7 Supplementary Material

7.1 Proof of Proposition 2]

Proof. The proof is a simpler, two-step variation of that of [15], which we refer to for additional details.
For all € > 0, let 7. be the optimal plan for d _» and suppose there exists 7 such that 7. — 7 (which
is possible up to subsequences). By definition of 7., we have that

Ve >0, / dp_dre < / dp_dmik.

Since dj,_ converges locally uniformly to d3; dﬁf(x,y) — (x —y)"VEVL(z — y), we get

[ d3,, dm < [ dR, dmyk. But by definition of myk, (mvk) & déf(pE7 PE)# T is the optimal transport
plan on E, therefore the last inequality implies 7 = (Tvk) E-

Next, notice that the 7.’s all have the same marginals u g, vg on E and hence cannot perform better
on FE than myk. Therefore,

/ d3, d(mux) + € / &y, dme < / dp_dm.
ExXE

S / d%EdTFMK

_/ d%fEd(ﬂ'MK)E“‘g/d%fELdTrMK-
ExXE

Hence, passing to the limit, f d%,EL dr < f d%,EL dmvk. Let us now disintegrate this inequality on
E x E (using the equality 7 = (mvmk) ):

// d%fELdﬂ-(zE,yE)d(ﬂ'MK)ES// d%/ELd(ﬂ'MK)(a:E,yE)d(TrMK)E~
ELlxEL ELlxE-+

Again, by definition, for (z g, yg) in the support of (Tvmk) £, (TMK) (2 ,y5) 1S the optimal transporta-
tion plan between (1., and vy, and the previous inequality implies 7(;, ) = (TMK)(2p,ys) fOT
(mvmk)E-a-e.(2g, yE), and finally 7 = myk. Finally, by the a.c. hypothesis, all transport plans 7.
come from transport maps 7., which implies 7. — Tk in Lo(r). B

7.2 Proof of Proposition[3]

Proof. Let X C R? be a compact, 1, v € P(X) be two a.c. measures, E a k-dimensional subspace

which we identify w.l.o.g. with R¥ and my; € P(R? x RY) as in Definition |Z For n € N, let

f = 230 60 vy = 2300 6, where the z; (resp. y;) are i.i.d. samples from g (resp. v).

Let t, : R* — R* be the Monge map from the projection on £ (pE)gpen Of wy, to that of v, and
def
T = (Id, t5)¢ [(E) g n]-

Up to points having the same projections on £ (which under the a.c. assumption is a 0 probability
event), t,, can be extended to a transport between ., and v,, , whose transport plan we will denote

Tn-

Let f € Cp(X x X). Since we are on a compact, by density (given by the Stone-Weierstrass theorem)
it is sufficient to consider functions of the form

f(x:l? "'7xd; yl? "'7yd) = g(xlﬁ -.-’ij; yl’ ] yk)h(xk+17 "'7xd; yk"rl? "'7yd)'

We will use this along with the disintegrations of 7,, on E' x E (denoted (Vn)z1.p 1.5 (T1:k, Y1:8) €
E x E) to prove convergence:

/ fdyn :/ (@1, y1k) P(Ths1:ds Yt 1:0)dVn
:/ g(xlzkaylzk)dﬂ-n/h($k+1:d7yk+1:d>d(’yn)wlzk7y1:k
ExXE

:/ g(xlzmylzk)d’frn/h(mk+1:d7yk+1:d)d(,ufn)ac1:kd(Vn)tn(:clzk)'
EXE
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Then, we use (i) the Arzela-Ascoli theorem to get uniform convergence of ¢, to T to get
d(un)tn(wl:k) — d(V)TE(wm) and (ii) the convergence m,, — (pg, pr)4(mv1) to get

/ g(xl:ka yl:k)dﬂ-n / h($k+1:d7 ykJrl:d)d(,U/n):El;kd(”n)tn(zlzk)
ExXE

— g(éﬂlzkaZ/l;k)d(PEaPE)u(WMI)/h(ﬂﬁkﬂzd,yk+1:d)d(u)x1:kd(l/)TE(xl:k.)
EXE

_ / Fdm,
XxX

which concludes the proof in the compact case. l

7.3 Proof of Proposition ]

1 1
)2 A 2 be the Monge map from g déf(pE)W and vg déf(pE)ﬁZ/.

rol—

11
Proof. Let Tg : A% (AZBEA
Let

| o |
V= (’Ul oo Vg Vg1 ... Ug | = (VE VEL) ERdXd,
| o |

where (v; ... vy) is an orthonormal basis of £ and (vg1 . ..v4) an orthonormal basis of E+. Let

us denote Xz % pp(X) € R¥ and mutatis mutandis for Y, E*. Denote Ap = pEApL, Ap. =
PEL Ap; LAppL = pEApr .. With these notations, we decompose the derivation of E[XY ']
along E and E:

EXY'"|=E[VEXp(VeYe) |+ B[V Xp: (Ve Y5)']
+E[Vp X (VpYe)']
+E[VeXp(VgiYg)'].

We can condition all four terms on X g, and use point independence given coordinates on E which
implies (Yg|Xg) = Xg. The constraint Yy = T g X allows us to derive E [V | X g]: indeed, it

holds that
YE BE BEEL
()~ (oo (s, B2)):

which, using standard Gaussian conditioning properties, implies that
E[Yp.|Yp = TpXg] =B, . B,'TeXE,
and therefore
E[YVg:[Pp(Y)=TgXg| = Vg B, B;'VLTeXE.
Likewise,

E[Xp:|Pp(X)] =V AL AL VL XE.
We now have all the ingredients necessary to the derivation of the four terms of E[XY T]:
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E[VeXrYy Vi = VEEx, [E[XpYy [ XE]] VE
=VgEx, [XpE [YET‘XE” Vi
=VgEx, [XeX,TL] V]
=VgEx, [XeX5| TLVE
= VATV

EVEXpYp. Vi) = VgEx, [EXpY . |Xe| V]
=VgEx, [XgE [Yp.|Xp = TEXEH Vi
— V,Ex, [XE VpiBLy By VETXp)) }V,TJL
=VgEx, [XpXj] TLVeBy, By, VL.
=VpAgTeVeBg'By, Vi,
=VpApTpVeB,'ViBgp V],

E[Vp:Xp Y Vi) = Vi Ex, [E[Xp. Y4 [ Xp] Vi
=VpEx, [E[Xp | Xp] XgTE| VE
=V Ex, [App A XpXLTL] V]
=Vpi Vi AL AL'VLATE VL
=Vg. Vi AL, TpVE
=VpiAL. . TpV]

EVp: Xp Yo V] =VeigEx, EXp: | XE]E Yo | XE| Vi
=VpEx, [Ver ALp AR VEXp X TEVEBY  Brp | VL
=Vl AL A'VVEARTEVEBL' By VL
=V AL, . TeB,'Bpg VL.
=Vpi ALy TeVEB ! ViBpp.,

Lety LN (024, Xr ;). 7, is well defined, since X, is the covariance matrix of 7 and is thus PSD.
From then, ~ clearly has marginals N'(04, A) and A'(04, B), and is such that (pg, pg )y is a centered
Gaussian distribution with covariance matrix

e Odxd A E(XY']\ (P Oaxa\ _ [ Ar AgpTg
Odxd  PE E,[YXT] B Odxa DB TgArg Bgp )’
where we use that pgpg = pg and pgpp1 = 0. From the k£ = d case, we recognise the covariance

matrix of the optimal transport between centered Gaussians with covariance matrices A g and B,
which proves that the marginal of y over Ef X E is the optimal transport between g and vg.

To complete the proof, there remains to show that the disintegration of v on £ x FE is the product law.
Denote

C & def

E[XY ]
=VgAgrTg (Vg + (BE)ilvgBEEl) + Vi AgigTy, (Vg + (BVE)’lVEBEEL)

=(VeEAp+ VeiApip)Te (Vi + (Be) 'Bepe Vi),
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-
andlet X, = (E[YAXT] E[);Y ]> as in Prop.H It holds that

def
Cg =

VLCVg=ApTg
Cp. &

V5. CVg=Ap ;Tp(Bg) 'Bgp:
Cpp: VIOV, = ApTp(Bp) 'Bope

Cpip™ VL. CVp=Ap ;Tp.

Therefore, if (X,Y") ~ , then

Xg1 Ag. Cpr Apgip Cg.ip
Cov YEL _ CEJ_ BEJ_ C—ErEi BEJ-E
XE App: Cgppr  Ag Ceg |’
YE CELE BE‘E‘J- CE BE

and therefore

cov (Xpr X8\ _ (Apr Cpr\_(Apip Cpep) (Ap Cop " (Appi Cppt
Y\ Ve |Ye&)  \Cp. Bg. Cl,. Bpig)\Ce Bg) \CL., Bgg.)’

where M denotes the Moore-Penrose pseudo-inverse of M. In the present case, one can check that

Ap Cp\'_ 1/ Azl AT
Cr Br) —4a\Tp'A;' B' )’

which gives, after simplification

Apip Cpip\ (Ap Cp\'(Aps: Cppe\ _ (ApipAz'App.  Cp
Crp. Bpix)\Cp Bg)\CL., Bgg: Cp. By zB,'Bgp:

and thus
Cov Xpr |Xp\ _ (Apr —Apip(Ap) "App. 0q
Ygr Y ) 04 Bg. — BELE(BE)_lBEEJ_
_ COV(XELlXE) Od
- Od COV(YEL |YE) ’

that is, the conditional laws of X1 given X and Yy given Yy are independent under .
|
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