
Blended Matching Pursuit

Cyrille W. Combettes
Georgia Institute of Technology

Atlanta, GA, USA
cyrille@gatech.edu

Sebastian Pokutta
Zuse Institute Berlin and TU Berlin

Berlin, Germany
pokutta@zib.de

Abstract

Matching pursuit algorithms are an important class of algorithms in signal pro-
cessing and machine learning. We present a blended matching pursuit algorithm,
combining coordinate descent-like steps with stronger gradient descent steps, for
minimizing a smooth convex function over a linear space spanned by a set of atoms.
We derive sublinear to linear convergence rates according to the smoothness and
sharpness orders of the function and demonstrate computational superiority of our
approach. In particular, we derive linear rates for a large class of non-strongly
convex functions, and we demonstrate in experiments that our algorithm enjoys
very fast rates of convergence and wall-clock speed while maintaining a sparsity of
iterates very comparable to that of the (much slower) orthogonal matching pursuit.

1 Introduction

LetH be a separable real Hilbert space, D ⊂ H be a dictionary, and f : H → R be a smooth convex
function. In this paper, we aim at solving the problem:

Find a solution to min
x∈H

f(x) which is sparse relative to D. (1)

Together with fast convergence, achieving high sparsity, i.e., keeping the iterates as linear combi-
nations of a small number of atoms in the dictionary D, is a primary objective and leads to better
generalization, interpretability, and decision-making in machine learning. In signal processing, Prob-
lem (1) encompasses a wide range of applications, including compressed sensing, signal denoising,
and information retrieval, and is often solved with the Matching Pursuit algorithm [Mallat and Zhang,
1993]. Our approach is inspired by the Blended Conditional Gradients algorithm [Braun et al.,
2019] which solves the constrained setting of Problem (1), i.e., minimizing f over the convex hull
conv(D) of the dictionary, and is ultimately based on the Frank-Wolfe algorithm [Frank and Wolfe,
1956] a.k.a. Conditional Gradient algorithm [Levitin and Polyak, 1966]. It enhances the vanilla
Frank-Wolfe algorithm by replacing the linear minimization oracle with a weak-separation oracle
[Braun et al., 2017] and by blending the traditional Frank-Wolfe steps with lazified Frank-Wolfe
steps and projected gradient steps, while still avoiding projections. Frank-Wolfe algorithms are
particularly well-suited for problems with a desired sparsity in the solution (see, e.g., Jaggi [2013]
and the references therein) however, from an optimization perspective, although they approximate the
optimal descent direction−∇f(xt) via the linear minimization oracle vFW

t ← arg minD〈∇f(xt), v〉,
they move in the direction vFW

t − xt in order to ensure feasibility, which provides less progress.

An analogy between Frank-Wolfe algorithms and the unconstrained Problem (1) was proposed by
Locatello et al. [2017]. They unified the Frank-Wolfe and Matching Pursuit algorithms, and proposed
a Generalized Matching Pursuit algorithm (GMP) and an Orthogonal Matching Pursuit algorithm
(OMP) for solving Problem (1), which descend in the directions vFW

t . Essentially, Locatello et al.
[2017] established that GMP corresponds to the vanilla Frank-Wolfe algorithm and OMP corresponds
to the Fully-Corrective Frank-Wolfe algorithm. GMP and OMP converge with similar rates in the
various regimes, namely with a sublinear rate for smooth convex functions and with a linear rate for

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

smooth strongly convex functions, however they have different advantages: GMP converges (much)
faster in wall-clock time while OMP offers (much) sparser iterates. The interest in these algorithms
stems from the fact that they work in the general setting of smooth convex functions in Hilbert spaces
and that their convergence analyses do not require incoherence or restricted isometry properties (RIP,
Candès and Tao [2005]) of the dictionary, which are quite strong assumptions from an optimization
standpoint. For an in-depth discussion of the advantages of GMP and OMP over other methods, e.g.,
in Tropp [2004], Gribonval and Vandergheynst [2006], Davenport and Wakin [2010], Shalev-Shwartz
et al. [2010], Temlyakov [2013, 2014, 2015], Tibshirani [2015], Yao and Kwok [2016], and Nguyen
and Petrova [2017], we refer the interested reader to Locatello et al. [2017]. In a follow-up work,
Locatello et al. [2018] presented an Accelerated Matching Pursuit algorithm.

We aim at unifying the best of GMP (speed) and OMP (sparsity) into a single algorithm by blending
them strategically. However, while the overall idea is reasonably natural, we face considerable
challenges as many important features of Frank-Wolfe methods do not apply anymore in the Matching
Pursuit setting and cannot be as easily overcome as in Locatello et al. [2017], requiring a different
analysis. For example, Frank-Wolfe (duality) gaps are not readily available but they are crucial in
monitoring the blending, and further key components, such as the weak-separation oracle, require
modifications.

Contributions. We propose a Blended Matching Pursuit algorithm (BMP), a fast and sparse first-
order method for solving Problem (1). Our method unifies the best of GMP (speed) and OMP
(sparsity) into one algorithm, which is of fundamental interest for practitioners. We establish a
continuous range of convergence rates between O(1/εp) and O(ln 1/ε), where ε > 0 is the desired
accuracy and p > 0 depends on the properties of the function. In particular, we derive linear
rates of convergence for a large class of smooth convex but non-strongly convex functions. Lastly,
we demonstrate the computational superiority of BMP over state-of-the-art methods, with BMP
converging the fastest in wall-clock time while maintaining its iterates at close-to-optimal sparsity,
and this without requiring sparsity-inducing constraints.

Outline. We introduce notions and notation in Section 2. We present the Blended Matching Pursuit
algorithm in Section 3 with the convergence analyses in Section 3.1. Computational experiments are
provided in Section 4. Additional experiments and the proofs can be found in the Appendix.

2 Preliminaries

We work in a separable real Hilbert space (H, 〈·, ·〉) with induced norm ‖ · ‖. A set D ⊂ H of
normalized vectors is a dictionary if it is at most countable and cl(span(D)) = H, and in this case its
elements are referred to as atoms. For any set S ⊆ H, let S ′ := S ∪ −S denote the symmetrization
of S and DS := supu,v∈S ‖u − v‖ denote the diameter of S. If S is closed and convex, let projS
denote the orthogonal projection onto S and dist(·,S) := ‖ id−projS ‖ denote the distance to S.
For Problem (1) to be feasible, we will assume f to be coercive, i.e., lim‖x‖→+∞ f(x) = +∞. Since
f is convex, this is actually a mild assumption when arg minH f 6= ∅.

Let f : H → R be a Fréchet differentiable function. In the following, we use extended notions of
smoothness and strong convexity by introducing orders, and we weaken and generalize the notion of
strong convexity to that of sharpness (see, e.g., Roulet and d’Aspremont [2017] and Kerdreux et al.
[2019] for recent work). We say that f is:

(i) smooth of order ` > 1 if there exists L > 0 such that for all x, y ∈ H,

f(y)− f(x)− 〈∇f(x), y − x〉 6 L

`
‖y − x‖`,

(ii) strongly convex of order s > 1 if there exists S > 0 such that for all x, y ∈ H,

f(y)− f(x)− 〈∇f(x), y − x〉 > S

s
‖y − x‖s,

(iii) sharp of order θ ∈]0, 1[on K if K ⊂ H is a bounded set, ∅ 6= arg minH f ⊂ int(K), and
there exists C > 0 such that for all x ∈ K,

dist

(
x, arg min

H
f

)
6 C

(
f(x)−min

H
f
)θ
.

2

If needed, we may specify the constants by introducing f as L-smooth, S-strongly convex, or C-sharp.
The following fact, whose result was already used in Nemirovskii and Nesterov [1985], provides a
bound on the sharpness order of a smooth function. A proof is available in Appendix D.
Fact 2.1. Let f : H → R be smooth of order ` > 1, convex, and sharp of order θ ∈]0, 1[on K.
Then θ ∈]0, 1/`].

2.1 On sharpness and strong convexity

Notice that if f : H → R is Fréchet differentiable and strongly convex of order s > 1, then
card(arg minH f) = 1. Let {x∗} := arg minH f . It follows directly from∇f(x∗) = 0 that for any
bounded set K ⊂ H such that x∗ ∈ int(K), f is sharp of order θ = 1/s on K. Thus, strong convexity
implies sharpness. However, not every sharp function is strongly convex; moreover, the next example
shows that not every sharp and convex function is strongly convex.
Example 2.2 (Distance to a convex set). Let C ⊂ H be a nonempty, closed, and bounded convex
set, and K ⊂ H be a bounded set such that C ⊂ int(K). The function f : x ∈ H 7→ dist(x, C)2 =
‖x− projC(x)‖2 is convex, and it is sharp of order θ = 1/2 on K. Indeed, since arg minH f = C
and minH f = 0, we have for all x ∈ K,

dist

(
x, arg min

H
f

)
= ‖x− projC(x)‖ =

(
f(x)−min

H
f
)1/2

.

Now, suppose C contains more than one element. Then, f has more than one minimizer. However, a
function that is strongly convex of order s > 1 has no more than one minimizer. Therefore, f cannot
be strongly convex of order s, for all s > 1. Notice that f is also a smooth function, of order ` = 2.

Hence, sharpness is a more general notion of strong convexity. It is a local condition around the
optimal solutions while strong convexity is a global condition. In fact, building on the Łojasiewicz
inequality of Łojasiewicz [1963], [Bolte et al., 2007, Equation (15)] showed that sharpness always
holds in finite dimensional spaces for reasonably well-behaved convex functions; see Lemma 2.3.
Polynomial convex functions, the `p-norms, the Huber loss (see Appendix A.4), and the rectifier
ReLU are simple examples of such functions.
Lemma 2.3. Let f : Rn →]−∞,+∞] be a lower semicontinuous, convex, and subanalytic function
with {x ∈ Rn | 0 ∈ ∂f(x)} 6= ∅. Then for any bounded set K ⊂ Rn, there exists θ ∈]0, 1[and
C > 0 such that for all x ∈ K,

dist

(
x, arg min

Rn
f

)
6 C

(
f(x)−min

Rn
f
)θ
.

Strong convexity is a standard requirement to prove linear convergence rates on smooth convex
objectives but, regrettably, this considerably restricts the set of candidate functions. For our Blended
Matching Pursuit algorithm, we will only require sharpness to establish linear convergence rates, thus
including a larger class of functions.

2.2 Matching Pursuit algorithms

For y ∈ H and f : x ∈ H 7→ ‖y − x‖2/2, Problem (1) falls in the area of sparse recovery and is
often solved with the Matching Pursuit algorithm [Mallat and Zhang, 1993]. The algorithm recovers a
sparse representation of the signal y from the dictionaryD by sequentially pursuing the best matching
atom. At each iteration, it searches for the atom vt ∈ D most correlated with the residual y − xt, i.e.,
vt := arg maxv∈D |〈y − xt, v〉|, and adds it to the linear decomposition of the current iterate xt to
form the new iterate xt+1, keeping track of the active set St+1 = St ∪ {vt}. However, this does not
prevent the algorithm from selecting atoms that have already been added in earlier iterations or that
are redundant, hence affecting sparsity. The Orthogonal Matching Pursuit variant [Pati et al., 1993,
Davis et al., 1994] overcomes this by computing the new iterate as the projection of the signal y onto
St ∪ {vt}; see Chen et al. [1989] and Tropp [2004] for analyses and Zhang [2009] for an extension to
the stochastic case. Thus, y − xt+1 becomes orthogonal to the active set.

In order to solve Problem (1) for any smooth convex objective, Locatello et al. [2017] proposed
the Generalized Matching Pursuit (GMP) and Generalized Orthogonal Matching Pursuit (GOMP)
algorithms (Algorithm 1); slightly abusing notation we will refer to the latter simply as Orthogonal

3

Matching Pursuit (OMP). The atom selection subroutine is implemented with a Frank-Wolfe linear
minimization oracle arg minv∈D′〈∇f(xt), v〉 (Line 3). The solution vt to this oracle is guaranteed
to be a descent direction as it satisfies 〈∇f(xt), vt〉 6 0 by symmetry of D′, and 〈∇f(xt), vt〉 = 0 if
and only if xt ∈ arg minH f . Notice that for y ∈ H and f : x ∈ H 7→ ‖y − x‖2/2, the GMP and
OMP variants of Algorithm 1 recover the original Matching Pursuit and Orthogonal Matching Pursuit
algorithms respectively. In particular, up to a sign which does not affect the sequence of iterates,
arg maxv∈D |〈y − xt, v〉| ⇔ arg minv∈D′〈∇f(xt), v〉. In practice, the main difference in the case
of general smooth convex functions is that the OMP variant (Line 6) is much more expensive, as a
closed-form solution to this projection step is not available anymore. Hence, Line 6 is typically a
sequence of projected gradient steps and OMP is significantly slower than GMP to converge.

Algorithm 1 Generalized/Orthogonal Matching Pursuit (GMP/OMP)
Input: Start atom x0 ∈ D, number of iterations T ∈ N∗.
Output: Iterates x1, . . . , xT ∈ span(D).

1: S0 ← {x0}
2: for t = 0 to T − 1 do
3: vt ← arg min

v∈D′
〈∇f(xt), v〉

4: St+1 ← St ∪ {vt}
5: GMP variant: xt+1 ← arg min

xt+Rvt
f

6: OMP variant: xt+1 ← arg min
span(St+1)

f

7: end for

2.3 Weak-separation oracle

We present in Oracle 2 the weak-separation oracle, a modified version of the one first introduced in
Braun et al. [2017] and used in, e.g., Lan et al. [2017], Braun et al. [2019]. Note that the modification
asks for an unconstrained improvement, whereas the original weak-separation oracle required an
improvement relative to a reference point. As such, our variant here is even simpler than the original
weak-separation oracle. The oracle is called in Line 11 by the Blended Matching Pursuit algorithm.

Oracle 2 Weak-separation LPsepD(c, φ, κ)

Input: Linear objective c ∈ H, objective value φ 6 0, accuracy κ > 1.
Output: Either atom v ∈ D such that 〈c, v〉 6 φ/κ (positive call), or false ensuring 〈c, z〉 > φ for
all z ∈ conv(D) (negative call).

The weak-separation oracle determines whether there exists an atom v ∈ D such that 〈c, v〉 6 φ/κ,
and thereby relaxes the Frank-Wolfe linear minimization oracle. If not, then this implies that conv(D)
can be separated from the ambient space by c and φ with the linear inequality 〈c, z〉 > φ for all
z ∈ conv(D). In practice, the oracle can be efficiently implemented using caching, i.e., first testing
atoms that were already returned during previous calls as they may satisfy the condition here again.
In this case, caching also preserves sparsity. If no active atom satisfies the condition, the oracle can be
solved, e.g., by means of a call to a linear optimization oracle; see Braun et al. [2017] for an in-depth
discussion. Lastly, we would like to briefly note that the parameter κ can be used to further promote
positive calls over negative calls, by weakening the improvement requirement and therefore speeding
up the oracle. Indeed, only negative calls need a full scan of the dictionary.

3 The Blended Matching Pursuit algorithm

We now present our Blended Matching Pursuit algorithm (BMP) in Algorithm 3. Note that although
we blend steps, we maintain the explicit decomposition of the iterates xt =

∑nt
j=1 λt,ijaij as linear

combinations of the atoms.
Remark 3.1 (Algorithm design). BMP actually does not require the atoms to have exactly the same
norm and only needs the dictionary to be bounded, whether it be for ensuring the convergence rates
or for computations; one could further take advantage of this to add weights to certain atoms. Line 6

4

Algorithm 3 Blended Matching Pursuit (BMP)
Input: Start atom x0 ∈ D, parameters η > 0, κ > 1, and τ > 1, number of iterations T ∈ N∗.
Output: Iterates x1, . . . , xT ∈ span(D).

1: S0 ← {x0}
2: φ0 ← min

v∈D′
〈∇f(x0), v〉/τ

3: for t = 0 to T − 1 do
4: vFW-S

t ← arg min
v∈S′t

〈∇f(xt), v〉

5: if
〈
∇f(xt), v

FW-S
t

〉
6 φt/η then

6: ∇̃f(xt)← projspan(St)(∇f(xt))
7: xt+1 ← arg min

xt+R∇̃f(xt)
f {constrained step}

8: St+1 ← St
9: φt+1 ← φt

10: else
11: vt ← LPsepD′(∇f(xt), φt, κ)
12: if vt = false then
13: xt+1 ← xt {dual step}
14: St+1 ← St
15: φt+1 ← φt/τ
16: else
17: xt+1 ← arg min

xt+Rvt
f {full step}

18: St+1 ← St ∪ {vt}
19: φt+1 ← φt
20: end if
21: end if
22: Optional: Correct St+1

23: end for

is simply taking the component of ∇f(xt) parallel to span(St), which can be achieved by basic
linear algebra and costs O(n card(St)2) when H = Rn. The line searches Lines 7 and 17 can
be replaced with explicit step sizes using the smoothness of f (see Fact B.2 in the Appendix). The
purpose of (the optional) Line 22 is to reoptimize the active set St+1, e.g., by reducing it to a subset
that forms a basis for its linear span. One could also obtain further sparsity by removing atoms
whose coefficient in the decomposition of the iterate is smaller than some threshold δ > 0.

Blending. BMP aims at unifying the best of GMP and OMP. As seen in Section 2.2, an OMP
iteration is a sequence of projected gradient (PG) steps. The idea is that the sequence of PG steps
constituting an OMP iteration is actually overkill: there is a sweet spot where further optimizing
over span(St) is less effective than adding a new atom and taking a GMP step into a (possibly)
new space. However, PG steps have the benefit of preserving sparsity, since no new atom is added.
Furthermore, GMP steps require an expensive scan of the dictionary to output the descent direction
vFW
t ← arg minv∈D′〈∇f(xt), v〉. To remedy this, BMP blends constrained steps (PG steps, Line 7)

with full steps (lazified GMP steps, Line 17) by promoting constrained steps as long as the progress
in function value is comparable to that of a GMP step, else by taking a full step in an approximate
direction vt (with cheap computation via Oracle 2) such that the progress is comparable to that of a
GMP step. Therefore, to monitor this blending of steps, we wish to compare 〈∇f(xt), v

FW-S
t 〉 and

〈∇f(xt), vt〉 to 〈∇f(xt), v
FW
t 〉, which quantities measure the progress in function value offered by a

constrained step, a full step, and a GMP step respectively (see proofs in the Appendix).

Dual gap estimates. The aforementioned comparisons however cannot be made directly as the
quantity 〈∇f(xt), v

FW
t 〉 is (deliberately) not computed; computing it requires an expensive complete

scan of the dictionary. Instead, we use an estimation of this quantity, by introducing the dual gap
estimate |φt|. This designation comes from the fact that −〈∇f(xt), v

FW
t 〉 is our equivalent of the

duality gap from the constrained setting (see, e.g., Jaggi [2013]), and this will guide how we build our
estimation. Indeed, sinceD′ is symmetric and assuming 0 ∈ int(conv(D′)), there exists (an unknown)

5

ρ > 0 such that {x0, . . . , xT } ∪ arg minH f ⊂ ρ conv(D′). Then for all x∗ ∈ arg minH f ,

εt := f(xt)− f(x∗) 6 〈∇f(xt), xt − x∗〉
6 max
u,v∈ρ conv(D′)

〈∇f(xt), u− v〉 = −2ρ〈∇f(xt), v
FW
t 〉, (2)

which is our desired inequality. We set φ0 ← 〈∇f(x0), vFW
0 〉/τ (Line 2) so ε0 6 2τρ|φ0| by (2).

The criterion in Line 5 compares 〈∇f(xt), v
FW-S
t 〉 to φt. If this quantity is below the threshold φt,

then a constrained step is not taken and the weak-separation oracle (Line 11, Oracle 2) is called to
search for an atom vt satisfying 〈∇f(xt), vt〉 6 φt. If the oracle cannot find such an atom, then
a full step is not taken and it returns a negative call with the certificate 〈∇f(xt), v

FW
t 〉 > φt. In

this case, BMP has detected an improved dual gap estimate and takes a dual step (Line 13): by (2),
this implies that εt 6 2ρ|φt| so with φt+1 ← φt/τ and xt+1 ← xt, we recover εt+1 6 2τρ|φt+1|.
Furthermore, observe that this update is a geometric rescaling which ensures that BMP requires only
Ndual = O(ln 1/ε) dual steps (see proofs). Thus, the total number of negative calls, i.e., the number
of iterations requiring a complete scan of the dictionary, is only O(ln 1/ε). Therefore, for this and
for the blending of steps, the dual gap estimates |φt| are the key to the speed-up realized by BMP.

Parameters. BMP involves three (hyper-)parameters η > 0, κ > 1, and τ > 1 to be set before
running the algorithm. The parameter η needs to be tuned carefully, as its value affects the criterion
in Line 5 to promote either speed of convergence (e.g., η ∼ 0.1, promoting full steps) or sparsity of
the iterates (e.g., η ∼ 1000, promoting constrained steps). In our experiments (see Section 4 and
the Appendix), we found that setting η ∼ 5 leads to close to both maximal speed of convergence
and sparsity of the iterates, with the default choices κ = τ = 2. In this setting, BMP converges
(much) faster than GMP and has iterates with sparsity very comparable to that of OMP, and therefore
it is possible to enjoy both properties of speed and sparsity simultaneously. Note that the value
of κ also impacts the range of values of η to which BMP is sensitive, since the criterion (Line 5)
tests minv∈S′t〈∇f(xt), v〉 6 φt/η while the weak-separation oracle asks for v ∈ D′ such that
〈∇f(xt), v〉 6 φt/κ. In specific experiments, parameter tuning might further improve performance.

3.1 Convergence analyses

We start with the simpler case of smooth convex functions of order ` > 1 (Theorem 3.2). Our
main result is Theorem 3.3, which subsumes the case of strongly convex functions. To establish the
convergence rates of GMP and OMP, Locatello et al. [2017] assume knowledge of an upper bound on
sup{‖x∗‖D′ , ‖x0‖D′ , . . . , ‖xT ‖D′} where ‖ · ‖D′ : x ∈ H 7→ inf{ρ > 0 | x ∈ ρ conv(D′)} is the
atomic norm. In Locatello et al. [2018], this is resolved by working with the atomic norm ‖ · ‖D′
instead of the Hilbert space induced norm ‖ · ‖ to, e.g., define smoothness and strong convexity of f
and derive the proofs, but ‖ · ‖D′ itself can be difficult to derive in many applications. In contrast, we
need neither the finiteness assumption nor to change the norm, however we assume f to be coercive
to ensure feasibility of Problem (1), a reasonably mild assumption.
Theorem 3.2 (Smooth convex case). Let D ⊂ H be a dictionary such that 0 ∈ int(conv(D′)) and
let f : H → R be smooth of order ` > 1, convex, and coercive. Then the Blended Matching Pursuit
algorithm (Algorithm 3) ensures that f(xt)−minH f 6 ε for all t > T where T = O

(
(L/ε)1/(`−1)

)
.

We now present our main result in its full generality. We provide the general convergence rates of
BMP (Algorithm 3) in Theorem 3.3. Recall that sharpness is implied by strong convexity and that it
is a very mild assumption in finite dimensional spaces as it is satisfied by all well-behaved convex
functions (Lemma 2.3).
Theorem 3.3 (Smooth convex sharp case). LetD ⊂ H be a dictionary such that 0 ∈ int(conv(D′))
and let f : H → R be L-smooth of order ` > 1, convex, coercive, and C-sharp of order θ ∈]0, 1/`]
on K. Then the Blended Matching Pursuit algorithm (Algorithm 3) ensures that f(xt)−minH f 6 ε
for all t > T where

T =

O
(
C1/(1−θ)L1/(`−1) ln

(
C|φ0|
ε1−θ

))
if `θ = 1

O

((
C`L

ε1−`θ

)1/(`−1))
if `θ < 1.

Moreover, dist(xt, arg minH f)→ 0 as t→ +∞ at same rate.

6

If f is not strongly convex then Locatello et al. [2017] only guarantee a sublinear convergence rate
O(1/ε) for GMP and OMP, while Theorem 3.3 can still guarantee higher convergence rates, up to
linear convergence O(ln 1/ε) if `θ = 1, using sharpness. Note that in the popular case of smooth
strongly convex functions of orders ` = 2 and s = 2, Theorem 3.3 guarantees a linear convergence
rate as these functions are sharp of order θ = 1/2 (with constant C =

√
2/S) and thus satisfy

`θ = 1. For completeness, we also study this special case in Appendix C, with a simpler proof. In
conclusion, Theorem 3.3 extends linear convergence rates to a large class of non-strongly convex
functions solving Problem (1).

Remark 3.4 (Optimality of the convergence rates). Let n 6 +∞ be the dimension of H. Ne-
mirovskii and Nesterov [1985] provided unimprovable rates when solving Problem (1) in different
cases. These optimal rates are reported in Table 1, where we compare them to those of BMP proved
in this paper (Theorems 3.2 and 3.3). The third column gives the lower bounds on complexity stated
in Nemirovskii and Nesterov [1985, Equations (1.20), (1.21’), and (1.21)]. Note that our rates are
dimension independent and hold globally across iterations. It remains an open question to determine
whether the gap in the exponent can be closed by accelerating BMP.

Table 1: Comparison of the rates of BMP vs. the lower bounds on complexity.

Properties of f BMP rate Lower bound on complexity

Smooth convex T (ε) = O
(

1

ε1/(`−1)

)
T (ε) = Ω

(
min

{
n,

1

ε1/(1.5`−1)

})
Smooth convex sharp T (ε) = O

(
ln

(
1

ε

))
T (ε) = Ω

(
min

{
n, ln

(
1

ε

)})
with ` = 2, θ = 1/2

Smooth convex sharp T (ε) = O
(

1

ε(1−`θ)/(`−1)

)
T (ε) = Ω

(
min

{
n,

1

ε(1−`θ)/(1.5`−1)

})
with `θ < 1

4 Computational experiments

We implemented BMP in Python 3 along with GMP and OMP [Locatello et al., 2017], the Accelerated
Matching Pursuit algorithm (accMP) [Locatello et al., 2018], and the Blended Conditional Gradients
(BCG) [Braun et al., 2019] and Conditional Gradient with Enhancement and Truncation (CoGEnT)
[Rao et al., 2015] algorithms for completeness. All algorithms share the same code framework to
ensure fair comparison. No enhancement beyond basic coding was performed. We ran the experiments
on a laptop under Linux Ubuntu 18.04 with Intel Core i7 3.5GHz CPU and 8GB RAM. The random
data are drawn from Gaussian distributions. For GMP, OMP, BCG, and CoGEnT, we represented the
dual gaps by −minv∈D′〈∇f(xt), v〉, yielding a zig-zag plot dissimilar to the stair-like plot of the
dual gap estimates |φt| of BMP. The Appendix contains additional experiments.

4.1 Comparison of BMP vs. GMP, OMP, BCG, and CoGEnT

Let H be the Euclidean space (Rn, 〈·, ·〉) and D be the set of signed canonical vectors
{±e1, . . . ,±en}. Suppose we want to learn the (sparse) source x∗ from observed data y := Ax∗+w,
where A ∈ Rm×n and where w ∼ N (0, σ2Im) is the noise in the observed y. The general and most
intuitive formulation of the problem is minx∈Rn ‖y−Ax‖22 s.t. ‖x‖0 6 ‖x∗‖0 =: s but the `0-pseudo
norm constraint is nonconvex and makes the problem NP-hard and therefore intractable in many
situations [Natarajan, 1995]. To remedy this, one can handle the sparsity constraint in various ways,
either by completely removing it and relying on an algorithm inherently promoting sparsity (as done
in BMP, GMP, and OMP), or through a convex relaxation of the constraint, often via the `1-norm, and
then solving the new constrained convex problem minx∈Rn ‖y −Ax‖22 s.t. ‖x‖1 6 ‖x∗‖1 (as done
in BCG and CoGEnT). We ran a comparison of these methods, where we favorably provided the con-
straint ‖x‖1 6 ‖x∗‖1 for BCG and CoGEnT although x∗ is unknown. We set m = 500, n = 2000,
s = 100, and σ = 0.05. In BMP, we set κ = τ = 2 and we chose η = 5; see Appendix A.1 for an
in-depth sensitivity analysis of BMP with respect to η. We did not perform any additional correction
of the active sets (Line 22). Note that [Rao et al., 2015, Table III] demonstrated the superiority of

7

CoGEnT over CoSaMP [Needell and Tropp, 2009], Subspace Pursuit [Dai and Milenkovic, 2009],
and Gradient Descent with Sparsification [Garg and Khandekar, 2009] on an equivalent experiment
and we therefore do not compare to those methods.

Figure 1: Comparison of BMP vs. GMP, OMP, BCG, and CoGEnT, with η = 5.

Figure 1 shows that BMP is the fastest algorithm in wall-clock time and has close-to-optimal sparsity.
It is important to stress that, unlike BCG and CoGEnT, BMP achieves this while having no explicit
sparsity-promoting constraint, regularization, nor information on x∗. Thus, when ‖x∗‖1 is not
provided, which is the case in most applications, BCG and CoGEnT would require a hyper-parameter
tuning of the sparsity-inducing constraint (or, equivalently, the Lagrangian penalty parameters), such
as the radius of the `1-ball [Tibshirani, 1996], as used here, or the trace-norm-ball [Fazel et al., 2001].
OMP and CoGEnT converge faster per-iteration, as expected, given that they solve a reoptimization
problem at each iteration, however this is very costly and the disadvantage becomes evident in
wall-clock time performance. Note that another “obvious” choice for an algorithm would be projected
gradient descent, however the provided sparsity is far from sufficient (see Appendix A.2).

Figure 2: Comparison in NMSE of BMP vs. GMP, OMP, BCG, and CoGEnT, with η = 5.

In Figure 2, we compare the Normalized Mean Squared Error (NMSE) of the different methods.
The NMSE at iterate xt is defined as ‖xt − x∗‖22/‖x∗‖22. The plots show a rebound occurring once
the NMSE reaches ∼ 10−4, which is due to the algorithms overfitting to the noisy measurements
y. A post-processing step can mitigate the rebound via early stopping or by removing atoms whose
coefficient in the decomposition of the iterate are smaller than some threshold δ > 0. We used early
stopping on a validation set and present the test error ‖ytest −AtestxT ‖22/mtest on a test set in Table 2,
where xT is the solution iterate for each algorithm. For completeness, we also reported the results for
the Gradient Hard Thresholding Pursuit (GraHTP) and Fast Gradient Hard Thresolding Pursuit (Fast
GraHTP) algorithms [Yuan et al., 2018], for which we favorably set k = ‖x∗‖0. As expected, GMP

8

performs the worst on the test set because its NMSE does not achieve sufficient convergence (see
Figure 2), highlighting the importance of a clean, i.e., sparse, decomposition into the dictionary D.

Table 2: Test error achieved using early stopping on a validation set.

Algorithm GMP OMP BMP BCG CoGEnT GraHTP Fast GraHTP

Test error 0.1917 0.0036 0.0037 0.0068 0.0043 0.0036 0.0037

The Appendix contains additional experiments on different objective functions: an arbitrarily chosen
norm (Appendix A.3), the Huber loss (Appendix A.4), the distance to a convex set (Appendix A.5),
and a logistic regression loss (Appendix A.6). The conclusions are identical.

4.2 Comparison of BMP vs. accMP

Locatello et al. [2018] recently provided an Accelerated Matching Pursuit algorithm (accMP) for
solving Problem (1). We implemented the same code as theirs, using the exact same parametrization.
The code framework matches the one we used for BMP. We ran BMP on their toy data example and
compared the results against accMP (which they labeled accelerated steepest in their plot); notice
that we recovered their (per-iteration) plot exactly. The experiment is to minimize f : x ∈ R100 7→
‖x− b‖22/2 over the linear span of D, where D is dictionary of 200 randomly chosen atoms in R100

and b ∈ R100 is also randomly chosen. The parameters, kindly provided by the authors of Locatello
et al. [2018], for accMP were L = 1000 and ν = 1. We report the results in Figure 3.

Figure 3: Comparison of BMP vs. accMP, with η = 3.

We see that BMP outperforms accMP in both speed of convergence and sparsity of the iterates. In
fact, in terms of sparsity, accMP needs to use all available atoms to converge while BMP needs only
half as much. Furthermore, accMP needs 75% of all available atoms to start converging significantly
while BMP starts to converge instantaneously. We suspect that this is due to the following: accMP
accelerates coordinate descent-like directions, which might be relatively bad approximations of
the actual descent direction −∇f(xt), whereas BMP is working directly with (the projection of)
−∇f(xt), achieving much more progress and offsetting the effect of acceleration.

5 Final remarks

We presented a Blended Matching Pursuit algorithm (BMP) which enjoys both properties of fast
rate of convergence and sparsity of the iterates. More specifically, we derived linear convergence
rates for a large class of non-strongly convex functions solving Problem (1), and we showed that our
blending approach outperforms the state-of-the-art methods in speed of convergence while achieving
close-to-optimal sparsity, and this without requiring sparsity-inducing constraints nor regularization.
Although BMP already outperforms the Accelerated Matching Pursuit algorithm [Locatello et al.,
2018] in our experiments, we believe it is also amenable to acceleration.

Acknowledgments

Research reported in this paper was partially supported by NSF CAREER award CMMI-1452463.

9

References

J. Bolte, A. Daniilidis, and A. Lewis. The Łojasiewicz inequality for nonsmooth subanalytic functions with
applications to subgradient dynamical systems. SIAM Journal on Optimization, 17(4):1205–1223, 2007.

G. Braun, S. Pokutta, and D. Zink. Lazifying conditional gradient algorithms. In Proceedings of the 34th
International Conference on Machine Learning, pages 566–575, 2017.

G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of conditional
gradients. In Proceedings of the 36th International Conference on Machine Learning, pages 735–743, 2019.

E. J. Candès and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):
4203–4215, 2005.

S. Chen, S. A. Billings, and W. Luo. Orthogonal least squares methods and their application to non-linear system
identification. International Journal of Control, 50(5):1873–1896, 1989.

L. Condat. Fast projection onto the simplex and the `1 ball. Mathematical Programming, 158(1):575–585, 2016.

W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions
on Information Theory, 55(5):2230–2249, 2009.

M. A. Davenport and M. B. Wakin. Analysis of orthogonal matching pursuit using the restricted isometry
property. IEEE Transactions on Information Theory, 56(9):4395–4401, 2010.

G. Davis, S. Mallat, and Z. Zhang. Adaptive time-frequency decompositions with matching pursuits. Optical
Engineering, 33(7):2183–2191, 1994.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application to minimum order system
approximation. In Proceedings of the American Control Conference, pages 4734–4739, 2001.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly, 3(1-2):
95–110, 1956.

R. Garg and R. Khandekar. Gradient descent with sparsification: An iterative algorithm for sparse recovery
with restricted isometry property. In Proceedings of the 26th International Conference on Machine Learning,
pages 337–344, 2009.

R. Gribonval and P. Vandergheynst. On the exponential convergence of matching pursuits in quasi-incoherent
dictionaries. IEEE Transactions on Information Theory, 52(1):255–261, 2006.

I. Guyon, S. Gunn, A. Ben-Hur, and G. Dror. Result analysis of the NIPS 2003 feature selection challenge. In
Advances in Neural Information Processing Systems 17, pages 545–552. 2005.

P. J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35(1):73–101, 1964.

M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning, pages 427–435, 2013.

T. Kerdreux, A. d’Aspremont, and S. Pokutta. Restarting Frank-Wolfe. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics, pages 1275–1283, 2019.

G. Lan, S. Pokutta, Y. Zhou, and D. Zink. Conditional accelerated lazy stochastic gradient descent. In
Proceedings of the 34th International Conference on Machine Learning, pages 1965–1974, 2017.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathematics and
Mathematical Physics, 6(5):1–50, 1966.

F. Locatello, R. Khanna, M. Tschannen, and M. Jaggi. A unified optimization view on generalized matching
pursuit and Frank-Wolfe. In Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics, pages 860–868, 2017.

F. Locatello, A. Raj, S. P. Karimireddy, G. Rätsch, B. Schölkopf, S. U. Stich, and M. Jaggi. On matching pursuit
and coordinate descent. In Proceedings of the 35th International Conference on Machine Learning, pages
3198–3207, 2018.

S. Łojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. In Les Équations aux Dérivées
Partielles, 117, pages 87–89. Colloques Internationaux du CNRS, 1963.

10

S. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal
Processing, 41(12):3397–3415, 1993.

B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 24(2):227–234,
1995.

D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied
and Computational Harmonic Analysis, 26(3):301–321, 2009.

A. S. Nemirovskii and Y. E. Nesterov. Optimal methods of smooth convex minimization. USSR Computational
Mathematics and Mathematical Physics, 25(2):21–30, 1985.

H. Nguyen and G. Petrova. Greedy strategies for convex optimization. Calcolo, 54(1):207–224, 2017.

Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal matching pursuit: recursive function approximation
with applications to wavelet decomposition. In Proceedings of the 27th Asilomar Conference on Signals,
Systems, and Computers, pages 40–44, 1993.

N. Rao, S. Shah, and S. Wright. Forward-backward greedy algorithms for atomic norm regularization. IEEE
Transactions on Signal Processing, 63(21):5798–5811, 2015.

V. Roulet and A. d’Aspremont. Sharpness, restart and acceleration. In Advances in Neural Information
Processing Systems 30, pages 1119–1129. 2017.

S. Shalev-Shwartz, N. Srebro, and T. Zhang. Trading accuracy for sparsity in optimization problems with
sparsity constraints. SIAM Journal on Optimization, 20:2807–2832, 2010.

V. Temlyakov. Chebushev greedy algorithm in convex optimization. arXiv preprint arXiv:1312.1244, 2013.

V. Temlyakov. Greedy algorithms in convex optimization on Banach spaces. In Proceedings of the 48th Asilomar
Conference on Signals, Systems, and Computers, pages 1331–1335, 2014.

V. Temlyakov. Greedy approximation in convex optimization. Constructive Approximation, 41(2):269–296,
2015.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B
(Methodological), 58(1):267–288, 1996.

R. J. Tibshirani. A general framework for fast stagewise algorithms. Journal of Machine Learning Research, 16
(1):2543–2588, 2015.

J. A. Tropp. Greed is good: algorithmic results for sparse approximation. IEEE Transactions on Information
Theory, 50(10):2231–2242, 2004.

Q. Yao and J. T. Kwok. Greedy learning of generalized low-rank model. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence, pages 2294–2300, 2016.

X.-T. Yuan, P. Li, and T. Zhang. Gradient hard thresholding pursuit. Journal of Machine Learning Research, 18
(166):1–43, 2018.

T. Zhang. On the consistency of feature selection using greedy least squares regression. Journal of Machine
Learning Research, 10:555–568, 2009.

11

A Additional computational experiments

We provide the sensitivity analysis to the experiment in Figure 1 in Appendix A.1, and the comparison
to the projected gradient method in Appendix A.2. We then conduct additional experiments on a vari-
ety of objective functions: an arbitrarily chosen norm (Appendix A.3), the Huber loss (Appendix A.4),
the distance to a convex set (Appendix A.5), and a logistic regression loss (Appendix A.6).

A.1 Sensitivity of BMP to the parameter η

Here we report the sensitivity analysis of BMP for the data in Section 4.1. We ran BMP (Algorithm 3)
for values of η in {100, 10, 5, 2, 1}. We set κ = 2 and τ = 2 and did not activate the correction of
atoms (Line 22). We report the results in Figure 4.

Figure 4: Sensitivity of BMP to the parameter η.

We see that η = 5 is at the sweet spot between speed of convergence and sparsity of the iterates.
Higher values of η have similar levels of sparsity but they perform worse for speed of convergence.
Lower values of η perform much worse in sparsity and are not better in speed; η = 2 offsets η = 5
after 100 seconds but the function value is already 10−2 at that point. Therefore, by setting η = 5 in
this example we achieve both speed of convergence and sparsity of the iterates. Similar insights are
obtained in the other experiments, so that η ∼ 5 seems to be a good initial choice.

For completeness, we present in Figure 5 the sensitivity of BMP to η in NMSE.

Figure 5: Sensitivity of BMP to the parameter η in NMSE.

12

A.2 Comparison with PGD

Projected gradient descent (PGD) is a natural candidate for the experiment in Section 4.1. However, it
does not ensure sufficient sparsity of the iterates. We depict three configurations of PGD in Figure 6,
each named “PGD:α” where PGD is ran with the constraint ‖x‖1 6 α‖x∗‖1 and α ∈ {1/2, 1, 2}.
The implementation of PGD is in line with our general code framework and we used the method
of Condat [2016] for projections onto the `1-ball. The number of atoms collected by the iterates
in PGD are reported as the number of nonzero coordinates. Note that in BMP, GMP, and OMP
we do not check if a selected atom vt already satisfies −vt ∈ St before adding it to St, which is
disadvantageous to these algorithms when evaluating their sparsity performance.

Figure 6: Comparison of PGD vs. the MP algorithms.

As expected, the constraint ‖x‖1 6 ‖x∗‖1 provides the best results for PGD; the constraint ‖x‖1 6
2‖x∗‖1 is too loose and basically produces no sparsity in the iterates (recall that the ambient space is
R2000). In the configuration ‖x‖1 6 ‖x∗‖1, PGD does not converge faster than OMP and produces
significantly worse sparsity than OMP and BMP.

13

A.3 Regression with arbitrarily chosen norm

We set m = 250, n = 1000, s = 50, and σ = 0.05 and generated the data as in Section 4.1. We ran
a comparison with the arbitrarily chosen f : x ∈ Rn 7→ ‖Ax− b‖53. We plot the results in Figure 7.

Figure 7: Comparison of BMP vs. GMP and OMP on f : x ∈ Rn 7→ ‖Ax− b‖53, with η = 5.

We see that BMP offers very close-to-optimal levels of sparsity while being faster than the other
algorithms in wall-clock time. We provide a sensitivity analysis of BMP to the parameter η in
Figure 8. We see that η ∼ 5 is an appropriate choice combining the best of speed and sparsity.

Figure 8: Sensitivity of BMP to the parameter η.

14

For completeness, we present in Figure 9 the sensitivity of BMP to η in NMSE.

Figure 9: Sensitivity of BMP to the parameter η in NMSE.

15

A.4 Huber loss

The Huber loss [Huber, 1964] is a smooth combination of the squared and absolute losses. The
absolute loss is robust to outliers in the dataset, however its gradient is piecewise constant and not
defined at the origin. This leads to instability of the solutions. The Huber loss overcomes this by
behaving like the squared loss around the origin:

hδ : t ∈ R 7→
{
t2/2 if |t| 6 δ

δ(|t| − δ/2) else

where δ > 0 defines this region around the origin. We setm = 250, n = 1000, s = 50, and σ = 0.05
and generated the data as in Section 4.1. In this experiment we aim at minimizing the smooth convex
function

f : x ∈ Rn 7→
m∑
i=1

h10(a>i x− yi)

where a>1 , . . . , a
>
m ∈ R1×n are the rows of A. We plot the results in Figure 10.

Figure 10: Comparison of BMP vs. GMP and OMP on f : x ∈ Rn 7→
∑m
i=1 h10(a>i x− yi), with

η = 5.

Again, BMP has very close-to-optimal levels of sparsity while being the fastest algorithm to converge.
We provide a sensitivity analysis of BMP to the parameter η in Figure 11. We see that η ∼ 5 is an
appropriate choice combining the best of speed and sparsity.

16

Figure 11: Sensitivity of BMP to the parameter η.

For completeness, we present in Figure 12 the sensitivity of BMP to η in NMSE.

Figure 12: Sensitivity of BMP to the parameter η in NMSE.

17

A.5 Distance to a convex set

Here we compared BMP vs. GMP and OMP on an arbitrarily chosen problem. We used

f : x ∈ R500 7→ dB(0,1)(Ax− b)
2 = ‖(Ax− b)− projB(0,1)(Ax− b)‖

2
2

and D a dictionary of 750 atoms randomly chosen in R500, where A ∈ R500×500 and b ∈ R500 are
also randomly chosen. We did not reduce f to a closed-form expression simplifying computations.
This is not a setting where BCG or CoGEnT can be applied. We depict two configurations of BMP:
one with emphasis on sparsity of the iterates and one with emphasis on speed of convergence. The
parameters ηsparse and ηfast were both optimized. We plot the results in Figure 13.

Figure 13: Comparison of BMP vs. GMP and OMP on f : x ∈ R500 7→ dB(0,1)(Ax − b)2, with
ηsparse = 10 and ηfast = 2.

We provide a sensitivity analysis of BMP to the parameter η in Figure 14. The scaling is not exactly
the same as in Figure 13 due to the randomness in the generation of the data. We see that η ∼ 2 is an
appropriate choice combining the best of speed and sparsity.

Figure 14: Sensitivity of BMP to the parameter η.

18

A.6 Logistic regression

Here we compared BMP vs. GMP and OMP on the Gisette dataset [Guyon et al., 2005] available
at https://archive.ics.uci.edu/ml/datasets/Gisette. We did not have access to the true
parameters x∗ so we could not produce the NMSE plots. The objective function is the logistic loss

f : x ∈ Rn 7→ 1

m

m∑
i=1

ln(1 + exp(−yia>i x))

with the labels yi ∈ {−1, 1}, and the dictionary is the set of signed canonical vectors D =
{±e1, . . . , en}. We have n = 5000 and in order to reduce the running time, we chose
m = 1000 and we slightly enhanced the code framework by replacing minv∈D′〈∇f(xt), v〉 with
mini∈J1,nK−| [∇f(xt)]i |. Note that this lessens the speed-up provided by the weak-separation oracle
in BMP. We represented the dual gaps of BMP by maxi∈J1,nK | [∇f(xt)]i |, like for GMP and OMP,
and thus yielding a similar zig-zag plot.

Figure 15: Comparison of BMP vs. GMP and OMP on the Gisette dataset with ηsparse = 3 and
ηfast = 2.

In this situation, Figure 15 shows that BMP converges as fast as GMP while producing iterates
with much higher sparsity, equivalent to that of OMP. Hence, BMP hits the sweet spot of speed of
convergence and sparsity of the iterates.

B Prerequisites for proofs

Fact B.1. Let f : H → R be a coercive function and (xt)t∈N be a sequence of iterates in H such
that f(xt+1) 6 f(xt) for all t ∈ N. Then (xt)t∈N is bounded.

Proof. By assumption, f(xt) 6 f(x0) for all t ∈ N, so lim supt→+∞ f(xt) 6 f(x0) < +∞.
Suppose (xt)t∈N is unbounded. Then there exists ϕ : N → N strictly increasing such that
the subsequence (xϕ(t))t∈N satisfies limt→+∞ ‖xϕ(t)‖ = +∞. By coercivity, this implies that
limt→+∞ f(xϕ(t)) = +∞, and therefore lim supt→+∞ f(xt) > +∞. This is absurd.

Fact B.2. Let f : H → R be differentiable, M > 0, µ > 1, and x, v ∈ H such that 〈∇f(x), v〉 6 0.
Define

g : γ ∈ R+ 7→ f(x) + γ〈∇f(x), v〉+
M

µ
γµ‖v‖µ.

19

https://archive.ics.uci.edu/ml/datasets/Gisette

Then

min
R+

g = f(x)− 〈−∇f(x), v〉µ

µMµ−1‖v‖µ

where µ := µ/(µ− 1) > 1.

Proof. Let µ = µ/(µ− 1). We have µ− 1 = 1/(µ− 1), and g is differentiable with

∀γ ∈ R+, g
′(γ) > 0⇔ 〈∇f(x), v〉+Mγµ−1‖v‖µ > 0

⇔ γ >

(
〈−∇f(x), v〉
M‖v‖µ

)1/(µ−1)

=
〈−∇f(x), v〉µ−1

Mµ−1‖v‖µ
.

Therefore, using µ(µ− 1) = µ and 1− 1/µ = 1/µ,

min
R+

g = f(x) +
〈−∇f(x), v〉µ−1

Mµ−1‖v‖µ
∇f(x)v +

M

µ

(
〈−∇f(x), v〉µ−1

Mµ−1‖v‖µ

)µ
‖v‖µ

= f(x)− 〈−∇f(x), v〉µ

Mµ−1‖v‖µ
+

1

µ

〈−∇f(x), v〉µ(µ−1)

Mµ(µ−1)−1‖v‖µ(µ−1)

= f(x)−
(

1− 1

µ

)
〈−∇f(x), v〉µ

Mµ−1‖v‖µ

= f(x)− 〈−∇f(x), v〉µ

µMµ−1‖v‖µ
.

Corollary B.3. Let f : H → R be S-strongly convex of order s = 2 with {x∗} := arg minH f .
Then for all x ∈ H,

f(x∗) > f(x)− 〈∇f(x), x− x∗〉2

2S‖x− x∗‖2
.

Proof. Let x ∈ H. By strong convexity, for all γ ∈ R+,

f(x+ γ(x∗ − x)) > f(x) + γ〈∇f(x), x∗ − x〉+
S

2
γ2‖x∗ − x‖2. (3)

Let v := x∗ − x, then 〈∇f(x), v〉 6 0 by convexity. Applying Fact B.2 to the right-hand side of (3),
since s = s/(s− 1) = 2,

f(x+ γ(x∗ − x)) > f(x)− 〈∇f(x), x− x∗〉2

2S‖x− x∗‖2

so, with γ = 1,

f(x∗) > f(x)− 〈∇f(x), x− x∗〉2

2S‖x− x∗‖2
.

C The smooth strongly convex case

Theorem C.1 (Smooth strongly convex case). Let D ⊂ H be a dictionary such that 0 ∈
int(conv(D′)) and let f : H → R be L-smooth of order ` = 2 and S-strongly convex of order s = 2.
Then the Blended Matching Pursuit algorithm (Algorithm 3) ensures that f(xt)−minH f 6 ε for
all t > T where

T = O
(
L

S
ln
|φ0|
ε

)
.

Moreover, ‖xt − x∗‖ → 0 as t→ +∞ at same rate.

20

Proof. Let ε > 0 and T = Ndual + Nfull + Nconstrained where Ndual, Nfull, and Nconstrained are the
number of dual steps (Line 13), full steps (Line 17), and constrained steps (Line 7) taken in total
respectively, and εt := f(xt)−minH f . Similarly to Braun et al. [2017], we introduce epoch starts
at iteration t = 0 or any iteration immediately following a dual step. Our goal is to bound the
number of epochs and the number of iterations within each epoch. Notice that 0 6 εt+1 6 εt and
φt 6 φt+1 6 0 for t ∈ N.

Denote {x∗} := arg minH f . Let t ∈ N be an iteration of the algorithm and vFW
t ∈

arg minv∈D′〈∇f(xt), v〉 = arg minz∈conv(D′)〈∇f(xt), z〉. We can assume that f(xt) > f(x∗)

otherwise the iterates have already converged. By convexity, 〈∇f(xt), x
∗ − xt〉 < 0. Since 0 ∈

int(conv(D′)), there exists r > 0 such that B(0, r) ⊆ conv(D′). Therefore, r(x∗−xt)
2‖x∗−xt‖ ∈ conv(D′)

so

min
z∈conv(D′)

〈∇f(xt), z〉 =
〈
∇f(xt), v

FW
t

〉
6

〈
∇f(xt),

r(x∗ − xt)
2‖x∗ − xt‖

〉
< 0

and it follows that

〈∇f(xt), xt − x∗〉
‖xt − x∗‖

6 −2

r

〈
∇f(xt), v

FW
t

〉
. (4)

By Corollary B.3,

f(x∗) > f(xt)−
〈∇f(xt), xt − x∗〉2

2S‖xt − x∗‖2
.

Combining with (4) we obtain

εt = f(xt)− f(x∗) 6
2

r2S

〈
∇f(xt), v

FW
t

〉2
. (5)

Let t be a dual step (Line 13). Then the weak-separation oracle call (Line 11) yields
〈
∇f(xt), v

FW
t

〉
>

φt. By (5) and Line 15,

εt 6
2

r2S
φ2t (6)

=
2

r2S

(
φ0
τndual

)2

(7)

where ndual is the number of dual steps taken before t. Therefore, by (7) and since τ > 1, Ndual is
finite with

Ndual 6

⌈
1

2
logτ

(
2φ20
r2Sε

)⌉
. (8)

If a full step is taken (Line 17), then the weak-separation oracle (Line 11) returns vt ∈ D′ such that
〈∇f(xt), vt〉 6 φt/κ. By smoothness,

f(xt+1) = min
γ∈R

f(xt + γvt)

6 min
γ∈R

f(xt) + γ〈∇f(xt), vt〉+
L

2
γ2‖vt‖2

= f(xt)−
〈∇f(xt), vt〉2

2L‖vt‖2

6 f(xt)−
(φt/κ)2

2L(DD′/2)2

where we used ‖vt‖ 6 DD′/2 (by symmetry). Therefore, the primal progress is at least

f(xt)− f(xt+1) >
2φ2t

κ2LD2
D′
. (9)

21

Last, if a constrained step is taken (Line 7), then by smoothness,

f(xt+1) = min
γ∈R

f
(
xt + γ∇̃f(xt)

)
6 min

γ∈R
f(xt) + γ

〈
∇f(xt), ∇̃f(xt)

〉
+
L

2
γ2
∥∥∇̃f(xt)

∥∥2
= f(xt)−

〈
∇f(xt), ∇̃f(xt)

〉2
2L
∥∥∇̃f(xt)

∥∥2
= f(xt)−

∥∥∇̃f(xt)
∥∥2

2L

6 f(xt)−
〈
∇̃f(xt), v

FW-S
t

〉2
2L
∥∥vFW-S
t

∥∥2
= f(xt)−

〈
∇f(xt), v

FW-S
t

〉2
2L
∥∥vFW-S
t

∥∥2
6 f(xt)−

(φt/η)2

2L(DD′/2)2

where the last three lines respectively come from the Cauchy-Schwarz inequality, vFW-S
t ∈ span(St),〈

∇f(xt), v
FW-S
t

〉
6 φt/η (Line 5), and

∥∥vFW-S
t

∥∥ 6 DD′/2 (by symmetry). Therefore, the primal
progress is at least

f(xt)− f(xt+1) >
2φ2t

η2LD2
D′
. (10)

whose lower bound only differs by a constant factor (κ/η)2 from that of a full step (9).

Now, we have

T = Ndual +Nfull +Nconstrained

= Ndual +

T−1∑
t=0

t epoch start

(
N

(t)
full +N

(t)
constrained

)
(11)

where N (t)
full and N (t)

constrained are the number of full steps and constrained steps taken during epoch t
respectively. Let t > 0 be an epoch start. Thus, t − 1 is a dual step. By (6), since xt = xt−1 and
φt = φt−1/τ ,

εt 6
2τ2φ2t
r2S

. (12)

This also holds for t = 0 by (5) and Line 2 (and actually for all t ∈ N). By (9) and (10), since
φs = φt for all nondual steps s in the epoch starting at t,

εt >
∑

s∈epoch(t)

(
f(xs)− f(xs+1)

)
>
(
N

(t)
full +N

(t)
constrained

) 2φ2t
max{κ2, η2}LD2

D′
. (13)

Combining (12) and (13),

N
(t)
full +N

(t)
constrained 6

τ2 max{κ2, η2}LD2
D′

r2S
. (14)

Therefore, by (11) and (14),

T 6 Ndual + (Ndual + 1)
τ2 max{κ2, η2}LD2

D′

r2S
.

22

By (8), we conclude that the algorithm converges with

T = O
(
L

S
ln
|φ0|
ε

)
.

Finally, by strong convexity and since∇f(x∗) = 0,

S

2
‖xt − x∗‖2 6 f(xt)− f(x∗)− 〈∇f(x∗), xt − x∗〉 = εt

for all t ∈ N. Thus, ‖xt − x∗‖ → 0 as t→ +∞.

D Main proofs

Fact 2.1. Let f : H → R be smooth of order ` > 1, convex, and sharp of order θ ∈]0, 1[on K.
Then θ ∈]0, 1/`].

Proof. Let x ∈ K\ arg minH f and x∗ := projargminH f
(x). By sharpness, smoothness, and

∇f(x∗) = 0,

dist

(
x, arg min

H
f

)
= ‖x− x∗‖ 6 C(f(x)− f(x∗))θ 6 C

(
L

`

)θ
‖x− x∗‖`θ.

Therefore,

1

C

(
`

L

)θ
6 ‖x− x∗‖`θ−1.

As the left-hand side is constant and x can be arbitrarily close to x∗, we conclude that `θ 6 1.

Theorem 3.2 (Smooth convex case). Let D ⊂ H be a dictionary such that 0 ∈ int(conv(D′)) and
let f : H → R be smooth of order ` > 1, convex, and coercive. Then the Blended Matching Pursuit
algorithm (Algorithm 3) ensures that f(xt)−minH f 6 ε for all t > T where T = O

(
(L/ε)1/(`−1)

)
.

Proof. Let ε > 0 and T = Ndual + Nfull + Nconstrained ∈ N ∪ {+∞} where Ndual, Nfull, and
Nconstrained are the number of dual steps (Line 13), full steps (Line 17), and constrained steps (Line 7)
taken in total respectively. The objective f is continuous and coercive so arg minH f 6= ∅. Let
εt := f(xt) − minH f for t ∈ N. Similarly to Braun et al. [2017], we introduce epoch starts at
iteration t = 0 or any iteration immediately following a dual step. Our goal is to bound the number of
epochs and the number of iterations within each epoch. Notice that 0 6 εt+1 6 εt and φt 6 φt+1 6 0
for t ∈ N.

Let x∗ ∈ arg minH f . The function f is coercive and f(xt+1) 6 f(xt) for t ∈ N, so by Fact B.1
the sequence of iterates is bounded. Define ρ := supt∈N ‖xt − x∗‖ < +∞. Note that ρ is
independent of T . Let t ∈ N be an iteration of the algorithm, and vFW

t ∈ arg minv∈D′〈∇f(xt), v〉 =
arg minz∈conv(D′)〈∇f(xt), z〉. We can assume that f(xt) > f(x∗) otherwise the iterates have
already converged. By convexity, 〈∇f(xt), x

∗ − xt〉 < 0. Since 0 ∈ int(conv(D′)), there exists
r > 0 such that B(0, r) ⊆ conv(D′). Thus, r(x

∗−xt)
2‖x∗−xt‖ ∈ conv(D′) so

min
z∈conv(D′)

〈∇f(xt), z〉 =
〈
∇f(xt), v

FW
t

〉
6

〈
∇f(xt),

r(x∗ − xt)
2‖x∗ − xt‖

〉
< 0

i.e.,

〈∇f(xt), xt − x∗〉 6
2‖xt − x∗‖

r

〈
−∇f(xt), v

FW
t

〉
6

2ρ

r

〈
−∇f(xt), v

FW
t

〉
. (15)

By convexity,

f(xt)− f(x∗) 6 〈∇f(xt), xt − x∗〉

23

so with (15),

εt 6
2ρ

r

〈
−∇f(xt), v

FW
t

〉
. (16)

Let t be a dual step (Line 13). Then the weak-separation oracle call (Line 11) yields
〈
∇f(xt), v

FW
t

〉
>

φt. By (16) and Line 15,

εt 6
2ρ

r
|φt| (17)

=
2ρ

r

|φ0|
τndual

(18)

where ndual is the number of dual steps taken before t. Therefore, by (18) and since τ > 1,

Ndual 6

⌈
logτ

(
2ρ|φ0|
rε

)⌉
. (19)

If a full step is taken (Line 17), then the weak-separation oracle (Line 11) returns vt ∈ D′ such that
〈∇f(xt), vt〉 6 φt/κ. By smoothness and using Fact B.2 with ` := `/(`− 1) > 1,

f(xt+1) 6 min
γ∈R+

f(xt + γvt)

6 min
γ∈R+

f(xt) + γ〈∇f(xt), vt〉+
L

`
γ`‖vt‖`

= f(xt)−
〈−∇f(xt), vt〉`

`L`−1‖vt‖`

6 f(xt)−
|φt/κ|`

`L`−1(DD′/2)`

where we used ‖vt‖ 6 DD′/2 (by symmetry). Therefore, the primal progress is at least

f(xt)− f(xt+1) >
2`|φt|`

`κ`L`−1D`
D′
. (20)

Last, if a constrained step is taken (Line 7), then by smoothness and using Fact B.2 with −∇̃f(xt),

f(xt+1) 6 min
γ∈R+

f
(
xt − γ∇̃f(xt)

)
6 min
γ∈R+

f(xt)− γ
〈
∇f(xt), ∇̃f(xt)

〉
+
L

`
γ`
∥∥∇̃f(xt)

∥∥`
= f(xt)−

〈
∇f(xt), ∇̃f(xt)

〉`
`L`−1

∥∥∇̃f(xt)
∥∥`

= f(xt)−
∥∥∇̃f(xt)‖`

`L`−1

6 f(xt)−
∣∣〈∇̃f(xt), v

FW-S
t

〉∣∣`
`L`−1

∥∥vFW-S
t

∥∥`
6 f(xt)−

∣∣〈∇f(xt), v
FW-S
t

〉∣∣`
`L`−1

∥∥vFW-S
t

∥∥`
6 f(xt)−

|φt/η|`

`L`−1(DD′/2)`

24

where the last three lines respectively come from the Cauchy-Schwarz inequality, vFW-S
t ∈ span(St),〈

∇f(xt), v
FW-S
t

〉
6 φt/η (Line 5), and

∥∥vFW-S
t

∥∥ 6 DD′/2 (by symmetry). Therefore, the primal
progress is at least

f(xt)− f(xt+1) >
2`|φt|`

`η`L`−1D`
D′

(21)

whose lower bound only differs by a constant factor (κ/η)` from that of a full step (20).

Now, we have

T = Ndual +Nfull +Nconstrained

= Ndual +

T−1∑
t=0

t epoch start

(
N

(t)
full +N

(t)
constrained

)
(22)

where N (t)
full and N (t)

constrained are the number of full steps and constrained steps taken during epoch t
respectively. Let t > 0 be an epoch start. Thus, t− 1 is a dual step. By (17), since xt = xt−1 and
φt = φt−1/τ ,

εt 6
2ρτ

r
|φt|. (23)

This also holds for t = 0 by (16) and Line 2 (and actually for all t ∈ J0, T K). By (20) and (21), since
φs = φt for all nondual steps s in the epoch starting at t,

εt >
∑

s∈epoch(t)

(
f(xs)− f(xs+1)

)
>
(
N

(t)
full +N

(t)
constrained

) 2`|φt|`

`max{κ`, η`}L`−1D`
D′

(24)

Combining (23) and (24),

N
(t)
full +N

(t)
constrained 6

2ρτ

r

`max{κ`, η`}L`−1D`
D′

2`
|φt|1−`. (25)

Therefore, by (22), (25), and ` > 1,

T 6 Ndual +
2ρτ

r

`max{κ`, η`}L`−1D`
D′

2`

Ndual∑
t=0

(
|φ0|
τ t

)1−`

= Ndual +
2ρτ

r

`max{κ`, η`}L`−1D`
D′

2`
|φ0|1−`

τ (`−1)(Ndual+1) − 1

τ `−1 − 1
.

By (19),

T 6 logτ

(
2ρ|φ0|
rε

)
+ 1 +

2ρτ

r

`max{κ`, η`}L`−1D`
D′

2`
|φ0|1−`

τ `−1 − 1

(
τ
(`−1)

(
logτ

(
2ρ|φ0|
rε

)
+2
)
− 1

)
= logτ

(
2ρ|φ0|
rε

)
+ 1 +

2ρτ

r

`max{κ`, η`}L`−1D`
D′

2`
|φ0|1−`

τ `−1 − 1

(
τ2(`−1)

(
2ρ|φ0|
rε

)`−1
− 1

)
.

We conclude that the algorithm converges with

T = O

((
L

ε

)1/(`−1)
)
.

25

Theorem 3.3 (Smooth convex sharp case). LetD ⊂ H be a dictionary such that 0 ∈ int(conv(D′))
and let f : H → R be L-smooth of order ` > 1, convex, coercive, and C-sharp of order θ ∈]0, 1/`]
on K. Then the Blended Matching Pursuit algorithm (Algorithm 3) ensures that f(xt)−minH f 6 ε
for all t > T where

T =

O
(
C1/(1−θ)L1/(`−1) ln

(
C|φ0|
ε1−θ

))
if `θ = 1

O

((
C`L

ε1−`θ

)1/(`−1))
if `θ < 1.

Moreover, dist(xt, arg minH f)→ 0 as t→ +∞ at same rate.

Proof. Let ε > 0. By Theorem 3.2, there exists T ∈ N such that f(xT) − minH f 6 ε. Let
εt := f(xt) − minH f for t ∈ J0, T K and T = Ndual + Nfull + Nconstrained where Ndual, Nfull, and
Nconstrained are the number of dual steps (Line 13), full steps (Line 17), and constrained steps (Line 7)
taken in total respectively. Similarly to Braun et al. [2017], we introduce epoch starts at iteration
t = 0 or any iteration immediately following a dual step. Our goal is to bound the number of epochs
and the number of iterations within each epoch. Notice that 0 6 εt+1 6 εt and φt 6 φt+1 6 0 for
t ∈ J0, T K.

Let t ∈ J0, T K be an iteration of the algorithm, vFW
t ∈ arg minv∈D′〈∇f(xt), v〉 =

arg minz∈conv(D′)〈∇f(xt), z〉, and x∗t := projargminH f
(xt). We can assume that f(xt) > f(x∗t)

otherwise the iterates have already converged. By convexity, 〈∇f(xt), x
∗
t − xt〉 < 0. Since 0 ∈

int(conv(D′)), there exists r > 0 such that B(0, r) ⊆ conv(D′). Therefore, r(x∗t−xt)
2‖x∗t−xt‖

∈ conv(D′)
so

min
z∈conv(D′)

〈∇f(xt), z〉 =
〈
∇f(xt), v

FW
t

〉
6

〈
∇f(xt),

r(x∗t − xt)
2‖x∗t − xt‖

〉
< 0

i.e.,

r〈∇f(xt), xt − x∗t 〉
−2
〈
∇f(xt), v

FW
t

〉 6 ‖xt − x∗t ‖. (26)

The sharpness of f implies that arg minH f ⊂ int(K). Let r∗t ∈]0, ‖xt − x∗t ‖[such that B(x∗t , r
∗
t) ⊆

K, and let ρ := min {r∗0/‖x0 − x∗0‖, . . . , r∗T /‖xT − x∗T ‖} ∈]0, 1[. Then, x∗t + ρ(xt − x∗t) ∈
B(x∗t , r

∗
t) ⊆ K. By convexity, x∗t = projargminH f

(x∗t +ρ(xt−x∗t)): indeed, 〈x∗t −x∗, xt−x∗t 〉 > 0
for all x∗ ∈ arg minH f by the Hilbert projection theorem, thus

‖(x∗t + ρ(xt − x∗t))− x∗‖2 = ‖x∗t − x∗‖2 + ρ2‖xt − x∗t ‖2 + 2ρ〈x∗t − x∗, xt − x∗t 〉
> ρ2‖xt − x∗t ‖2 (27)

where (27) is an equality if and only if x∗ = x∗t . Hence, using sharpness,

ρ‖xt − x∗t ‖ = ‖(x∗t + ρ(xt − x∗t))− x∗t ‖

6 C
(
f(x∗t + ρ(xt − x∗t))− f(x∗t)

)θ
6 C

(
f(x∗t) + ρ(f(xt)− f(x∗t))− f(x∗t)

)θ
= Cρθ(f(xt)− f(x∗t))

θ (28)

6 Cρθ〈∇f(xt), xt − x∗t 〉θ

where the second and last inequalities come from convexity. Combining with (26), we get

r〈∇f(xt), xt − x∗t 〉
−2
〈
∇f(xt), v

FW
t

〉 6
C

ρ1−θ
〈∇f(xt), xt − x∗t 〉θ

so, by convexity, we obtain the primal bound

f(xt)− f(x∗t) 6 〈∇f(xt), xt − x∗t 〉 6
1

ρ

(
−2C

r

〈
∇f(xt), v

FW
t

〉)1/(1−θ)

26

i.e.,

εt 6
1

ρ

(
−2C

r

〈
∇f(xt), v

FW
t

〉)1/(1−θ)

. (29)

Let t be a dual step (Line 13). Then the weak-separation oracle call (Line 11) yields
〈
∇f(xt), v

FW
t

〉
>

φt. By (29) and Line 15,

εt 6
1

ρ

(
2C

r
|φt|
)1/(1−θ)

(30)

=
1

ρ

(
2C

r

|φ0|
τndual

)1/(1−θ)

(31)

where ndual is the number of dual steps taken before t. Therefore, by (31) and since τ > 1 and
θ ∈]0, 1[,

Ndual 6

⌈
logτ

(
2C|φ0|

rρ1−θε1−θ

)⌉
. (32)

If a full step is taken (Line 17), then the weak-separation oracle (Line 11) returns vt ∈ D′ such that
〈∇f(xt), vt〉 6 φt/κ. By smoothness and using Fact B.2 and ` := `/(`− 1) > 1,

f(xt+1) 6 min
γ∈R+

f(xt + γvt)

6 min
γ∈R+

f(xt) + γ〈∇f(xt), vt〉+
L

`
γ`‖vt‖`

= f(xt)−
〈−∇f(xt), vt〉`

`L`−1‖vt‖`

6 f(xt)−
|φt/κ|`

`L`−1(DD′/2)`

where we used ‖vt‖ 6 DD′/2 (by symmetry). Therefore, the primal progress is at least

f(xt)− f(xt+1) >
2`|φt|`

`κ`L`−1D`
D′
. (33)

Last, if a constrained step is taken (Line 7), then by smoothness and using Fact B.2,

f(xt+1) 6 min
γ∈R+

f
(
xt − γ∇̃f(xt)

)
6 min
γ∈R+

f(xt)− γ
〈
∇f(xt), ∇̃f(xt)

〉
+
L

`
γ`
∥∥∇̃f(xt)

∥∥`
= f(xt)−

〈
∇f(xt), ∇̃f(xt)

〉`
`L`−1

∥∥∇̃f(xt)
∥∥`

= f(xt)−
∥∥∇̃f(xt)

∥∥`
`L`−1

6 f(xt)−
∣∣〈∇̃f(xt), v

FW-S
t

〉∣∣`
`L`−1

∥∥vFW-S
t

∥∥`
= f(xt)−

∣∣〈∇f(xt), v
FW-S
t

〉∣∣`
`L`−1

∥∥vFW-S
t

∥∥`
6 f(xt)−

|φt/η|`

`L`−1(DD′/2)`

27

where the last three lines respectively come from the Cauchy-Schwarz inequality, vFW-S
t ∈ span(St),〈

∇f(xt), v
FW-S
t

〉
6 φt/η (Line 5), and

∥∥vFW-S
t

∥∥ 6 DD′/2 (by symmetry). Therefore, the primal
progress is at least

f(xt)− f(xt+1) >
2`|φt|`

`η`L`−1D`
D′
. (34)

whose lower bound only differs by a constant factor (κ/η)` from that of a full step (33).

Now, we have

T = Ndual +Nfull +Nconstrained

= Ndual +

T−1∑
t=0

t epoch start

(
N

(t)
full +N

(t)
constrained

)
(35)

where N (t)
full and N (t)

constrained are the number of full steps and constrained steps taken during epoch t
respectively. Let t > 0 be an epoch start. Thus, t− 1 is a dual step. By (30), since xt = xt−1 and
φt = φt−1/τ ,

εt 6
1

ρ

(
2τC

r
|φt|
)1/1−θ

. (36)

This also holds for t = 0 by (29) and Line 2 (and actually for all t ∈ J0, T K). By (33) and (34), since
φs = φt for all nondual steps s in the epoch starting at t,

εt >
∑

s∈epoch(t)

(
f(xs)− f(xs+1)

)
>
(
N

(t)
full +N

(t)
constrained

) 2`|φt|`

`max{κ`, η`}L`−1D`
D′
. (37)

Combining (36) and (37),

N
(t)
full +N

(t)
constrained 6

1

ρ

(
2τC

r

)1/(1−θ)
`max{κ`, η`}L`−1D`

D′

2`
|φt|1/(1−θ)−`. (38)

Therefore, by (35) and (38),

T 6 Ndual +
1

ρ

(
2τC

r

)1/(1−θ)
`max{κ`, η`}L`−1D`

D′

2`

Ndual∑
t=0

(
|φ0|
τ t

)1/(1−θ)−`

(39)

=

Ndual +

1

ρ

(
2τC

r

)1/(1−θ)
`max{κ`, η`}L`−1D`

D′

2`
(Ndual + 1) if `θ = 1

Ndual +
1

ρ

(
2τC

r

)1/(1−θ)
`max{κ`, η`}L`−1D`

D′

2`
|φ0|1/(1−θ)−`

(
τ `−1/(1−θ)

)Ndual+1

− 1

τ `−1/(1−θ) − 1
if `θ < 1

where, if α := 1−`θ
(`−1)(1−θ) = `− 1

1−θ , by (32) we have(
τ `−1/(1−θ)

)Ndual+1

= (τα)
Ndual+1

= exp (α ln(τ)(Ndual + 1))

6 exp

(
α ln(τ)

(
logτ

(
2C|φ0|

rρ1−θε1−θ

)
+ 2

))
= exp

(
α ln

(
2C|φ0|

rρ1−θε1−θ

)
+ 2α ln(τ)

)
= τ2α

(
2C|φ0|

rρ1−θε1−θ

)α
.

28

By (32), we conclude that

T =

O
(
C1/(1−θ)L1/(`−1) ln

(
C|φ0|
ε1−θ

))
if `θ = 1

O

((
C`L

ε1−`θ

)1/(`−1))
if `θ < 1.

Finally, by (28),

‖xt − x∗t ‖ 6
C

ρ1−θ
εθt

for all t ∈ N. Thus, ‖xt − x∗t ‖ → 0 as t→ +∞.

29

	Introduction
	Preliminaries
	On sharpness and strong convexity
	Matching Pursuit algorithms
	Weak-separation oracle

	The Blended Matching Pursuit algorithm
	Convergence analyses

	Computational experiments
	Comparison of BMP vs. GMP, OMP, BCG, and CoGEnT
	Comparison of BMP vs. accMP

	Final remarks
	Additional computational experiments
	Sensitivity of BMP to the parameter
	Comparison with PGD
	Regression with arbitrarily chosen norm
	Huber loss
	Distance to a convex set
	Logistic regression

	Prerequisites for proofs
	The smooth strongly convex case
	Main proofs

