GB 52.86 56.44 5832 5920 6035 54.67 5337 51.13 50.07 47.71
SG-SQ-GRAD 5532 60.79 62.13 63.63 6499 4288 39.14 3298 2534 1240
SG-SQ-IG 55.80 61.02 62.68 63.63 6443 4085 3694 3337 2738 1493

SG-SQ-GB 49.32 5494 57.62 5941 61.66 38.80 24.09 1654 10.11 5.21
VAR-GRAD 55.03 60.36 6259 63.16 64.85 41.71 37.04 3324 2484 923

VAR-IG 5521 61.22 63.04 6429 6431 4021 36.85 34.09 2771 1643
VAR-GB 47.76 5327 56.53 58.68 61.69 38.63 24.12 1629 10.16 5.20
Food_101 Random 68.13 73.15 76.00 7821 80.61 80.66 7830 7580 7298 68.37
Sobel 69.08 76.70 78.16 79.30 80.90 81.17 79.69 7891 77.06 69.58
GRAD 78.82 82.89 83.43 83.68 83.88 83779 83.50 83.09 8248 78.36
IG 8235 83.80 83.90 8399 84.07 84.01 8395 83.78 83.52 80.87
GP 7731 79.00 7833 79.86 81.16 80.06 79.12 7725 7843 75.69
SG-GRAD 8330 83.87 84.01 84.05 8396 8397 84.00 8397 83.83 83.14
SG-1IG 83.27 8391 84.06 84.05 8396 8398 84.04 84.05 8390 82.90
SG-GB 7144 7596 7726 78.65 80.12 7835 7639 7544 7450 69.19
SG-SQ-GRAD 73.05 79.20 80.18 80.80 82.13 79.29 75.83 64.83 38.88  8.34
SG-SQ-IG 7293 7836 7933 80.02 8130 79.73 76.73 7098 59.55 27.81

SG-SQ-GB 68.10 73.69 76.02 7851 8122 77.68 7281 6624 5573 2495
VAR-GRAD 7424 78.86 7997 80.61 82.10 7955 75.67 6740 52.05 15.69

VAR-IG 73.65 7828 7931 7999 8123 7987 76.60 70.85 59.57 25.15
VAR-GB 67.08 73.00 76.01 7854 8144 77776 7256 6636 54.18 23.88
ImageNet Random 63.60 6698 69.18 71.03 72.69 7265 71.02 69.13 67.06 63.53
Sobel 65.79 7040 71.40 71.60 72.65 7289 7194 71.61 70.56 65.94
GRAD 67.63 7145 7202 7285 7346 7294 7222 7097 70.72 66.75
IG 7038 7251 72,66 72.88 7332 73.17 7272 72.03 71.68 68.20
GP 71.03 7245 7228 7269 7156 7229 7191 71.18 71.48 70.38
SG-GRAD 7047 7194 7214 7235 7244 7208 7194 71.77 7151 70.10
SG-IG 7098 7230 7249 7260 72.67 7249 7239 7226 7202 69.77
SG-GB 6697 70.68 7152 71.86 7257 7128 7045 6998 69.02 64.93
SG-SQ-GRAD 63.25 69.79 7220 73.18 7396 69.35 60.28 41.55 2945 11.09
SG-SQ-IG 67.55 6896 7224 73.09 73.80 70.76 6571 5834 4371 29.41

SG-SQ-GB 6242 6896 71.17 7272 7377 69.74 60.56 5221 3498 15.53

VAR-GRAD 5338 69.86 72.15 7322 7392 69.24 5748 39.23 30.13 1041

VAR-IG 67.17 71.07 7148 7293 73.87 70.87 6556 57.49 4580 2525

VAR-GB 62.09 6851 71.09 7259 73.85 69.67 6094 47.39 35.68 1493
Table 2: Average test-set accuracy across 5 independent runs for all estimators and datasets considered.
ROAR requires removing a fraction of pixels estimated to be most important. KAR differs in that the
pixels estimated to be most important are kept rather than removed. The fraction removed/kept is
indicated by the threshold. The estimators we report results for are base estimators (Integrated Gradi-
ents (IG), Guided Backprop (GB), Gradient Heatmap (GRAD) and derivative ensemble approaches
- SmoothGrad, (SG-GRAD, SG-IG, SG-GB), SmoothGrad-Squared (SG-SQ-GRAD, SG-SQ-IG,
SG-SQ-GB) and VarGrad (VAR-GRAD, VAR-IG, VAR-GB).
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