Supplement: Online Convex Matrix Factorization
with Representative Regions

S.1 Proofs of the Main Results

In what follows, we provide detailed proofs for the performance results pertaining to the online cvxMF
algorithm presented in the main text. Technical auxiliary results needed to establish the findings in
the text below are prefixed by A, and proved in Section[S.2] Previously known results invoked in our
discussion are presented in Section[S.3]

We start with the proof of Lemma@] from the main text, restated below for convenience.
Lemma Let A, £ §,(D,) — §,(D}). Then

m+2

1) +E[A ] =V, E[A_] 2,

E[a] <o(5

m

8icmin, p; o —
r(g+n 2
¢z (m+2) vol(C) (ﬂ
of assumption Also, A = max; A[i,i] Vt, while c; denotes an upper bound on the condition
number of A, Vi, and p; denotes the probability of selecting i, = i in Step[7|of Algorithm 2}

m/2
where V,, £ ) , and x is the same constant that appears in Equation (8)

Proof. Let ||[D; — D, 215D 1) — &(D,)|. Then, we have the following inequalities

At = ”Dt - D;llgt (1a)

= min{ ID_; = Dl ID, = Dl } o

< min{[[D,_; =D}, llg, + 1D}, = D[l [ID, — D} l5,} (1<)
. 1

< mln{ ”Dt—l - Dl‘*—lllgAx + O(?)7 “Dt - D;kllgt }9 (ld)

where (Ib) follows from Algorithm[2] since

D, = arg min §,D),
DI[i] Ecvx(ﬁgi)) U cvx(f(i?l), i€elk]

and (Id) follows form the fact that g (D) is Lipschitz and from the bound in Proposition Sub-
sequently, from Proposition we have ||D,_; — Dt*—lllgr = ||D,_; — D;*_1||gt_l + O(%) and

1
ID, = Dfllg, < D, = D7 ll;_, +O( ). Therefore,

. 1
A, Smln{A,_l»”Dt_Dt*—lllgr—l } +O<?>’ @
so that one has

[E[min{A,_l, ID, =D, Il } ‘ 73:-1]
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where p = min; p;, A = max,; A,_[i,i],and v, = Hﬂm—il)’ and Equations , and (H) follow from
Proposition[AT] Holder’s inequality, and Proposition@l, respectively.
Using Equations (2) and (6) we have

m+2

E[a, | 7] < o( ) FA_ =V, AT

~ | — o~ =

= Ela] <0(})+Ela ] -V, Ela] T

which completes the proof. O
We are now ready to prove Lemma 3| from the main text.

ID,-D||
Lemma > ’H_l’ converges almost surely.

D,-D* . . .
Proof. Almost sure convergence of the sequence ), ., D, ~D, | can be established using the quasi-

martingale convergence Theorem [A8] In this setting, the necessary condition in the convergence

theorem is of the form
ID, - DI
2E[————|=0m. @)

t

which follows from the sufficient condition, E[||D, —D}||] = O ,1/<++2>

use Lemmal[Z]to compute the expected rate of decrease of A,. Then, from Lemma[2]and Proposition[A3]
we have

). To prove this condition, we

1
s1-0(k)
— E(ID, - D} [ < \/ELID, - D;’] < /| ——E[4] ®)

* _ 1
= E[D,-D][l1=0 <t1/(T+2)> 5

where Equation (8) follows by lower bounding the smallest eigenvalue of A, V¢ by k,;,, based
on assumption [(A.2)] This establishes the condition required in Equation (7) of Lemma 3] O

We are now ready to prove Lemma [ and Theorem [I] from the main text, restated below.



Lemma[] One has the following:
1.) ,(D,) converges almost surely;
2.) g,(Dt*) converges almost surely;
3.) &D,) — g,(Df) converges almost surely to 0;
4.) (D)) — g(D)) converges almost surely to 0;

5.) g(D;*) converges almost surely.

Proof. To prove that g,(D,) converges almost surely, we follow the outline of the approach de-
scribed [1]]. The first three claims require new proof techniques and arguments, while the latter two
results may be established using arguments similar to those described in [1].

Let y, £ g,(D,). For Claims and we prove almost sure convergence by showing that the positive
stochastic process {y,} satisfies

D EIE[fi41 =7 | Fi] 1 < o0, and ©9)
t

YEES, - |7 <o, (10)
t

where 7, denotes the filtration up to time ¢. The above condition guarantees that the process is a
quasi-martingale [2] that converges almost surely.

To establish the inequality on y, needed in Equation (J), we write
Yee1 — Ve = &1 (Dyyy) — 8,(Dy)
=81+1Dry) — &1 (D) + §,,1Dy) — §,D,)
£xy1:D)—&®D) gD, &D,)
t+1 t+1

= gt+1(Dt+1) - gt+l(Dt) + (11)

_ (D)~ 5,D)

t+1
where Equations and follows since Algorithm [2] guarantees that

(t+ D& y1(Dyyy) — 18,(Dy) = (x|, Dy,
8iy1(Diyy) — 8 (D)) <0,
gD, - g,@D) <0.

12)

b}

Therefore, we have
E[(x,, 1D | 1] - 8,(D))
E — F| <
[7t+1 Vrl t]— T+ 1
_ g(Dt) - gt(Dr) < ”g - gt”oo
t+1 - t+1

The differences g — g, are bounded and smooth, which allows us to use Donsker’s theorem [3, Lemma

19.36]. Hence,
le-allo]™ _ (1
EHT ~o\ar ) =

To prove Claim 2] we again use the quasi-martingale convergence theorem by establishing that Equa-
tionholds. Let Z(x,D,a) 2 %||§—Dg||2+/1||g||1 and note that Z(x,_,D,,« 2(x,, 1Dy

+1° ) =
Then, we have,

* _

7,:_1 -7 §I+1(D;:_1) - gt(D;)



= §[+1(D,*+1) - gAz+1(D;k) +gAz+1(Dt*) - gt(Dt*)
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Thus, using Lemma [3]and Equation (T3) we can establish Equation (T0) similarly to Claim [T}

The proof of Claimfollows from Claims|1|and [2|if we show that g,(D,) — g,(D;*) converges to 0 in
probability. We prove the latter by using the following well-known fact: If y, converges almost surely,
for all €, 5 > 0 there exists a 7’/ € N such that

P(sup |y, —yrl > €) <6, VT > T'. (14)
t>T

For some constant k1, from Proposition [A4] we have
|7¢+k - yt*l = |§1+k(Dt+k) - gz(D,*)|
k

*
< D,y = D7, 1%
Let p; denote the probability that i, = i in Step[7]of Algorithm 2] Using Equation (8) in assump-
tion|(A.1)| and the Lipschitz property of §,, we have
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for some constant x,. Therefore, for T > max{ T, T’(l } we have
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Combining Equation l| with Equation , vT > max{ T, ZkTKl } we have
62 P<suply, —rrlz 6)
T

> P<§;$|yt—h| >e ﬂ ‘yT—y;‘ 228>
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piK (Irr = vyl = 2¢).

i€[k]

Hence, |y — 77| Lo — 8,D,) — g,(D;*)—P> 0. Consequently, since g,(D,) and g,(D}) converge
almost surely, we have

R PRI x>
8 (D) - §,(D)— 0.

To prove Claims 4] and[5} we use the quasi-martingale convergence theorem of [2] and Equation (IT)
which gives us

8D, —g,D,)
S b | Pl o0 = 3 AREO

Therefore,

S 2 §(D,) — g(D,)

~ " +1

> Z gt(Dt*) - gt(D:() + Z gz(D;k) - g,(Dt)’

- r+1 1+1

Using Lemma|f_§| and the Lipschitz continuity of g,(D), we have

K [ID =Dl -

lg, (D)) — gD,
) P

- t+1
gt(D:()_gt(Df)
£ —_— <
2T ®

Therefore, since Df - D::_l = O(1/t) and §,(D) — g,(D) has a Lipschitz constant independent on ¢,

using Lemmal[A5| we get
a.s.
gAz(D[*) - gt(D,*)_’ 0.

The proofs of Claims [Z_f] and E] then follow from the Glivenko-Cantelli theorem [3, Thm 19.4]
and Lemmal[3] O

Theorem E} Under assumptions |(A.1)|to|(A.3)| the sequence {D,},; converges almost surely to a
stationary point of g(D).

Proof. The proof is similar to that of [Il Proposition 4] and follows from Algorithm []and Lemma4]
O

S.2 Auxiliary Proofs

This section contains the proofs of a number of auxiliary results used in the previous section.



Propositions [Ef] and[A2]allow us to compute the expectation E[A,, ] and describe it recursively in
terms of E[A,] in Lemma@ While Proposmonmfollows from assumptions|(A.T)]to[(A.3)]and some
simple algebra, proving Proposition [AZ]requires using properties of the random coordinate descent
approach described in Algorithm 2]

Proposition Al. It holds

m/2+1
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m
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where V,f,i) =

Proof. For ease of explanation, we prove the result for the case of two clusters only, i. e. for k = 2. It
is straightforward to generalize the proof for larger values of k. Also, without loss of generality, we
prove the inequality in Proposition[AT]for i = 1 only. The proof for i € [k] follows along the same
lines.

We rewrite the surrogate function g,(D)) as

2 2
1 1
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[x]|, & 1/xTAx. 1,, denotes the m X m identity matrix and ® denotes the Kronecker product.
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and c = arg mine ec g,([gl, D,[2]]). Then, from Equation we have
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2
where Equation follows since a(l) + A [1, 1]” -< H = minelec g([gl,D[2]]). The proof
of Equation (T9) 1s given below.

For any real value r, a point P, € C, and the norm “§ -p, ” e U, one has
[Eé[min{rz,Ulz}]

_ (1= PU, <)+ P, Sr)/’z(l—uw(u1 <Vs|y, Sr))ds
0

r2

=r2—/ P(U; < v/s)ds
0
KU r
Srz——m/ s"2 ds (21)
vol(C) Jy
2 2K Uy, m+2

i

T m+2)volC0)
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where v,, = o ( +1) and Equation (21)) follows from assumption |(A.1) O

Proposition A2. Let D 2 (D : D[i] € C, Vi}. Then,
k
(g,(D» —gleigét(D)> < (4/¢) X)a®@) =  min - g(E)
=1 B EL1=D 1

where c; denotes an upper bound on the condition numbers of the matrices A,, Vt.

Proof. Let b; and b, denote upper and lower bounds (respectively) on the eigenvalues of A;, V¢. Let

D = argmin g,D)

D s.t. D[ileC
DIjI=D, 1./
and
D = argmin g,(D)
DeD
and

b
h(D) £ §D}) + || - D} |

Note that 4,(D) is a strongly convex function, and that A (D*) = g,(D*) Vh,D) = b (D D*).
Thus, from the definition of g,(D) in Equation (16), we have

2

2
1 1 1
gD, — D) = =||lvec(D,) — ——— vec(B,) — |[vec(D}) = ———= vec(B,)
2 VI @A, Lon, L, ®A, Lon,
1 2 2
EHVeC _VeC(D:)”I or = 2 “D D7l
= L |IVA,D)I (22)

~ 2b,

Next, define a sequence {D, ; };‘;0 CDsuch D,y =D;and D, ;| =pD,; — b%Vg,(D,,j)), where

D, ;, = D, and I1,(X) denotes the projection of X onto D (i.e., the sequence is the result of successive
iterations of the projected gradient descent algorithm (PGD) for solving arg minyy.p &,(D)).



From the convergence guarantees for PGD, we know that we can asymptotically reach the optimal

D, ie.D,, = D*. Let VD) 2 b, (D - HD<D - blvgt(D))) Then, the update rule for the
’ 1

previously introduced sequence may be rewritten as

1z,
Dt,j+1 = Dt,j - b_lVgt(Dt,j)-

Therefore,

15,
ID, ;41 = DfII> = ID,; - b—IVg,(D,,,) —D*|2

e 2 /e
= D, = D*IP + 578 (D, ) I ~ (¥4 (D,,). D, ~D*)
1
I}
1o 1 (e
<Dy, =D + 5178, (D)1~ 5 (bunDt,,» - DI+ o192 (D,,) ||2>
i 1 1
(23)
b
= (1 - b—“) ID,, - D*|I
i
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= |ID 41 =Dl <(1—-5=-)IID; —D7l
2b,
* 2bl * *
— D, - D}l < (I, = DIl = D, ., = D} 1)
u
2b,
< b_”Dt’j - Dz,j+1 ”a
u
where Equation (23) follows from [4] Section 2.2]. Hence, we have
2 2 2 ~ 2
“Vht(D,yj)” =1,’|Dp,, —D;*“ < 4b12HD,,j -D, . || = 4“Vg,(Dt’j)|| . (24)

Next, we define coordinate PGD sequences {D;ij). }j::go for all clusters i € [k] similarly as was done
in the preceding discussion, with D% =D, and Dgiio = Dgi)*. Let ﬁgA,(D) and Vg,(D) stand for the
I™ columns of the gradients %,(D) and Vg,(D), respectively. Then, the update rule for each cluster

reads as |
O _pd_ 13S0 (pd)
D, =D -3 ¥ gt(Dt’ ) )

where %E”g,(D) denotes the /™ column of the gradient g(i)gA,(D), defined as
i DIi] - Mo (DUl - £V,&M)) 1=1,
§0g,my 2 { (P11 =Tca (Dl - £¥,8®)) ) 1=
0 I #i.
Thusﬁgi)gt(D) = %ig,(D). Hence,
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k
< > 25,80 - &®) (25)
i=1
k
<26, Y (M) - &®™)), 26)
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where Equation (23) follows from the property of the PGD algorithm given in [4, Section 2.2] with
respect to {DEIJ). }j, since the function g,([D,[1], ...,D,[i — 1],gi,D,[i + 1], ..., D,[k]]) is b;-smooth
ine,Vi.

—i

Next, combining Equations (22), (24) and (Z6), we obtain
4b, & ‘
&) - &0 < 3 (40 - ®)).
b“ i=1
O

The next result, Proposition [A3] establishes that the deterministic recursion in Lemma [2] generates a
fast-converging sequence.

Proposition A3. For any A; > O, the recursion 0 < A, .| < A, — k1(4,)" + % implies that
A, = O(ﬁ),for all possible m € (1, ).

Proof. Let

1/m
Fony & <K2+a> ’

Kl n
where « is the smallest positive value such that

1/m 1/ 1/
n K n n

Then, we use inductive arguments to establish that for some constant integers N < ng, one has

A, € [0, F(n— Ny)l, Yn > ny. @27)

To do so, we first prove that A, % 0. For large enough n we have

K
An+l < An - Kl(An)m + 72

Smaxa—;cla’"+ﬁ
a n
1/m
=<L) (1-1)+2
Kym m n
1/m
S(L) ,
Klm

1/m
. . . 1 .. n
Therefore, since x — k;x™ is monotonic for x < (ﬁ) , it is easy to see that A, — 0. Thus,
1

1/m
there must exist integers Ny < ng, and A, < F(ng — Ny) < (ﬁ) . Let us assume that
1

A, € [0, F(t— Ny)l, Vt < nfor some n > nj. Then, we need to show that A, | € [0, F(n+1— Ny)].

‘We have

m Ky
An+1 SAn_K1<An> +7
K
< max  a-ka"+—=2
a€[0,F(n—Ny)] n

)
= F(n— Ny) — & (F(n— Np))" + —.
Thus, proving F(n — Ny) — k; (F(n - NO))m + ';—2 < F(n+1— Ny) will complete the induction.
We observe that

m Ky
F(n— No)— ki (F(n—Np))" + — <Fn+1- Ny)



& F(n—Ny)— F(n+1—-No) <, (F(n— No))" - % 28)

The left hand side of Equation (28) satisfies

K2+a 1/m 1 1/m 1 1/m
F<”‘N0>‘F<”“‘N0>=< . > < N> ‘<ﬁ>
1 — Y0 — 1Yo

_*
—_— n _ NO 9
due to the choice of a. The right hand side of Equation (28)) satisfies
K K Ky +a
Fn—N))"—2-_2,22"°7
Kl( (n 0)) n n  n-— N,
> —
n— NO
This completes the proof. O

Proposition @] establishes a result similar to one proved in [1]].
Proposition A4. We have

1
ID*, -DX| =0 <?) . (29)
Furthermore, for anyD € Dand t > 1
A A 1
&) - g @) =0(1). (30)

Proof. The proof follows along the same lines as that of Lemma 1 in [1]] and is hence omitted. [

S.3 Collection of results used in the main proofs

Lemma AS. [Positive Converging Sums].
Let a,, b, be two real sequences such that for all n, a, > 0,b, >0, Y% a, = o0, 3>, a,b, < o,
iK >0 s.t. |b,. —b,| < Ka,. Then, lim b,=0.

n—+o0o

Proof. Suppose that b, > € foralln > N € N and any € > 0. Then, ), a,b, converges to co.
Therefore, for any € > 0, 3 indices m i such that

b,>¢€, Vne [mj,nj)
b,<e Vne [nj,mj+1).

2

Since, )7, a,b, < oo there exists an index m; such that Zanj a,b, < % Letn € [mj, n;) for any
j > J. Then,
nj—1
|bn - bnj| < Z |bn+l - bnl
m=n
n;—1
< Ka,
m=n
ni—1
K J
< —= a,b
- € n-n
m=n
K
<= anbn
€ m2n
2
S 56_ =€
e K

Therefore, b, < b,,j +e <2eforalln € [m;,n;) and forany j > J. Thus, b, < 2e foralln > m,;. [
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Theorem A6. Donsker’s theorem [3, Ch 19.2, lemma 19.36]
Let F ={fy . x = R, 0 € O} be a set of measurable functions indexed by elements of a bounded
subset © of R%. Suppose that there exists a constant K such that

| fo,(x) = fo,(0)| < K||6) — 055,
forall 8,0, € ®and x € y.
Then, for i.i.d random variables X, X,, ... and for any f in F, define P, f, Pf and G, f as

n

RS =1 fX),

i=1
Pf=Ex[/(X)]
G,f =\/nP,f —Pf).
Assume further that for all f, Pf* < 6% and || f||, < M. Then,
EplllG,llF] = OD),
where ||G, || p = sup,crp|G, 1.

Lemma A7. Let fp(x) e ¢(x, D). Then, for all D, fp(x) satisfies the necessary conditions for
Donsker’s theorem (Theorem[AG)

L fp,(x) = fp,()| < K[|D; =Dy|l;, VD, D, €C;

2. Pf2<8’Vfe{fp:DecC);
3N flle <M, Vfe{fp:DeC};

The proof follows from the definition of #(x, D) and Propositions 2 and 3 in [[1]].

Theorem A8. Quasi-Martingale Convergence Theorem [2].
Let (Q,F,P) be a measurable probability space, let y;, t > 0 be a stochastic sequence and F, its
induced filtration. Let

s 1 i Elyie1 — 7 | Fi] >0,
! 0  otherwise.

Ifforallt,y, > 0and Y,2 E[5,(y;41 — 7)1 < o0, then y, is a quasi-martingale and converges almost
surely. Moreover,

oo
Z”E[m -7 | F]l < 40 as.

t=1
S.4 Experimental results of real world dataset

All experiments presented in this work were performed using software written in Python and executed
on a Linux machine with an Intel Xeon Gold CPU @ 3.20GHz and with 376GBs of memory.

The scRNA dataset comprise 10 cell types and 94, 655 samples. The cell types and their numbers are
listed below:

e B cells: 10, 085;

e Cdl14 monocytes: 2,612 (the smallest cluster size);

e (Cd34 cells: 9,232;

e Cd4 t helper cells: 11,213;

e (Cd56 natural killer cells: 8, 385;

e Cytotoxic T cells: 10,209;

e Memory T cells: 10,224,

e Naive cytotoxic cells: 11,953 (the largest cluster size);

11



Table 1: Description of the data sets, their average clustering accuracy and average running times.

synthetic iris wine 100" - H0news MNIST
sphere
# samples 2500 150 178 351 2034 10000
# clusters 5 3 3 2 20 10
[ 15 15 15 15 20 25
average accuracy over 10 experiments
MF 0.926 0.6667 0.6180 0.6410 0.5349  0.566
cvxMF 0.848 0.7667 0.6910 0.7179 0.5831  0.620

online MF 0.898 0.7040 0.6742 0.6803 0.5782  0.503

online cvxMF  0.899 0.6793 0.6573 0.6963 0.5683  0.543
running time (second) on each dataset

cvxMF 25 0.14 0.21 0.46 22.2 667

online cvxMF 38 6.4 72 6.4 58.4 120

e Naive T cells: 10,479;
e Regulatory T cells: 10, 263.

Besides the synthetic datasets and MNIST dataset mentioned in the paper, we also tested our method
on the Iris, Wine, Ionosphere and 20news datasets from the UCI Machine Learning repository [5].
A detailed description of these dataset can be found in the following Table[I} Since in this case
all data samples have known labels, the performance of the algorithms may be evaluated through
clustering accuracy. Clustering accuracy is calculated by first sorting the columns/rows of the
confusion matrix of dimensions k X k, capturing the label assignments, so as to maximize the trace.
Subsequently, the trace is normalized by the number of samples to produce the desired accuracy values.
The computational complexity is measured in terms of average running time for each algorithm to
converge. All experiments were performed with 4 = 0.1 and 1, 200 iterations. The accuracy reported
is the average over 10 experiments.

From the tabulated results, one can see that when compared to its non-online counterpart, online
cvxMF does not incur a significant loss in accuracy (the loss is upper bounded by 6.7%). When the
size of the dataset increases, the complexity of cvxMF increase dramatically (up to 6000 times). The
online cvxMF algorithm is less affected by the increasing size of », and the increase in complexity is
due to increasing 7, the number of clusters k and dimension m of the data.
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