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Abstract

We study the adaptive influence maximization problem with myopic feedback1

under the independent cascade model: one sequentially selects k nodes as seeds2

one by one from a social network, and each selected seed returns the immediate3

neighbors it activates as the feedback available for later selections, and the goal is4

to maximize the expected number of total activated nodes, referred as the influence5

spread. We show that the adaptivity gap, the ratio between the optimal adaptive6

influence spread and the optimal non-adaptive influence spread, is at most 4 and at7

least e/(e− 1), and the approximation ratios with respect to the optimal adaptive8

influence spread of both the non-adaptive greedy and adaptive greedy algorithms9

are at least 1
4 (1− 1

e ) and at most e2+1
(e+1)2 < 1− 1

e . Moreover, the approximation10

ratio of the non-adaptive greedy algorithm is no worse than that of the adaptive11

greedy algorithm, when considering all graphs. Our result confirms a long-standing12

open conjecture of Golovin and Krause (2011) on the constant approximation ratio13

of adaptive greedy with myopic feedback, and it also suggests that adaptive greedy14

may not bring much benefit under myopic feedback.15

1 Introduction16

Influence maximization is the task of given a social network and a stochastic diffusion model on17

the network, finding the k seed nodes with the largest expected influence spread in the model [9].18

Influence maximization and its variants have applications in viral marketing, rumor control, etc. and19

have been extensively studied (cf. [5, 10]).20

In this paper, we focus on the adaptive influence maximization problem, where seed nodes are21

sequentially selected one by one, and after each seed selection, partial or full diffusion results from22

the seed are returned as the feedback, which could be used for subsequent seed selections. Two main23

types of feedback has been proposed and studied before: (a) full-adoption feedback, where the entire24

diffusion process from the seed selected is returned as the feedback, and (b) myopic feedback, where25

only the immediate neighbors activated by the selected seed are returned as the feedback. Under26

the common independent cascade (IC) model where every edge in the graph has an independent27

probability of passing influence, Golovin and Krause [6] show that the full-adoption feedback model28

satisfies the key adaptive submodularity property, which enables a simple adaptive greedy algorithm29

to achieve a (1− 1/e) approximation to the adaptive optimal solution. However, the IC model with30

myopic feedback is not adaptive submodular, and Golovin and Krause [6] only conjecture that in31

this case the adaptive greedy algorithm still guarantees a constant approximation. To the best of our32

knowledge, this conjecture is still open before our result in this paper, which confirms that indeed33

adaptive greedy is a constant approximation of the adaptive optimal solution.34

In particular, our paper presents two sets of related results on adaptive influence maximization with35

myopic feedback under the IC model. We first study the adaptivity gap of the problem (Section 3),36
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which is defined as the ratio between the adaptive optimal solution and the non-adaptive optimal37

solution, and is an indicator on how useful the adaptivity could be to the problem. We show that the38

adaptivity gap for our problem is at most 4 (Theorem 1) and at least e/(e − 1) (Theorem 2). The39

proof of the upper bound 4 is the most involved, because the problem is not adaptive submodular, and40

we have to create a hybrid policy that involves three independent runs of the diffusion process in order41

to connect between an adaptive policy and a non-adaptive policy. Next we study the approximation42

ratio with respect to the adaptive optimal solution for both the non-adaptive greedy and adaptive43

greedy algorithms (Section 4). We show that the approximation ratios of both algorithms are at least44
1
4 (1− 1

e ) (Theorem 3), which combines the adaptivity upper bound of 4 with the results that both45

algorithms achieve (1 − 1/e) approximation of the non-adaptive optimal solution (the (1 − 1/e)46

approximation ratio for the adaptive greedy algorithm requires a new proof). We further show that47

the approximation ratios for both algorithms are at most e2+1
(e+1)2 ≈ 0.606, which is strictly less than48

1− 1/e ≈ 0.632, and the approximation ratio of adaptive greedy is at most that of the non-adaptive49

greedy when considering all graphs (Theorem 4).50

In summary, our contribution is the systematic study on adaptive influence maximization with myopic51

feedback under the IC model. We prove both constant upper and lower bounds on the adaptivity52

gap in this case, and constant upper and lower bounds on the approximation ratios (with respect53

to the optimal adaptive solution) achieved by non-adaptive greedy and adaptive greedy algorithms.54

The constant approximation ratio of the adaptive greedy algorithm answers a long-standing open55

conjecture affirmatively. Our result on the adaptivity gap is the first one on a problem not satisfying56

adaptive submodularity. Our results also suggest that adaptive greedy may not bring much benefit57

under the myopic feedback model.58

Due to the space constraint, full proof details are included in the supplementary material.59

Related Work. Influence maximization as a discrete optimization task is first proposed by Kempe60

et al. [9], who propose the independent cascade, linear threshold and other models, study their61

submodularity and the greedy approximation algorithm for the influence maximization task. Since62

then, influence maximization and its variants have been extensively studied. We refer to recent63

surveys [5, 10] for the general coverage of this area.64

Adaptive submodularity is formulated by Golovin and Krause [6] for general stochastic adaptive opti-65

mization problems, and they show that the adaptive greedy algorithm achieves 1− 1/e approximation66

if the problem is adaptive monotone and adaptive submodular. They study the influence maximization67

problem under the IC model as an application, and prove that the full-adoption feedback under the IC68

model is adaptive submodular. However, in their arXiv version, they show that the myopic feedback69

version is not adaptive submodular, and they conjecture that adaptive greedy would still achieve a70

constant approximation in this case.71

Adaptive influence maximization has been studied in [16, 17, 14, 11, 15]. Tong et al. [16] provide72

both adaptive greedy and efficient heuristic algorithms for adaptive influence maximization. Their73

theoretical analysis works for the full-adoption feedback model but has a gap when applied to myopic74

feedback, which is confirmed by the authors. Yuan and Tang [17] introduce the partial feedback75

model and develop algorithms that balance the tradeoff between delay and performance, and their76

partial feedback model does not coincide with the myopic feedback model. Salha et al. [11] consider77

a different diffusion model where edges can be reactivated at each time step, and they show that78

myopic feedback under this model is adaptive submodular. Sun et al. [14] study the multi-round79

adaptive influence maximization problem, where k seeds are selected in each round and at the end of80

the round the full-adoption feedback is returned. Tong [15] introduces a general feedback model and81

develops some heuristic algorithms for this model. A different two stage seeding process has also82

been studied [12, 3, 13], but the model is quite different, since their first stage of selecting a node set83

X is only to introduce the neighbors of X as seeding candidates for the second stage.84

Adaptivity gap has been studied by two lines of research. The first line of work utilizes multilinear85

extension and adaptive submodularity to study adaptivity gaps for the class of stochastic submodular86

maximization problems and give a e/(e− 1) upper bound for matroid constraints [2, 1]. The second87

line of work [7, 8, 4] studies the stochastic probing problem and proposes the idea of random-walk88

non-adaptive policy on the decision tree, which partially inspires our analysis. However, their analysis89

also implicitly depends on adaptive submodularity. In contrast, our result on the adaptivity gap is the90

first on a problem that does not satisfy adaptive submodularity (see Section 3.1 for more discussions).91
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2 Model and Problem Definition92

Diffusion Model. In this paper, we focus on the well known Independent Cascade (IC) model93

as the diffusion model. In the IC model, the social network is described by a directed influence94

graph G = (V,E, p), where V is the set of nodes (|V | = n), E ⊆ V × V is the set of directed95

edges, and each directed edge (u, v) ∈ E is associated with a probability puv ∈ [0, 1]. The live edge96

graph L = (V,L(E)) is a random subgraph of G, for any edge (u, v) ∈ E, (u, v) ∈ L(E) with97

independent probability puv. If (u, v) ∈ L(E), we say edge (u, v) is live, otherwise we say it is98

blocked. The dynamic diffusion in the IC model is as follows: at time t = 0 a live-edge graph L99

is sampled and nodes in a seed set S ⊆ V are activated. At every discrete time t = 1, 2, . . ., if a100

node u was activated at time t − 1, then all of u’s out-going neighbors in L are activated at time101

t. The propagation continues until there are no more activated nodes at a time step. The dynamic102

model can be viewed equivalently as every activated node u has one chance to activate each of its103

out-going neighbor v with independent success probability puv. Given a seed set S, the influence104

spread of S, denoted σ(S), is the expected number of nodes activated in the diffusion process from105

S, i.e. σ(S) = EL[|Γ(S,L)|], where Γ(S,L) is the set of nodes reachable from S in graph L.106

Influence Maximization Problem. Under the IC model, we formalize the influence maximization107

(IM) problem in both non-adaptive and adaptive settings. Influence maximization in the non-adaptive108

setting follows the classical work of [9], and is defined below.109

Definition 1 (Non-adaptive Influence Maximization). Non-adaptive influence maximization is the110

problem of given a directed influence graph G = (V,E, p) with IC model parameters {puv}(u,v)∈E111

and a budget k, finding a seed set S∗ of at most k nodes such that the influence spread of S∗, σ(S∗),112

is maximized, i.e. finding S∗ ∈ argmaxS⊆V,|S|≤kσ(S).113

We formulate influence maximization in the adaptive setting following the framework of [6]. Let O114

denote the set of states, which informally correspond to the feedback information in the adaptive115

setting. A realization φ is a function φ : V → O, such that for u ∈ V , φ(u) represents the feedback116

obtained when selecting u as a seed node. In this paper, we focus on the myopic feedback model [6],117

which means the feedback of a node u only contains the status of the out-going edges of u being live118

or blocked. Informally it means that after selecting a seed we can only see its one step propagation119

effect as the feedback. The realization φ then determines the status of every edge in G, and thus120

corresponds to a live-edge graph. As a comparison, the full-adoption feedback model [6] is such121

that for each seed node u, the feedback contains the status of every out-going edge of every node v122

that is reachable from u in a live-edge graph L. This means that after selecting a seed u, we can see123

the full cascade from u as the feedback. In the full-adoption feedback case, each realization φ also124

corresponds to a unique live-edge graph. Henceforth, we refer to φ as both a realization and a live-125

edge graph interchangeably. In the remainder of this section, the terminologies we introduce apply to126

both feedback models, unless we explicitly point out which feedback model we are discussing.127

Let R denote the set of all realizations. We use Φ to denote a random realization, following the128

distributionP over random live-edge graphs (i.e. each edge (u, v) ∈ E has an independent probability129

of puv to be live in Φ). Given a subset S and a realization φ, we define influence utility function130

f : 2V ×R → R+ as f(S, φ) = |Γ(S, φ)|, where R+ is the set of non-negative real numbers. That131

is, f(S, φ) is the number of nodes reachable from S in realization (live-edge graph) φ. Then it is132

clear that influence spread σ(S) = EΦ∼P [f(S,Φ)].133

In the adaptive influence maximization problem, we could sequentially select nodes as seeds, and134

after selecting one seed node, we could obtain its feedback, and use the feedback to guide further135

seed selections. A partial realization ψ maps a subset of nodes in V , denoted dom(ψ) for domain of136

ψ, to their states. Partial realization ψ represents the feedback we could obtain after nodes in dom(ψ)137

are selected as seeds. For convenience, we also represent ψ as a relation, i.e., ψ = {(u, o) ∈ V ×O :138

u ∈ dom(ψ), o = ψ(u)}. We say that a full realization φ is consistent with a partial realization ψ,139

denoted as φ ∼ ψ, if φ(u) = ψ(u) for every u ∈ dom(ψ).140

An adaptive policy π is a mapping from partial realizations to nodes. Given a partial realization ψ,141

π(ψ) represents the next seed node policy π would select when it sees the feedback represented by ψ.142

Under a full realization φ consistent with ψ, after selecting π(ψ), the policy would obtain feedback143

φ(π(ψ)), and the partial realization would grow to ψ′ = ψ ∪ {(π(ψ), φ(π(ψ)))}, and policy π could144

pick the next seed node π(ψ′) based on partial realization ψ′. For convenience, we only consider145

deterministic policies in this paper, and the results we derived can be easily extend to randomized146
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policies. Let V (π, φ) denote the set of nodes selected by policy π under realization φ. For the147

adaptive influence maximization problem, we consider the simple cardinality constraint such that148

|V (π, φ)| ≤ k, i.e. the policy only selects at most k nodes. Let Π(k) denote the set of such policies.149

The objective of an adaptive policy π is its adaptive influence spread, which is the expected number150

of nodes that are activated under policy π. Formally, we define the adaptive influence spread of π as151

σ(π) = EΦ∼P [f(V (π,Φ),Φ)]. The adaptive influence maximization problem is defined as follows.152

Definition 2 (Adaptive Influence Maximization). Adaptive influence maximization is the problem153

of given a directed influence graph G = (V,E, p) with IC model parameters {puv}(u,v)∈E and a154

budget k, finding an adaptive policy π∗ that selects at most k seed nodes such that the adaptive155

influence spread of π∗, σ(π∗), is maximized, i.e. finding π∗ ∈ argmaxπ∈Π(k)σ(π).156

Note that for any fixed seed set S, we can create a policy πS that always selects set S regardless of157

the feedback, which means any non-adaptive solution is a feasible solution for adaptive influence158

maximization. Therefore, the optimal adaptive influence spread should be at least as good as the159

optimal non-adaptive influence spread, under the same budget constraint.160

Adaptivity Gap. Since the adaptive policy is usually hard to design and analyze and the adaptive161

interaction process may also be slow in practice, a fundamental question for adaptive stochastic162

optimization problems is whether adaptive algorithms are really superior to non-adaptive algorithms.163

The adaptivity gap measures the gap between the optimal adaptive solution and the optimal non-164

adaptive solution. More concretely, if we use OPTN (G, k) (resp. OPTA(G, k)) to denote the165

influence spread of the optimal non-adaptive (resp. adaptive) solution for the IM problem in an166

influence graph G under the IC model with seed budget k, then we have the following definition.167

Definition 3 (Adaptivity Gap for IM). The adaptivity gap in the IC model is defined as the supremum168

ratio of the influence spread between the optimal adaptive policy and the optimal non-adaptive policy,169

over all possible influence graphs and seed set size k, i.e.,170

sup
G,k

OPTA(G, k)

OPTN (G, k)
. (1)

Submodularity and Adaptive Submodularity. Non-adaptive influence maximization is often171

solved via submodular function maximization technique. A set function f : 2V → R is submodular172

if for all S ⊆ T ⊆ V and all u ∈ V \ T , f(S ∪ {u})− f(S) ≥ f(T ∪ {u})− f(T ). Set function f173

is monotone if for all S ⊆ T ⊆ V , f(S) ≤ f(T ). Kempe et al. [9] show that the influence spread174

function σ(S) under the IC model is monotone and submodular, and thus a simple (non-adaptive)175

greedy algorithm achieves a (1− 1
e ) approximation of the optimal (non-adaptive) solution, assuming176

function evaluation σ(S) is given by an oracle.177

Golovin and Krause [6] define adaptive submodularity for the adaptive stochastic optimization178

framework. In the context of adaptive influence maximization, adaptive submodularity can be defined179

as follows. Given a utility function f , for any partial realization ψ and a node u 6∈ dom(ψ), we define180

the marginal gain of u given ψ as ∆f (u | ψ) = EΦ∼P [f(dom(ψ)∪{u},Φ)−f(dom(ψ),Φ)|Φ ∼ ψ],181

i.e. the expected marginal gain on influence spread when adding u to the partial realization ψ. A182

partial realization ψ is a sub-realization of another partial realization ψ′ if ψ ⊆ ψ′ when treating183

both as relations. We say that the utility function f is adaptive submodular with respect to P if184

for any two fixed partial realizations ψ and ψ′ such that ψ ⊆ ψ′, for any u 6∈ dom(ψ′), we have185

∆f (u | ψ) ≥ ∆f (u | ψ′), that is, the marginal influence spread of a node given more feedback is186

at most its marginal influence spread given less feedback. We say that f is adaptive monotone with187

respect to P if for any partial realization ψ with PrΦ∼P(Φ ∼ ψ) > 0, ∆f (u | ψ) ≥ 0.188

Golovin and Krause [6] show that the influence utility function under the IC model with full adoption189

feedback is adaptive monotone and adaptive submodular, and thus the adaptive greedy algorithm190

achieves (1 − 1
e ) approximation of the adaptive optimal solution. However, they show that the191

influence utility function under the IC model with myopic feedback is not adaptive submodular. They192

conjecture that the adaptive greedy policy still provides a constant approximation. In this paper, we193

show that the adaptive greedy policy provides a 1
4 (1− 1

e ) approximation, and thus finally address194

this conjecture affirmatively.195
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3 Adaptivity Gap in Myopic Feedback Model196

In this section, we analyze the adaptivity gap for influence maximization problems under the myopic197

feedback model and derive both upper and lower bounds.198

3.1 Upper Bound on the Adaptivity Gap199

Our main result is an upper bound on the adaptivity gap for myopic feedback models, which is200

formally stated below.201

Theorem 1. Under the IC model with myopic feedback, the adaptivity gap for the influence maxi-202

mization problem is at most 4.203

Proof outline. We now outline the main ideas and the structure of the proof of Theorem 1. The204

main idea is to show that for each adaptive policy π, we could construct a non-adaptive randomized205

policyW(π), such that the adaptive influence spread σ(π) is at most four times the non-adaptive206

influence spread of W(π), denoted σ(W(π)). This would immediately imply Theorem 1. The207

non-adaptive policyW(π) is constructed by viewing adaptive policy π as a decision tree with leaves208

representing the final seed set selected (Definition 4), and W(π) simply samples such a seed set209

based on the distribution of the leaves (Definition 5). The key to connect σ(π) with σ(W(π)) is210

by introducing a fictitious hybrid policy π̄, such that σ(π) ≤ σ̄(π̄) ≤ 4σ(W(π)), where σ̄(π̄) is211

the aggregate adaptive influence spread (defined in Eqs. (2) and (3)). Intuitively, π̄ works on three212

independent realizations Φ1,Φ2,Φ3, such that it adaptively selects seeds just as π working on Φ1,213

but each selected seed has three independent chances to activate its out-neighbors accordingly the214

union of Φ1,Φ2,Φ3. The inequality σ(π) ≤ σ̄(π̄) is immediate and the main effort is on proving215

σ̄(π̄) ≤ 4σ(W(π)).216

To do so, we first introduce general notations σt(S) and σt(π) with t = 1, 2, 3, where σt(S) is the217

t-th aggregate influence spread for a seed set S and σt(π) is the t-th aggregate adaptive influence218

spread for an adaptive policy π, and they mean that all seed nodes have t independent chances219

to activate their out-neighbors. Obviously, σ̄(π̄) = σ3(π) and σ(W(π)) = σ1(W(π)). We then220

represent σt(S) and σt(π) as a summation of k non-adaptive marginal gains ∆ft(u | dom(ψ1))’s221

and adaptive marginal gains ∆ft(u | ψ1)’s, respectively (Definition 6 and Lemma 1), with respect to222

the different levels of the decision tree. Next, we establish the key connection between the adaptive223

marginal gain and the nonadaptive marginal gain (Lemma 3): ∆f3(u | ψ1) ≤ 2∆f2(u | dom(ψ1)).224

This immediately implies that σ3(π) ≤ 2σ2(W(π)). Finally, we prove that the t-th aggregate non-225

adaptive influence spread σt(S) is bounded by t · σ(S), which implies that σ2(W(π)) ≤ 2σ(W(π)).226

This concludes the proof.227

We remark that our introduction of the hybrid policy π̄ is inspired by the analysis in [4], which shows228

that the adaptivity gap for the stochastic multi-value probing (SMP) problem is at most 2. However,229

our analysis is more complicated than theirs and thus is novel in several aspects. First, the SMP230

problem is simpler than our problem, with the key difference being that SMP is adaptive submodular231

but our problem is not. Therefore, we cannot apply their way of inductive reasoning that implicitly232

relies on adaptive submodularity. Instead, we have to use our marginal gain representation and redo233

the bounding analysis carefully based on the (non-adaptive) submodularity of the influence utility234

function on live-edge graphs. Moreover, our influence utility function is also sophisticated and we235

have to use three independent realizations in order to apply the submodularity on live-edge graphs,236

which results in an adaptivity bound of 4, while their analysis only needs two independent realizations237

to achieve a bound of 2. We now provide the technical proof of Theorem 1. We first formally define238

the decision tree representation.239

Definition 4 (Decision tree representation for adaptive policy). An adaptive policy π can be seen as240

a decision tree T (π), where each node s of T (π) corresponds to a partial realization ψs, with the241

root being the empty partial realization, and node s′ is a child of s if ψs′ = ψs ∪ {π(ψs), φ(π(ψs))}242

for some realization φ ∼ ψs. Each node s is associated with a probability ps, which is the probability243

that the policy π generates partial realization ψs, i.e. the probability that the policy would walk on244

the tree from the root to node s.245

Next we define the non-adaptive randomized policyW(π), which randomly selects a leaf of T (π).246
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Definition 5 (Random-walk non-adaptive policy [8]). For any adaptive policy π, let L(π) denote the247

set of leaves of T (π). Then we construct a randomized non-adaptive policyW(π) as follows: for248

any leaf ` ∈ L(π),W(π) picks leaf ` with probability p` and selects dom(ψ`) as the seed set.249

Before proceeding further with our analysis, we introduce some notations for the myopic feedback250

model. In the myopic feedback model, we notice that the state spaces for all nodes are mutually251

independent and disjoint. Thus we could decompose the realization space R into independent252

subspace,R = ×u∈VOu, whereOu is the set of all possible states for node u. For any full realization253

φ (resp. partial realization ψ), we would use φS (resp. ψS) to denote the feedback for the node set254

S ⊆ V . Note that φS and ψS are partial realizations with domain S. Similarly, we would also use PS255

to denote the probability space ×u∈SPu, where Pu is the probability distribution over Ou (i.e. each256

out-going edge (u, v) of u is live with independent probability puv). With a slight abuse of notation,257

we further use φS (resp. ψS) to denote the set of live edges leaving from S under φ (resp. ψ). Then258

we could use notation φ1
S ∪ φ2

S to represent the union of live-edges from φ1 and φ2 leaving from S,259

and similarly ψ1 ∪ φ2
S with dom(ψ) = S.260

Construction for hybrid policy. For any adaptive policy π, we define a fictitious hybrid policy π̄261

that works on three independent random realizations Φ1, Φ2 and Φ3 simultaneously, thinking about262

them as from three copies of the graphs G1, G2 and G3. Note that π̄ is not a real adaptive policy263

— it is only used for our analytical purpose to build connections between the adaptive policy π and264

the non-adaptive policy W(π). In terms of adaptive seed selection, π̄ acts exactly the same as π265

on G1, responding to partial realizations ψ1 obtained so far from the full realization Φ1 of G1, and266

disregarding the realizations Φ2 and Φ3. However, the difference is when we define adaptive influence267

spread for π̄, we aggregate the three partial realizations on the seed set together. More precisely, for268

any t = 1, 2, 3, we define the t-th aggregate influence utility function as f t : 2V ×Rt → R+269

f t
(
S, φ1, · · · , φt

)
:= f

(
S, (∪i∈[t]φ

i
S , φ

1
V \S)

)
, (2)

where (∪i∈[t]φ
i
S , φ

1
V \S) means a new realization φ′ where on set S its set of out-going live-edges is270

the same as union of φ1, · · ·φt and on set V \ S, its set of out-going live-edges is the same as φ1, and271

f is the original influence utility function defined in Section 2. The objective of the hybrid policy π̄ is272

then defined as the adaptive influence spread under policy π̄, i.e.,273

σ̄(π̄) := E
Φ1,Φ2,Φ3∼P

[
f3(V (π,Φ1),Φ1,Φ2,Φ3)

]
= E

Φ1,Φ2,Φ3∼P

[
f
(
V (π,Φ1), (Φ1

V (π,Φ1) ∪ Φ2
V (π,Φ1) ∪ Φ3

V (π,Φ1),Φ
1
V \V (π,Φ1))

)]
. (3)

In other words, the adaptive influence spread of the hybrid policy π̄ is the influence spread of seed274

nodes V (π,Φ1) selected in graph G1 by policy π, where the live-edge graph on the seed set part275

V (π,Φ1) is the union of live-edge graphs of G1, G2 and G3, and the live-edge graph on the non-seed276

set part is only that of G1. It can also be viewed as each seed node has three independent chances to277

activate its out-neighbors. Since the hybrid policy π̄ acts the same as policy π on influence graph G1,278

we can easily conclude:279

Claim 1. σ̄(π̄) ≥ σ(π).280

We also define t-th aggregate influence spread for a seed set S, σt(S), as σt(S) =281

EΦ1,··· ,Φt∼P
[
f t(S,Φ1, · · · ,Φt)

]
. Then, for the random-walk non-adaptive policyW(π), we define282

σt(W(π)) =
∑
`∈L(π) p` · σt(dom(ψ`)), that is, the t-th aggregate influence spread ofW(π) is the283

average t-th aggregate influence spread of seed nodes selected byW(π) according to distribution284

of the leaves in the decision tree T (π). Similarly, we define the t-th aggregate adaptive influence285

spread for an adaptive policy π as σt(π) = EΦ1,··· ,Φt∼P
[
f t(V (π,Φ1),Φ1, · · · ,Φt)

]
. Note that286

σ̄(π̄) = σ3(π).287

Now, we could give a definition for the conditional expected marginal gain for the aggregate influence288

utility function f t over live-edge graph distributions.289

Definition 6. The expected non-adaptive marginal gain of u given set S under f t is defined as:290

∆ft(u | S) = E
Φ1,··· ,Φt∼P

[
f t
(
S ∪ {u},Φ1, · · · ,Φt

)
− f t

(
S,Φ1, · · · ,Φt

)]
. (4)
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The expected adaptive marginal gain of u given partial realization ψ1 under f t is defined as:291

∆ft(u | ψ1) = E
Φ1,··· ,Φt∼P

[
f t
(
dom(ψ1) ∪ {u},Φ1, · · · ,Φt

)
− f t

(
dom(ψ1),Φ1, · · · ,Φt

)
| Φ1 ∼ ψ1

]
.

(5)

The following lemma connects σt(π) (and thus σ̄(π̄)) with adaptive marginal gain ∆ft(u | ψ), and292

connects σt(W(π)) with non-adaptive marginal gain ∆ft(u | S). Let Pπi denote the probability293

distribution over nodes at depth i of the decision T (π). The proof is by applying telescoping series to294

convert influence spread into the sum of marginal gains.295

Lemma 1. For any adaptive policy π, and t ≥ 1, we have296

σt(π) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | ψs)] , and σt(W(π)) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | dom(ψs))] .

The next lemma bounds two intermediate adaptive marginal gains to be used for Lemma 3. The297

proof crucially depend on (a) the independence of realizations Φ1,Φ2,Φ3, (b) the independence of298

feedback of different selected seed nodes, and (c) the submodularity of the influence utility function299

on live-edge graphs.300

Lemma 2. Let S = dom(ψ1) and S+ = S ∪ {u} for any partial realization ψ1 and any u 6∈301

dom(ψ1). Then we have302

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (6)

303

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (7)

Combining the two inequalities above, we obtain the following key lemma essential, which bounds304

the adaptive marginal gain ∆f3(u | ψ1) with the non-adaptive marginal gain ∆f2(u | dom(ψ1)).305

Lemma 3. For any partial realization ψ1 and node u /∈ dom(ψ1), we have306

∆f3(u | ψ1) ≤ 2∆f2(u | dom(ψ1)). (8)

The next lemma gives an upper bound on the t-th aggregate (non-adaptive) influence spread σt(S)307

using the original influence spread σ(S). The idea of the proof is that each seed node in S has t308

independent chances to active its out-neighbors, but afterwards the diffusion is among nodes not in S309

as in the original diffusion.310

Lemma 4. For any t ≥ 1 and any subset S ⊆ V , σt(S) ≤ t · σ(S).311

Proof of Theorem 1. It is enough to show that for every adaptive policy π, σ(π) ≤ 4σ(W(π)).312

This is done by the following derivation sequence: σ(π) ≤ σ̄(π̄) = σ3(π) =313 ∑k−1
i=0 Es∈Pπi

[
∆f3 (π(ψs) | ψs)

]
≤
∑k−1
i=0 Es∈Pπi

[
2∆f2 (π(ψs) | dom(ψs))

]
= 2σ2(W(π)) ≤314

4σ(W(π)), where the first inequality is by Claim 1, the second and the third equalities are by315

Lemma 1, the second inequality is by Lemma 3 and the last inequality is by Lemma 4.316

3.2 Lower bound317

Next, we proceed to give a lower bound on the adaptivity gap for the influence maximization problem318

in the myopic feedback model. Our result is stated as follow:319

Theorem 2. Under the IC model with myopic feedback, the adaptivity gap for the influence maxi-320

mization problem is at least e/(e− 1).321

Proof Sketch. We construct a bipartite graph G = (L,R,E, p) with |L| =
(
m3

m2

)
and |R| = m3. For322

each subset X ⊂ R with |X| = m2, there is exactly one node u ∈ L that connects to all nodes in X .323

We show that for any ε > 0, there is a large enough m such that in the above graph with parameter m324

the adaptivity gap is at least e/(e− 1)− ε.325
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4 Adaptive and Non-Adaptive Greedy Algorithms326

In this section, we consider two prevalent algorithms — the greedy algorithm and the adaptive greedy327

algorithm for the influence maximization problem. To the best of our knowledge, we provide the first328

approximation ratio of these algorithms with respect to the adaptive optimal solution in the IC model329

with myopic feedback. We formally describe the algorithms in figure 1.330

Greedy Algorithm:
S = ∅
while |S| < k do
u = argmaxu∈V \S∆f (u|S)

S = S ∪ {u}
end while
return S

Adaptive Greedy Algorithm:
S = ∅,Ψ = ∅
while |S| < k do
u = argmaxu∈V \S∆f (u|Ψ)

Select u as seed and observe Φ(u).
S = S ∪ {u}, Ψ = Ψ ∪ {(u,Φ(u))}

end while

Figure 1: Description for greedy and adaptive greedy.

Our main result is summarized below.331

Theorem 3. Both greedy and adaptive greedy are 1
4 (1 − 1

e ) approximate to the optimal adaptive332

policy under the IC model with myopic feedback.333

Proof Sketch. The proof for the non-adaptive greedy algorithm is straightforward since the greedy334

algorithm provides a (1− 1
e ) approximation to the non-adaptive optimal solution, which by Theorem 1335

is at least 1
4 of the adaptive optimal solution. For the adaptive greedy algorithm, we need to separately336

prove that it also provides a (1− 1
e ) approximation to the non-adaptive optimal solution, and then the337

result is immediate similar to the non-adaptive greedy algorithm.338

Theorem 3 shows that greedy and adaptive greedy can achieve at least an approximation ratio of339
1
4 (1 − 1

e ) with respect to the adaptive optimal solution. We further show that their approximation340

ratio is at most e2+1
(e+1)2 ≈ 0.606, which is strictly less than 1 − 1/e ≈ 0.632. To do so, we first341

present an example for non-adaptive greedy with approximation ratio at most e2+1
(e+1)2 . Next, we show342

that myopic feedback does not help much to adaptive greedy, in that the approximation ratio for the343

non-adaptive greedy algorithm is no worse than adaptive greedy, when considering over all graphs.344

Combining with the first observation, we also achieve the result for the adaptive greedy algorithm.345

Theorem 4. The approximation ratio for greedy and adaptive greedy is no better than e2+1
(e+1)2 ≈346

0.606, which is strictly less than 1− 1/e ≈ 0.632. Moreover, the approximation ratio of adaptive347

greedy is at most that of the non-adaptive greedy, when considering all influence graphs.348

5 Conclusion and Future Work349

In this paper, we systematically study the adaptive influence maximization problem with myopic350

feedback under the independent cascade model, and provide constant upper and lower bounds on351

the adaptivity gap and the approximation ratios of the non-adaptive greedy and adaptive greedy352

algorithms. There are a number of future directions to continue this line of research. First, there is353

still a gap between the upper and lower bound results in this paper, and thus how to close this gap is354

the next challenge. Second, our result suggests that adaptive greedy may not bring much benefit under355

the myopic feedback model, so are there other adaptive algorithms that could do much better? Third,356

for the IC model with full-adoption feedback, because the feedback on different seed nodes may be357

correlated, existing adaptivity gap results in [1, 4] cannot be applied, and thus its adaptivity gap is358

still open even though it is adaptive submodular. One may also explore beyond the IC model, and359

study adaptive solutions for other models such as the linear threshold model, general threshold model360

etc.[9]. Finally, scalable algorithms for adaptive influence maximization is also worth to investigate.361
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Appendix407

We include the missing proofs in this appendix. For convenience, we restate the lemmas and theorems408

that we prove here.409

A Missing Proofs of Section 3.1, Adaptivity Upper Bound410

Lemma 1. For any adaptive policy π, and t ≥ 1, we have411

σt(π) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | ψs)] , and σt(W(π)) =

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | dom(ψs))] .

Proof. We first prove the equality on σt(π). Let V (π,Φ):i (resp. V (π,Φ)i) denote the first i nodes412

(resp. the ith node) selected by policy π under realization Φ.413

Then we have414

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | ψs)]

=

k−1∑
i=0

E
s∼Pπi

[
E

Φ1,··· ,Φt∼P

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)
| Φ1 ∼ ψs

]]

=

k−1∑
i=0

E
Φ2,··· ,Φt∼P

[
E

s∼Pπi

[
E

Φ1∼P

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)
| Φ1 ∼ ψs

]]]

=

k−1∑
i=0

E
Φ2,··· ,Φt∼P

[
E

Φ1∼P

[(
f t
(
V (π,Φ1):i ∪ V (π,Φ1)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ1):i,Φ

1, · · · ,Φt
))]]

= E
Φ2,··· ,Φt∼P

[
E

Φ1∼P

[
k−1∑
i=0

(
f t
(
V (π,Φ1):i ∪ V (π,Φ1)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ1):i,Φ

1, · · · ,Φt
))]]

= E
Φ2,··· ,Φt∼P

[
E

Φ1∼P

[
f t(V (π,Φ1),Φ1, · · · ,Φt)

]]
=σt(π)

The third equality above is by the law of total expectation, and notice that for any tree node s in T (π)415

and any random realization Φ ∼ ψs, we have V (π,Φ):i = dom(ψs) and V (π,Φ)i+1 = π(ψs).416

Next, we prove the equality on σt(W(π)).417

k−1∑
i=0

E
s∼Pπi

[∆ft (π(ψs) | dom(ψs))]

=

k−1∑
i=0

E
s∼Pπi

[
E

Φ1,··· ,Φt∼P

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)]]

=

k−1∑
i=0

E
Φ1,··· ,Φt∼P

[
E

s∼Pπi

[
f t
(
dom(ψs) ∪ π(ψs),Φ

1, · · · ,Φt
)
− f t

(
dom(ψs),Φ

1, · · · ,Φt
)]]

=

k−1∑
i=0

E
Φ1,··· ,Φt∼P

[
E

Φ∼P

[
f t
(
V (π,Φ):i ∪ V (π,Φ)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ):i,Φ

1, · · · ,Φt
)]]

= E
Φ∼P

[
E

Φ1,··· ,Φt∼P

[
k−1∑
i=0

(
f t
(
V (π,Φ):i ∪ V (π,Φ)i+1,Φ

1, · · · ,Φt
)
− f t

(
V (π,Φ):i,Φ

1, · · · ,Φt
))]]

= E
Φ∼P

[
E

Φ1,··· ,Φt∼P

[
f t(V (π,Φ),Φ1, · · · ,Φt)

]]
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= E
Φ∼P

[
σt(V (π,Φ))

]
= σt(W(π)).

The third equality above is because the distribution of dom(ψs) and π(ψs) with s ∼ Pπi is exactly the418

same as the distribution of V (π,Φ):i and V (π,Φ)i+1 with Φ ∼ P . Note that this Φ is independent419

of Φ1, · · · ,Φt. The last equality is because the distribution of V (π,Φ) with Φ ∼ P is exactly420

the distribution of the seed sets taken from the leaves of T (π), which exactly corresponds to the421

random-walk non-adaptive policyW(π).422

Lemma 2. Let S = dom(ψ1) and S+ = S ∪ {u} for any partial realization ψ1 and any u 6∈423

dom(ψ1). Then we have424

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (6)

425

E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u | S). (7)

Proof. We first prove Inequality (6). To do so, we first expand the RHS of Eq. (6),426

∆f2(u | S) = E
Φ2,Φ3∼P

[
f2
(
S+,Φ2,Φ3

)
− f2

(
S,Φ2,Φ3

)]
= E

Φ2,Φ3∼P

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
− f

(
S, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]
= E

Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
−

f
(
S, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
. (9)

The third equality above holds because Φ2
S ,Φ

3
S ,Φ

2
u,Φ

3
u,Φ

2
V \S+ ,Φ3

V \S+ are mutually independent,427

and Φ3
V \S+ does not appear inside the expectation term. Next, we expand the LHS of Eq. (6),428

LHS of Eq. (6)

= E
Φ1
S ,Φ

2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u,Φ

1
V \S+)

)
| Φ1 ∼ ψ1

]]]
= E

Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u,Φ

1
V \S+)

)]]]
.

= E
Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ3

u,Φ
2
V \S+)

)
− f

(
S, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u,Φ

2
V \S+)

)]]]
.

= E
Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
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− f
(
S, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
. (10)

The first equality above holds because all these random variables are independent. The second429

equality above holds because Φ1
S = ψ1 implied by Φ1 ∼ ψ1. In the third equality, we replace Φ1

V \S+430

with Φ2
V \S+ and replace Φ2

u with Φ3
u, because they follow the same probability distributions and are431

independent to the other distributions. In the last equality, we replace Φ1
u with Φ2

u.432

Comparing Eq. (9) and Eq. (10), we know that it suffices to prove that for any fixed partial realizations433

φ2
S , φ

3
S , φ

2
u, φ

3
u, φ

2
V \S ,434

f
(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
− f

(
S, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
≤ f

(
S+, (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
− f

(
S, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
. (11)

Consider any node v ∈ Γ(S+, (ψ1 ∪φ2
S ∪φ3

S , φ
2
u ∪φ3

u, φ
2
V \S+))\Γ(S, (ψ1 ∪φ2

S ∪φ3
S , φ

2
u, φ

2
V \S+)),435

we have the following observations: (1) under the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+) (or436

equivalently its live-edge graph), node v cannot be reached from nodes in S; and (2) under the437

realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+) (or equivalently its live-edge graph), node v can be438

reached via a path P originated from node u, and P does not contain any node in S.439

Now, we are going to prove that v ∈ Γ(S+, (φ2
S∪φ3

S , φ
2
u∪φ3

u, φ
2
V \S+))\Γ(S, (φ2

S∪φ3
S , φ

2
u, φ

2
V \S+)).440

Since the path P does not contain any node in S, we know that path P also exists under the441

realization (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+), i.e., node v can be reached from node u under realization442

(φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+). Moreover, we know that the realization ((φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+) has less443

live edges than the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+), so node v can not be reached from set S444

under the realization (φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+) . As a result, we have proved445

Γ
(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
\Γ
(
S, (ψ1 ∪ φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
⊆ Γ

(
S+, (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
\Γ
(
S, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
. (12)

This proves Eq. (11) and thus concludes the proof of Inequality (6). Note that the above proof on446

Eq. (11) resembles the proof of submodularity of influence utility function f on a live-edge graph,447

but Eq. (11) is a bit more complicated because it is on different live-edge graphs.448

Next we prove the Inequality (7). Again, we first expand the RHS of Eq. (7).449

∆f2(u | S) = E
Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
−f
(
S, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
≥ E

Φ2
S ,Φ

3
S∼PS

 E
Φ2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u ∪ Φ3

u,Φ
2
V \S+)

)
−f
(
S+, (Φ2

S ∪ Φ3
S ,Φ

2
u,Φ

2
V \S+)

)]]]
. (13)

The inequality above is by the monotonicity of f(S, φ) on S. Next, we expand the LHS of Eq. (7).450

LHS of Eq. (7)

= E
Φ1
S ,Φ

2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u,Φ

3
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]]]
= E

Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u,Φ

3
u∈Pu

 E
Φ1
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
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− f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u,Φ
1
V \S+)

)]]]
.

= E
Φ2
S ,Φ

3
S∼PS

 E
Φ1
u,Φ

2
u,Φ

3
u∈Pu

 E
Φ2
V \S+∼PV \S+

[
f
(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u ∪ Φ3
u,Φ

2
V \S+)

)
− f

(
S+, (ψ1 ∪ Φ2

S ∪ Φ3
S ,Φ

1
u ∪ Φ2

u,Φ
2
V \S+)

)]]]
. (14)

The last equality holds by replacing Φ1
V \S+ with Φ2

V \S+ , because both have the same distributions451

and are independent from the other distributions. Similar to the previous lemma, comparing Eq. (13)452

and Eq. (14), it suffices to prove that for fixed partial realizations φ2
S , φ

3
S , φ

1
u, φ

2
u, φ

3
u and φ2

V \S+ ,453

f
(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

1
u ∪ φ2

u ∪ φ3
u, φ

2
V \S+)

)
− f

(
S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

1
u ∪ φ2

u, φ
2
V \S+)

)
≤f
(
S+, (φ2

S ∪ φ3
S , φ

2
u ∪ φ3

u, φ
2
V \S+)

)
− f

(
S+, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)

)
. (15)

Consider any node v ∈ Γ(S+, (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u ∪ φ3
u, φ

2
V \S+))\Γ(S+, (ψ1 ∪ φ2

S ∪ φ3
S , φ

1
u ∪454

φ2
u, φ

2
V \S+)), we have the following observations: (1) Node v cannot be reached from any node in455

set S+ under the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u, φ
2
V \S+); and (2) node v can be reached via a456

simple path P originated from node u under the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u ∪ φ3
u, φ

2
V \S+),457

and P does not contain any node in S and any edge in φ1
u ∪ φ2

u.458

Now, we prove that v ∈ Γ(S+, (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+))\Γ(S+, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)). Since459

path P does not contain any node in S and any edge in φ1
u, we know that path P also exists460

under realization (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+), i.e., node v can be reached from node u under461

realization (φ2
S∪φ3

S , φ
2
u∪φ3

u, φ
2
V \S+). Moreover, we know that the realization (φ2

S∪φ3
S , φ

2
u, φ

2
V \S+)462

has less live edges than the realization (ψ1 ∪ φ2
S ∪ φ3

S , φ
1
u ∪ φ2

u, φ
2
V \S+), thus node v cannot be463

reached from the set S+ under realization (φ2
S ∪ φ3

S , φ
2
u, φ

2
V \S+). Thus we can conclude that464

v ∈ Γ(S+, (φ2
S ∪ φ3

S , φ
2
u ∪ φ3

u, φ
2
V \S+))\Γ(S+, (φ2

S ∪ φ3
S , φ

2
u, φ

2
V \S+)), this leads to Eq. (15) and465

concludes the proof of Inequality (7).466

Lemma 3. For any partial realization ψ1 and node u /∈ dom(ψ1), we have467

∆f3(u | ψ1) ≤ 2∆f2(u | dom(ψ1)). (8)

Proof. Again, for ease of notation, we set S = dom(ψ1) and S+ = dom(ψ1) ∪ {u}, then we have468

∆f3(u | ψ1) = E
Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
−f
(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
= E

Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u ∪ Φ3
u,Φ

1
V \S+)

)
− f

(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
| Φ1 ∼ ψ1

]
+ E

Φ1,Φ2,Φ3∼P

[
f
(
S+, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
u ∪ Φ2

u,Φ
1
V \S+)

)
− f

(
S, (Φ1

S ∪ Φ2
S ∪ Φ3

S ,Φ
1
V \S)

)
| Φ1 ∼ ψ1

]
≤ ∆f2(u|S) + ∆f2(u|S) = 2∆f2(u|dom(ψ1)). (16)

The inequality above is a direct consequence of Lemmas 2.469

Lemma 4. For any t ≥ 1 and any subset S ⊆ V , σt(S) ≤ t · σ(S).470

Proof. We have471

σt(S) = E
Φ1,··· ,Φt∼P

[
f t(S,Φ1, · · · ,Φt)

]
= E

Φ1,··· ,Φt∼P

[
f
(
S, (∪i∈[t]Φ

i
S ,Φ

1
V \S)

)]
13



= E
Φ1
V \S∼PV \S

[
E

Φ1
S ,··· ,ΦtS∼PS

[
f
(
S, (∪i∈[t]Φ

i
S ,Φ

1
V \S)

)]]
. (17)

We want to show that for any fixed φ1
V \S ,472

E
Φ1
S ,··· ,ΦtS∼PS

[
f
(
S, (∪i∈[t]Φ

i
S , φ

1
V \S)

)]
≤
∑
i∈[t]

E
ΦiS

[
f
(
S, (ΦiS , φ

1
V \S)

)]
. (18)

Once Eq.(18) is shown, we can combine with Eq.(17) to obtain473

σt(S) ≤ E
Φ1
V \S∼P

∑
i∈[t]

E
ΦiS

[
f
(
S, (ΦiS ,Φ

1
V \S)

)]
=
∑
i∈[t]

E
Φ1
V \S∼P

[
E
ΦiS

[
f
(
S, (ΦiS ,Φ

1
V \S)

)]]

=
∑
i∈[t]

E
Φ1∼P

[
f(S,Φ1)

]
= t · σ(S).

Thus the lemma holds. Now we prove Inequality (18). To do so, we fix partial realizations φ1
S , · · · , φtS .474

If node v ∈ Γ(S,∪i∈[t]φ
i
S , φ

1
V \S)), then we conclude that under the realization (∪i∈[t]φ

i
S , φ

1
V \S),475

node v can be reached via a path P originated from some node u ∈ S, and only the starting node of476

P is in S and all remaining nodes in P are not from S. Suppose in path P , the edge leaving node477

u is contained in edge set φiu for some i ∈ [t]. Then we conclude that node v ∈ Γ(S, (φiS , φ
1
V \S)),478

since the path P exists under the realization (φiS , φ
1
V \S). This shows that Γ(S, (∪i∈[t]φ

i
S , φ

1
V \S)) ⊆479

∪i∈[t]Γ(S, (φiS , φ
1
V \S)), which is sufficient to prove Inequality (18).480

B Missing Proof of Section 3.2, Adaptivity Lower Bound481

Theorem 2. Under the IC model with myopic feedback, the adaptivity gap for the influence maxi-482

mization problem is at least e/(e− 1).483

Proof. Consider the following construction for the influence graph: the influence graph G =484

(L,R,E, p) is a bipartite graph with |L| =
(
m3

m2

)
and |R| = m3. All edges (u, v) ∈ E are di-485

rected from the left part L to the right part R, associated with probability 1/m. More specifically,486

for any subset X ⊆ R with size m2, there is a node uX ∈ L such that the outgoing edges of uX are487

exactly (uX , v) for every v ∈ X . Thus the out-degree of every vertex in L is m2.488

We first describe the main idea of the proof. The budget for the IM problem ism2, i.e., we are allowed489

to select no more than m2 seeds, and we would consider m to be a very large number here. Intuitively,490

the expected number of nodes in R that is reachable for a single node u ∈ L is m2 · (1/m) = m, and491

the influence spread is concentrated on its expected value for large m. In an adaptive solution, we492

could always make the expected marginal gain for the node we select equals the expected influence493

spread of a single node in L, by selecting nodes in L such that none of its out-neighbors has been494

reached so far, unless there are too few nodes in R that are not reachable. Since m2 ·m = m3, the495

seeds we select would reach almost all but except o(m3) nodes in R, thus the influence spread of the496

adaptive policy is roughly m3. While for a non-adaptive policy, it can select at most m2 nodes from497

L and for each node in R, on average, it is connected with at most m2 ·m2/m3 = m seeds in L, we498

can easily prove that it is indeed the best allocation of seeds in L, and the expected probability for499

nodes in R to be reached is 1− (1− 1/m)m ≈ 1− 1/e. Moreover, since we are allowed to select500

no more than m2 seeds in R and they would not reach any other node, the contribution of this part501

is negligible. Thus the expected influence spread for the optimal non-adaptive solution would not502

exceed (1− 1/e)m3 and the adaptivity gap is e/(e− 1) on this graph.503

The following two claims would make the above intuition formal.504

Claim 2. For any ε > 0, when m is large enough, we have OPTA(G,m2) ≥ (1− ε)m3.505
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Proof. For any fixed ε > 0, we would take m such that m ≥ 48/ε2 logm. Consider the following506

adaptive policy π, which only selects nodes from the left part L. Moreover, for every node u ∈ L507

selected by π, at the time of selection, none of u’s out-neighbors inR has been reached yet from nodes508

selected by π so far (this condition can be verified by an adaptive policy with myopic feedback). When509

there does not exist such node or the size of the seed set already equals to the budget, π would stop. For510

i ∈ {1, · · · , (1− ε/2)m2}, let Ei denote the event that after selecting the i-th seed in L, the marginal511

gain of the influence spread is between [(1− ε/2)m+ 1, (1 + ε/2)m+ 1]. We would give a lower512

bound on the conditional probability Pr[Ei | E1, · · · , Ei−1]. Under the condition ∪i−1
j=1Ej , the current513

influence spread on the right partR is less than (1+ε/2)m·(1−ε/2)m2 = (1−ε2/4)m3 < m3−m2,514

thus policy π would not stop by now. Thus the marginal gain is the summation of m2 independent515

binomial variables with mean m. By the Chernoff bound we have516

Pr[Ei | E1, · · · , Ei−1] ≥ 1− exp(−ε2m/12) ≥ 1− 1

m3
. (19)

Consequently,517

Pr[∪ti=1Ei] = Πt
i=1 Pr[Ei | E1, · · · , Ei−1] ≥ (1− 1

m3
)m

2

≥ 1− 1

m3
·m2 = 1− 1

m
. (20)

Thus the expected influence is greater than (1− 1
m ) · (1− ε/2)m · (1− ε/2)m2 ≥ (1− ε)m3.518

Claim 3. OPTN (G,m2) ≤ (1− (1− 1/m)m)m3 + 2m2.519

Proof. Let SL (resp. SR) denote the seed set selected by the optimal non-adaptive policy from the520

left part L (resp. right part R). For any node ui ∈ R where i ∈ [m3], let xi denote the number521

of ui’s in-neighbors in the seed set SL. Since the out-degree for each node in SL is m2, we have522 ∑
i∈[m3] xi ≤ |SL| ·m2 and the average number of in-neighbors is at most |SL| ·m2/m3 = |SL|/m.523

Furthermore, we can calculate the influence spread of SL,524

σ(SL) = |SL|+
∑
i∈[m3]

Pr[ui is reachable]

= |SL|+
∑
i∈[m3]

(
1−

(
1− 1

m

)xi)

≤ |SL|+m3 ·

(
1−

(
1− 1

m

)|SL|/m)

≤ m2 +m3 ·
(

1−
(

1− 1

m

)m)
. (21)

The first inequality holds because function g(x) = (1− (1− 1
m )x) is concave. The last inequality525

holds because |SL| ≤ m2. Now we have526

OPTN (G,m2) = max
SL⊆L,SR⊆R,
|SL|+|SR|≤m2

σ(SL ∪ SR) ≤ max
SL⊆L,
|SL|≤m2

σ(SL) + max
SR⊆L,
|SR|≤m2

σ(SR)

≤ m2 +m3 ·
(

1−
(

1− 1

m

)m)
+m2 =

(
1−

(
1− 1

m

)m)
·m3 + 2m2.

(22)
This concludes the proof.527

Combining Claims 2 and 3, we can conclude that for any ε > 0, there exists large enough m such528

that OPTA(G,m2)/OPTN (G,m2) ≥ e/(e− 1)− ε. Letting ε→ 0, we obtain the theorem.529

C Missing Proofs in Section 4530

For the proofs in this section, let GreedyN (G, k) (resp. GreedyA(G, k)) denote the influence spread531

for the non-adaptive greedy algorithm (resp. adaptive influence spread for the adaptive greedy532

algorithm), on the influence graph G with a budget k.533

The proof of Theorem 3 is complete once we prove the following lemma.534
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Lemma 5. Adaptive greedy is (1− 1/e) approximate to the optimal non-adaptive policy.535

Proof. For a fixed influence graph G, let S (|S| = k) denote the seed set selected by the optimal536

non-adaptive algorithm, where si denotes the ith element in set S. We use A to denote adaptive537

greedy and for any t ∈ {0, 1, · · · , k}, we use U(t) to denote the expected adaptive influence spread538

of nodes selected by A in the first i rounds, i.e.,539

U(t) := E
Φ∼P

[f (V (A,Φ):t,Φ)] , (23)

From the above definition, we can see that U(0) = 0 and U(k) = σ(A). By Lemma 1, we have540

U(t) =

t−1∑
i=0

E
s∼PAi

[∆f (A(ψs) | ψs)] . (24)

Now, for any t ∈ {0, 1, · · · , k − 1}541

U(t+ 1)− U(t) = E
s∼PAt

[∆f (A(ψs) | ψs)]

≥ 1

k

k∑
i=1

E
s∼PAt

[∆f (si | ψs)]

=
1

k

k∑
i=1

E
s∼PAt

[
E

Φ∼P
[f (dom(ψs) ∪ {si},Φ)− f (dom(ψs),Φ) |Φ ∼ ψs]

]

=
1

k
E

s∼PAt

[
E

Φ∼P

[
k∑
i=1

(f (dom(ψs) ∪ {si},Φ)− f (dom(ψs),Φ)) |Φ ∼ ψs

]]

≥ 1

k
E

s∼PAt

[
E

Φ∼P
[f(dom(ψs) ∪ S,Φ)− f(dom(ψs),Φ)|Φ ∼ ψs]

]
≥ 1

k
E

s∼PAt

[
E

Φ∼P
[f(S,Φ)− f(dom(ψs),Φ)|Φ ∼ ψs]

]
=

1

k
(σ(S)− U(t)) . (25)

The first inequality holds since adaptive greedy A chooses the node that maximizes the expected542

marginal gain, i.e., for any partial realization ψ, ∆f (A(ψ) | ψ) ≥ ∆f (si | ψ) for any i ∈ [k].543

The second inequality is because the influence utility function f(·,Φ) is submodular under a fixed544

realization Φ. The third inequality holds because the influence utility function f(·,Φ) is monotone545

under a fixed realization Φ. The last equality utilizes the law of total expectation.546

Now via standard argument, Eq. (25) implies that547

GreedyA(G, k) = U(k) ≥

(
1−

(
1− 1

k

)k)
σ(S) =

(
1−

(
1− 1

k

)k)
OPTN (G, k)

≥
(

1− 1

e

)
·OPTN (G, k). (26)

This concludes the proof.548

We now prove Theorem 4. We first present a example showing that the non-adaptive greedy achieves549

at most e2+1
(e+1)2 approximation ratio.550

Lemma 6. Non-adaptive greedy algorithm has ratio at most e2+1
(e+1)2 with respect to the optimal551

adaptive solution, in the IC model with myopic feedback.552

Proof. Consider the following influence graph G(V,E, p), where V = V1

⋃
V2

⋃
V3, |V1| = d− 1,553

|V2| = d and |V3| = 2d. We would use vij to denote the jth node in Vi. Nodes in V1 and V2 have554
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unit weight while nodes in V3 have weight w. Note that we could achieve the weight of w by simply555

replacing each node with a chain of w nodes with edge probability 1, so that as long as the head of556

the chain is activated, the whole chain is activated. There are directed edges from V1 to V2 and from557

V2 to V3. More specifically, for any j ∈ [d], l ∈ [d − 1], there is a direct edge from the node v1
l to558

the node v2
j , associated with probability 1/d. The node v2

j is connected to node v3
2j−1 and v3

2j , with559

probability e/(e+ 1). The budget k = e+3
e+1d. We first consider the optimal adaptive solution and we560

observe that the optimal adaptive strategy can reach almost all nodes in V3.561

Claim 4. For any ε > 0, if we set d ≥ 2 log(2/ε)/ε2, then we have OPTA(G, k) ≥ (1− ε) · 2dw562

Proof. Consider the following adaptive strategy: we first select all d nodes in V2 and observe563

which nodes in V3 have not yet been reached, this can be done with myopic feedback. We564

would then use the left budget to select nodes in V3 that have not been reached. Let Xj =565

I{v3
j not activated by seed nodes in V2} for j ∈ [2d], where I{} is the indicator function. Xj’s566

are independent Bernoulli random variables with E[Xj ] = 1
e+1 . Then by the Chernoff bound,567

Pr[X1 + · · ·+X2d >
2

e+ 1
d+ εd] ≤ e−

εd·ε(e+1)/2
3 ≤ e−dε

2/2 ≤ ε

2
. (27)

Consequently, the expected number of nodes in V3 that have not been activated by seeds in V2 is at568

most ε2 · 2d+ (1− ε
2 ) · ( 2

e+1d+ εd) ≤ 2
e+1d+ 2εd. But the adaptive greedy algorithm still has a569

budget of 2
e+1d to directly activate nodes in V3, and thus the expected final number of non-activated570

nodes in V3 is at most 2εd. Thus we conclude the proof.571

Next, we consider the greedy algorithm and have the following conclusion.572

Claim 5. The non-adaptive greedy algorithm would first select all d− 1 nodes in V1, and then select573
2
e+1d+ 1 nodes in V2. Consequently, we have that574

GreedyN (G, k) = (d− 1) +

[(
2

e+ 1
d+ 1

)
+

(
1−

(
1− 1

d

)d−1
)
·
(
e− 1

e+ 1
d− 1

)]
· (1 +

2e

e+ 1
w),

(28)

when d,w →∞, we know that GreedyN (G,k)
dw → 2e2+2

(e+1)2 .575

Proof. We first prove that greedy would first select all d− 1 nodes in V1. Consider that the greedy576

algorithm has already selected j nodes in V1 as seeds, with j = 0, 1, . . . , d− 1. Let pj denote the577

probability that a node in V2 is activated in this case. We know that pj = 1− (1− 1
d )j . At this point,578

we know that the marginal gain for selecting the (j + 1)-th node in V1 is579

M1 = 1 + d · 1

d
(1− pj) · (1 +

2e

e+ 1
w) = 1 + (1− pj)(1 +

2e

e+ 1
w). (29)

In contrast, the marginal gain for selecting the first node in V2 as a seed is580

M2 = (1− pj)(1 +
2e

e+ 1
w), (30)

and the marginal gain for selecting the first node in V3 as a seed is581

M3 = pj(1−
e

e+ 1
)w + (1− pj)w =

(
pj ·

1

e+ 1
+ (1− pj)

)
w. (31)

Therefore M1 > M2. Comparing M1 with M3, we use the fact that for all j < d, pj ≤ 1− 1/e, and582

thus583

M1 −M3 = 1 + (1− pj)(1 +
2e

e+ 1
w)−

(
pj ·

1

e+ 1
+ (1− pj)

)
w

> (1− pj)
2e

e+ 1
w −

(
pj ·

1

e+ 1
+ (1− pj)

)
w
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=

(
e− 1

e+ 1
− e

e+ 1
pj

)
w

≥ 0. (32)

Thus we conclude that greedy would select all (d− 1) nodes in V1 first. Afterwards, we compare the584

marginal gain of selecting a node in V2 versus selecting a node in V3. Notice that if we select a node585

in V3, we would definitely not select a node whose in-neighbor in V2 is already selected as a seed,586

because it only decreases the marginal. Therefore, the marginal gains of selecting a node in V2 or a587

node in V3 are still given us M2 and M3. Thus, the difference of marginal gain is588

M2 −M3 = (1− pd−1)(1 +
2e

e+ 1
w)−

(
pd−1 ·

1

e+ 1
+ (1− pd−1)

)
w

> (1− pd−1)
2e

e+ 1
w −

(
pd−1 ·

1

e+ 1
+ (1− pd−1)

)
w

=

(
e− 1

e+ 1
− e

e+ 1
pd−1

)
w

=

(
e− 1

e+ 1
− e

e+ 1

(
1−

(
1− 1

d

)d−1
))

w

≥ 0. (33)

Thus the marginal gain for selecting nodes in V2 is greater than nodes in V3 and greedy would select589
2
e+1d+ 1 nodes in V2. All in all, the expected utility for greedy is590

GreedyN (G, k) = (d− 1) +

[(
2

e+ 1
d+ 1

)
+

(
1−

(
1− 1

d

)d−1
)
·
(
e− 1

e+ 1
d− 1

)]
· (1 +

2e

e+ 1
w).

(34)

and when d,w →∞, we know that GreedyN (G,k)
dw → 2e2+2

(e+1)2 .591

Combining Claim 5 and Claim 4, we conclude that when d,w →∞,592

GreedyN (G, k)

OPTA(G)
→ e2 + 1

(e+ 1)2
≈ 0.606. (35)

593

We then assert that the approximation ratio of adaptive greedy is no better than greedy.594

Lemma 7. The approximation ratio for the non-adaptive greedy algorithm is no worse than the595

adaptive greedy algorithm, over all graphs.596

Proof. Fix an influence graph G(V,E, p), and any k ∈ [n]. We use c to denote the approximation597

ratio of greedy, i.e.,598

c =
GreedyN (G, k)

OPTA(G, k)
.

We construct a family of graph G(w) such that the approximation ratio for adaptive greedy is599

approaching to c when w →∞. The influence graph G(w) consists of two parts, G1 and G2. The600

graph G1 has same nodes as G, but it does not contain any edges, while the graph G2 is exactly the601

same as G, except that the weight for each node is multiplied by a factor of w. Notice that we can602

always assign integral weights w to a node by connecting it to a directed chain of length w − 1. For603

any node v ∈ G1, v has exactly one outgoing edge, connecting to the corresponding node in G2, the604

edge will be live with probability 1.605

Now, consider adaptive greedy on G(w) with the same budget. Our first observation is that adaptive606

greedy will never choose nodes from G2. This is because if the corresponding node in G1 has not607

been chosen, the marginal gain of choosing the node in G1 is always larger by 1, and if it has already608
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been chosen, the marginal gain to choose the node in G2 is 0. Consequently, the adaptive greedy609

algorithm would always choose nodes in G1. However, because myopic feedback only provides one610

step feedback after seed selection, selecting a node in G1 would only provide the activation of its611

corresponding node in G2 as the feedback, but this is already known for sure, and thus we do not612

get any useful feedback under myopic feedback model on this graph. Therefore, the adaptive greedy613

algorithm in this case behaves exactly the same as the non-adaptive greedy algorithm on the influence614

graph G, and the performance for adaptive greedy is615

GreedyA(G(w), k) = w ·GreedyN (G, k) + k ≤ (w + 1) ·GreedyN (G, k). (36)

Consider the optimal adaptive policy, a feasible adaptive policy is to ignore nodes in graph G1 and616

perform the optimal adaptive policy on graph G2, we have617

OPTA(G(w), k) ≥ OPTA(G2(w), k) = w ·OPTA(G, k). (37)

By Eq. (36) and Eq. (37), the approximation ratio of adaptive greedy can be bounded as618

GreedyA(G(t), k)

OPTA(G(t), k)
≤ (w + 1) ·GreedyN (G, k))

w ·OPTA(G, k)
=
w + 1

w
· c→ c, when w →∞. (38)

This concludes the proof.619
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