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Abstract

We present Park, a platform for researchers to experiment with Reinforcement
Learning (RL) for computer systems. Using RL for improving the performance
of systems has a lot of potential, but is also in many ways very different from,
for example, using RL for games. Thus, in this work we first discuss the unique
challenges RL for systems has, and then propose Park an open extensible platform,
which makes it easier for ML researchers to work on systems problems. Currently,
Park consists of 12 real world system-centric optimization problems with one
common easy to use interface. Finally, we present the performance of existing RL
approaches over those 12 problems and outline potential areas of future work.

1 Introduction

Deep reinforcement learning (RL) has emerged as a general and powerful approach to sequential
decision making problems in recent years. However, real-world applications of deep RL have thus far
been limited. The successes, while impressive, have largely been confined to controlled environments,
such as complex games [70, 78, 91, 97, 100] or simulated robotics tasks [45, 79, 84]. This paper
concerns applications of RL in computer systems, a relatively unexplored domain where RL could
provide significant real-world benefits.

Computer systems are full of sequential decision-making tasks that can naturally be expressed
as Markov decision processes (MDP). Examples include caching (operating systems), congestion
control (networking), query optimization (databases), scheduling (distributed systems), and more
(§2). Since real-world systems are difficult to model accurately, state-of-the-art systems often rely on
human-engineered heuristic algorithms that can leave significant room for improvement [69]. Further,
these algorithms can be complex (e.g., a commercial database query optimizer involves hundreds of
rules [14]), and are often difficult to adapt across different systems and operating environments [63,
66] (e.g., different workloads, different distribution of data in a database, etc.). Furthermore, unlike
control applications in physical systems, most computer systems run in software on readily-available
commodity machines. Hence the cost of experimentation is much lower than physical environments
such as robotics, making it relatively easy to generate abundant data to explore and train RL models.
This mitigates (but does not eliminate) one of the drawbacks of RL approaches in practice — their
high sample complexity [7]. The easy access to training data and the large potential benefits have
attracted a surge of recent interest in the systems community to develop and apply RL tools to various
problems [17, 24, 32, 34, 48, 51, 54, 61–63, 66, 68, 69].

From a machine learning perspective, computer systems present many challenging problems for RL.
The landscape of decision-making problems in systems is vast, ranging from centralized control
problems (e.g., a scheduling agent responsible for an entire computer cluster) to distributed multi-
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agent problems where multiple entities with partial information collaborate to optimize system
performance (e.g., network congestion control with multiple connections sharing bottleneck links).
Further, the control tasks manifest at a variety of timescales, from fast, reactive control systems with
sub-second response-time requirements (e.g., admission/eviction algorithms for caching objects in
memory) to longer term planning problems that consider a wide range of signals to make decisions
(e.g., VM allocation/placement in cloud computing). Importantly, computer systems give rise to new
challenges for learning algorithms that are not common in other domains (§3). Examples of these
challenges include time-varying state or action spaces (e.g., dynamically varying number of jobs and
machines in a computer cluster), structured data sources (e.g., graphs to represent data flow of jobs or
a network’s topology), and highly stochastic environments (e.g., random time-varying workloads).
These challenges present new opportunities for designing RL algorithms. For example, motivated by
applications in networking and queuing systems, recent work [64] developed new general-purpose
control variates for reducing variance of policy gradient algorithms in “input-driven” environments,
in which the system dynamics are affected by an exogenous, stochastic process.

Despite these opportunities, there is relatively little work in the machine learning community on
algorithms and applications of RL in computer systems. We believe a primary reason is the lack of
good benchmarks for evaluating solutions, and the absence of an easy-to-use platform for experi-
menting with RL algorithms in systems. Conducing research on learning-based systems currently
requires significant expertise to implement solutions in real systems, collect suitable real-world traces,
and evaluate solutions rigorously. The primary goal of this paper is to lower the barrier of entry for
machine learning researchers to innovate in computer systems.

We present Park, an open, extensible platform that presents a common RL interface to connect to
a suite of 12 computer system environments (§4). These representative environments span a wide
variety of problems across networking, databases, and distributed systems, and range from centralized
planning problems to distributed fast reactive control tasks. In the backend, the environments are
powered by both real systems (in 7 environments) and high fidelity simulators (in 5 environments).
For each environment, Park defines the MDP formulation, e.g., events that triggers an MDP step,
the state and action spaces and the reward function. This allows researchers to focus on the core
algorithmic and learning challenges, without having to deal with low-level system implementation
issues. At the same time, Park makes it easy to compare different proposed learning agents on a
common benchmark, similar to how OpenAI Gym [19] has standardized RL benchmarks for robotics
control tasks. Finally, Park defines a RPC interface [92] between the RL agent and the backend
system, making it easy to extend to more environments in the future.

We benchmark the 12 systems in Park with both RL methods and existing heuristic baselines (§5).
The experiments benchmark the training efficiency and the eventual performance of RL approaches
on each task. The empirical results are mixed: RL is able to outperform state-of-the-art baselines in
several environments where researchers have developed problem-specific learning methods; for many
other systems, RL has yet to consistently achieve robust performance. We open-source Park as well
as the RL agents and baselines in https://github.com/park-project/park.

2 Sequential Decision Making Problems in Computer Systems

Sequential decision making problems manifest in a variety of ways across computer systems disci-
plines. These problems span a multi-dimensional space from centralized vs. multi-agent control to
reactive, fast control loops vs. long-term planning. In this section, we overview a sample of problems
from each discipline and how to formulate them as MDPs. Appendix A provides further examples
and a more formal description of the MDPs that we have implemented in Park.

Networking. Computer network problems are fundamentally distributed, since they interconnect
independent users. One example is congestion control, where hosts in the network must each
determine the rate to send traffic, accounting for both the capacity of the underlying network
infrastructure and the demands of other users of the network. Each network connection has an
agent (typically at the sender side) setting the sending rate based on how previous packets were
acknowledged. This component is crucial for maintaining a large throughput and low delay.

Another example at the application layer is bitrate adaptation in video streaming. When streaming
videos from content provider, each video is divided into multiple chunks. At watch time, an agent
decides the bitrate (affecting resolution) of each chunk of the video based on the network (e.g.,
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bandwidth and latency measurements) and video characteristics (e.g., type of video, encoding scheme,
etc.). The goal is to learn a policy that maximizes the resolution while minimizing chance of stalls
(when slow network cannot download a chunk fast enough).

Databases. Databases seek to efficiently organize and retrieve data in response to user requests. To
efficiently organize data, it is important to index, or arrange, the data to suit the retrieval patterns. An
indexing agent could observe query patterns and accordingly decide how to best structure, store, and
over time, re-organize the data.

Another example is query optimization. Modern query optimizers are complex heuristics which use a
combination of rules, handcrafted cost models, data statistics, and dynamic programming, with the
goal to re-order the query operators (e.g., joins, predicates) to ultimately lower the execution time.
Unfortunately, existing query optimizers do not improve over time and do not learn from mistakes.
Thus, they are an obvious candidate to be optimized through RL [66]. Here, the goal is to learn a
query optimization policy based on the feedback from optimizing and running a query plan.

Distributed systems. Distributed systems handle computations that are too large to fit on one
computer; for example, the Spark framework for big-data processing computes results across data
stored on multiple computers [107]. To efficiently perform such computations, a job scheduler decides
how the system should assign compute and memory resources to jobs to achieve fast completion
times. Data processing jobs often have complex structure (e.g., Spark jobs are structured as dataflow
graphs, Tensorflow models are computation graphs). The agent in this case observes a set of jobs and
the status of the compute resources (e.g., how each job is currently assigned). The action decides how
to place jobs onto compute resources. The goal is to complete the jobs as soon as possible.

Operating systems. Operating systems seek to efficiently multiplex hardware resources (compute,
memory, storage) amongst various application processes. One example is providing a memory
hierarchy: computer systems have a limited amount of fast memory and relatively large amounts
of slow storage. Operating systems provide caching mechanisms which multiplex limited memory
amongst applications which achieve performance benefits from residency in faster portions of the
cache hierarchy. In this setting, an RL agent can observe the information of both the existing objects
in the cache and the incoming object; it then decides whether to admit the incoming object and
which stale objects to evict from the cache. The goal is to maximize the cache hit rate (so that more
application reads occur from fast memory) based on the access pattern of the objects.

Another example is CPU power state management. Operating systems control whether the CPU
should run at an increased clock speed and boost application performance, or save energy with at a
lower clock speed. An RL agent can dynamically control the clock speed based on the observation
of how each application is running (e.g., is an application CPU bound or network bound, is the
application performing IO tasks). The goal is to maintain high application performance while
reducing the power consumption.

3 RL for Systems Characteristics and Challenges

In this section, we explain the unique characteristics and challenges that often prevent off-the-shelf
RL methods from achieving strong performance in different computer system problems. Admittedly,
each system has its own complexity and contains special challenges. Here, we primarily focus on the
common challenges that arise across many systems in different stages of the RL design pipeline.

3.1 State-action Space

The needle-in-the-haystack problem. In some computer systems, the majority of the state-action
space presents little difference in reward feedback for exploration. This provides no meaningful
gradient during RL training, especially in the beginning, when policies are randomly initialized.
Network congestion control is a classic example: even in the simple case of a fixed-rate link, setting
the sending rate above the available network bandwidth saturates the link and the network queue.
Then, changes in the sending rate above this threshold result in an equivalently bad throughput and
delay, leading to constant, low rewards. To exit this bad state, the agent must set a low sending rate
for multiple consecutive steps to drain the queue before receiving any positive reward. Random
exploration is not effective at learning this behavior because any random action can easily overshadow
several good actions, making it difficult to distinguish good action sequences from bad ones. Circuit
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GCN direct GCN transfer LSTM direct LSTM transfer Random
CIFAR-10 [52] 1.73± 0.41 1.81± 0.39 1.78± 0.38 1.97± 0.37 2.15± 0.39

Penn Tree Bank [65] 4.84± 0.64 4.96± 0.63 5.09± 0.63 5.28± 0.6 5.42± 0.57
NMT [11] 1.98± 0.55 2.07± 0.51 2.16± 0.56 2.88± 0.66 2.47± 0.48

Table 1: Generalizability of GCN and LSTM state representation in the Tensorflow device placement environ-
ment. The numbers are average runtime in seconds. ± spans one standard deviation. Bold font indicate the
runtime is within 5% of the best runtime. “Transfer” means testing on unseen models in the dataset.

design is another example: when any of the circuit components falls outside the operating region (the
exact boundary is unknown before invoking the circuit simulator), the circuit cannot function properly
and the environment returns a constant bad reward. As a result, exploring these areas provides little
gradient for policy training.

In these environments, using domain-knowledge to confine the search space helps to train a strong
policy. For example, we observed significant performance improvements for network congestion
control problems when restricting the policy (see also Figure 4d). Also, environment-specific reward
shaping [76] or bootstrapping from existing policies [41, 90] can improve policy search efficiency.

Representation of state-action space. When designing RL methods for problems with complex
structure, properly encoding the state-action space is the key challenge. In some systems, the action
space grows exponentially large as the problem size increases. For example, in switch scheduling,
the action is a bijection mapping (a matching) between input and output ports — a standard 32-port
would have 32! possible matching. Encoding such a large action space is challenging and makes it
hard to use off-the-shelf RL agents. In other cases, the size of the action space is constantly changing
over time. For example, a typical problem is to map jobs to machines. In this case, the number of
possible mappings and thus, actions increases with the number of new jobs in the system.

Unsurprisingly, domain specific representations that capture inherent structure in the state space
can significantly improve training efficiency and generalization. For example, Spark jobs, Tensor-
flow components, and circuit design are to some degree dataflow graphs. For these environments,
leveraging Graph Convolutional Neural Networks (GCNs) [50] rather than LSTMs can significantly
improves generalization (see Table 1). However, finding the right representation for each problem is
a central challenge, and for some domains, e.g., query optimization, remains largely unsolved.

3.2 Decision Process

0
50

100
150

Jo
b 

siz
e Job sequence 1

Job sequence 2

Taking the same action
at the same state
at time t

0 100 200 300 400 500 600 700
Time (seconds)

0

5

10

Pe
na

lty
(n

eg
. r

ew
ar

d) But the reward feedbacks
are vastly different

Figure 1: Illustrative example of load balancing
showing how different instances of a stochastic
input process can have vastly different rewards.
After time t, we sample two job arrival sequences
from a Poisson process. Figure adopted from [63].

Stochasticity in MDP causing huge variance.
Queuing systems environments (e.g., job schedul-
ing, load balancing, cache admission) have dynamics
partially dictated by an exogenous, stochastic input
process. Specifically, their dynamics are governed
not only by the decisions made within the system, but
also the arrival process that brings work (e.g., jobs,
packets) into the system. In these environments, the
stochasticity in the input process causes huge vari-
ance in the reward.

For illustration, consider the load balancing example
in Figure 1. If the arrival sequence after time t con-
sists of a burst of large jobs (e.g., job sequence 1),
the job queue will grow and the agent will receive
low rewards. In contrast, a stream of lightweight jobs
(e.g., job sequence 2) will lead to short queues and large rewards. The problem is that this difference
in reward is independent of the action at time t; rather, it is caused purely by the randomness in the
job arrival process. In these environments, the agents cannot tell whether two reward feedbacks differ
due to disparate input processes, or due to the quality of the actions. As a result, standard methods
for estimating the value of an action suffer from high variance.

Prior work proposed an input-dependent baseline that effectively reduces the variance from the
input process [64]. Figure 5 in [64] shows the policy improvement when using input-dependent
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(a) (b) (c) (d) (e)

Figure 2: Demonstration of the gap between simulation and reality in the load balancing environment. (a)
Distribution of job sizes in the training workload. (b, c) Testing agents on a particular distribution. An agent
trained with distribution 5 is more robust than one trained with distribution 1. (d, e) A “reservation” policy that
keeps a server empty for small jobs. Such a policy overfits distribution 1 and is not robust to workload changes.

baselines in the load-balancing and adaptive video streaming environments. However, the proposed
training implementations (“multi-value network” and “meta baseline”) are tailored for policy gradient
methods and require the environments to have a repeatable input process (e.g., in simulation, or real
systems with controllable input sequence). Thus, coping with input-driven variance remains an open
problem for value-based RL methods and for environments with uncontrollable input processes.

Infinite horizon problems. In practice, production computer systems (e.g., Spark schedulers, load
balancers, cache controllers, etc.) are long running and host services indefinitely. This creates
an infinite horizon MDP [13] that prevents the RL agents from performing episodic training. In
particular, this creates difficulties for bootstrapping a value estimation since there is no terminal
state to easily assign a known target value. Moreover, the discounted total reward formulation in the
episodic case might not be suitable — an action in a long running system can have impact beyond a
fixed discounting window. For example, scheduling a large job on a slow server blocks future small
jobs (affecting job runtime in the rewards), no matter whether the small jobs arrive immediately after
the large job or much farther in the future over the course of the lifetime of the large job. Average
reward RL formulations can be a viable alternative in this setting (see §10.3 in [93] for an example).

3.3 Simulation-Reality Gap

Unlike training RL in simulation, robustly deploying a trained RL agent or directly training RL on an
actual running computer systems has several difficulties. First, discrepancies between simulation and
reality prevent direct generalization. For example, in database query optimization, existing simulators
or query planners use offline cost models to predict query execution time (as a proxy for the reward).
However, the accuracy of the cost model quickly degrades as the query gets more complex due to
both variance in the underlying data distribution and system-specific artifacts [53].

Second, interactions with some real systems can be slow. In adaptive video streaming, for example,
the agent controls the bitrate for each chunk of a video. Thus, the system returns a reward to the
agent only after a video chunk is downloaded, which typically takes a few seconds. Naively using the
same training method from simulation (as in Figure 4a) would take a single-threaded agent more than
10 years to complete training in reality.

Finally, live training or directly deploying an agent from simulation can degrade the system perfor-
mance. Figure 2 describes a concrete example for load balancing. The reason is that based on the
bimodal distribution in the beginning, it learns to reserve a certain server for small jobs. However,
when the distribution changes, blindly reserving a server wastes compute resource and reduces system
throughput. Therefore, to deploy training algorithms online, these problems require RL to train robust
policies that ensure safety [2, 33, 49].

3.4 Understandability over Existing Heuristics

As in other areas of ML, interpretability plays an important role in making learning techniques
practical. However, in contrast to perception-based problems or games, for system problems, many
reasonable good heuristics exist. For example, every introductory course to computer science features
a basic scheduling algorithm such as FIFO. These heuristics are often easy to understand and to
debug, whereas a learned approach is often not. Hence, making learning algorithms in systems as
debuggable and interpretable as existing heuristics is a key challenge. Here, a unique opportunity
is to build hybrid solutions, which combine learning-based techniques with traditional heuristics.
Existing heuristics can not only help to bootstrap certain problems, but also help with safety and
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Figure 3: Park architects an RL-as-a-service design paradigm. The computer system connects to an RL agent
through a canonical request/response interface, which hides the system complexity from the RL agent. Algorithm
1 describes a cycle of the system interaction with the RL agent. By wrapping with an agent-centric environment
in Algorithm 2, Park’s interface also supports OpenAI Gym [19] like interaction for simulated environments.

generalizability. For example, a learned scheduling algorithm could fall back to a simple heuristic if
it detects that the input distribution significantly drifted.

4 The Park Platform

Park follows a standard request-response design pattern. The backend system runs continuously and
periodically send requests to the learning agent to take control actions. To connect the systems to
the RL agents, Park defines a common interface and hosts a server that listens for requests from the
backend system. The backend system and the agent run on different processes (which can also run
on different machines) and they communicate using remote procedure calls (RPCs). This design
essentially structures RL as a service. Figure 3 provides an overview of Park.

Real system interaction loop. Each system defines its own events to trigger an MDP step. At each
step, the system sends an RPC request that contains the current state and a reward corresponding to the
last action. Upon receiving the request, the Park server invokes the RL agent. The implementation of
the agent is up to the users (e.g., feature extraction, training process, inference methods). In Figure 3,
Algorithm 1 depicts this interaction process. Notice that invoking the agent incurs a physical delay
for the RPC response from the server. Depending on the underlying implementation, the system may
or may not wait synchronously during this delay. For non-blocking RPCs, the state observed by the
agent can be stale (which typically would not occur in simulation). On the other hand, if the system
makes blocking RPC requests, then taking a long time to compute an action (e.g., while performing
MCTS search [91]) can degrade the system performance. Designing high-performance RL training
or inference agents in a real computer system should explicitly take this delay factor into account.

Wrapper for simulated interaction. By wrapping the request-response interface with a shim layer,
Park also supports an “agent-centric” style of interaction advocated by OpenAI Gym [19]. In Figure 3,
Algorithm 2 outlines this option in simulated system environments. The agent explicitly steps the
environment forward by sending the action to the underlying system through the RPC response. The
interface then waits on the RPC server for the next action request. With this interface, we can directly
reuse existing off-the-shelf RL training implementations benchmarked on Gym [26].

Scalability. The common interface allows multiple instances of a system environment to run concur-
rently. These systems can generate the experience in parallel to speed up RL training. As a concrete
example, to implement IMPALA [28] style of distributed RL training, the interface takes multiple
actor instance at initialization. Each actor corresponds to an environment instance. When receiving
an RPC request, the interface then uses the RPC request ID to route the request to the corresponding
actor. The actor reports the experience to the learner (globally maintained for all agents) when the
experience buffer reaches the batch size for training and parameter updating.

Environments. Table 2 provides an overview of 12 environments that we have implemented in
Park. Appendix A contains the detailed descriptions of each problem, its MDP definition, and
explanations of why RL could provide benefits in each environment. Seven of the environments
use real systems in the backend (see Table 2). For the remaining five environments, which have
well-understood dynamics, we provide a simulator to facilitate easier setup and faster RL training. For
these simulated environments, Park uses real-world traces to ensure that they mimic their respective
real-world environments faithfully. For example, for the CDN memory caching environment, we
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Environment Type State space Action space Reward Step time Challenges (§3)

Adaptive
video streaming Real/sim

Past network throughput
measurements, playback

buffer size, portion of
unwatched video

Bitrate of the
next video chunk

Combination
of resolution and

stall time

Real: ∼3s
Sim: ∼1ms

Input-driven variance,
slow interaction time

Spark cluster
job scheduling Real/sim

Cluster and job
information as features
attached to each node

of the job DAGs

Node to
schedule next

Runtime penalty
of each job

Real: ∼5s
Sim: ∼5ms

Input-driven variance,
state representation,

infinite horizon,
reality gap

SQL database
query optimization Real

Query graph with
predicate and table
features on nodes,

join attributes on edges

Edge to join next Cost model or
actual query time ∼5s State representation,

reality gap

Network
congestion control Real Throughput, delay

and packet loss
Congestion window

and pacing rate
Combination of

throughput and delay ∼10ms

Sparse space for
exploration, safe

exploration, infinite
horizon

Network active
queue management Real Past queuing delay,

enqueue/dequeue rate Drop rate Combination of
throughput and delay ∼50ms Infinite horizon,

reality gap

Tensorflow
device placement Real/sim

Current device placement
and runtime costs as

features attached to each
node of the job DAGs

Updated placement
of the current node

Penalty of runtime
and invalid placement

Real: ∼2s
Sim: ∼10ms

State representation,
reality gap

Circuit design Sim

Circuit graph with
component ID, type
and static parameters

as features on the node

Transistor sizes,
capacitance and

resistance of
each node

Combination of
bandwidth, power

and gain
∼2s

State representation,
sparse space for

exploration

CDN
memory caching Sim Object size, time since

last hit, cache occupancy Admit/drop Byte hits ∼2ms
Input-driven variance,

infinite horizon,
safe exploration

Multi-dim database
indexing Real Query workload,

stored data points
Layout for data

organization Query throughput ∼30s
State/action

representation,
infinite horizon

Account
region assignment Sim

Account language,
region of request,

set of linked websites

Account region
assignment

Serving cost
in the future ∼1ms State/action

representation

Server load
balancing Sim

Current load of the
servers and the size

of incoming job

Server ID to
assign the job

Runtime penalty
of each job ∼1ms

Input-driven variance,
infinite horizon,
safe exploration

Switch scheduling Sim Queue occupancy for
input-output port pairs

Bijection mapping
from input ports
to output ports

Penalty of remaining
packets in the queue ∼1ms Action representation

Table 2: Overview of the computer system environments supported by Park platform.

use an open dataset containing 500 million requests, collected from a public CDN serving top-ten
US websites [15]. Given the request pattern, precisely simulating the dynamics of the cache (hits
and evictions) is straightforward. Moreover, for each system environment, we also summarize the
potential challenges from §3.

Extensibility. Adding a new system environment in Park is straightforward. For a new system, it
only needs to specify (1) the state-action space definition (e.g., tensor, graph, powerset, etc.), (2) the
event to trigger an MDP step, at which it sends an RPC request and (3) the function to calculate the
reward feedback. From the agent’s perspective, as long as the state-action space remains similar,
it can use the same RL algorithm for the new environment. The common interface decouples the
development of an RL agent from the complexity of the underlying system implementations.

5 Benchmark Experiments

We train the agents on the system environments in Park with several existing RL algorithms, including
DQN [70], A2C [71], Policy Gradient [94] and DDPG [55]. When available, we also provide the
existing heuristics and the optimal policy (specifically designed for each environment) for comparison.
The details of hyperparameter tunings, agent architecture and system configurations are in Appendix B.
Figure 4 shows the experiment results. As a sanity check, the performance of the RL policy improves
over time from random initialization in all environments.

Room for improvement. We highlight system environments that exhibit unstable learning behaviors
and potentially have large room for performance improvement. We believe that the instability
observed in some of the environments are due to fundamental challenges that require new training
procedure. For example, the policy in Figure 4h is unable to smoothly converge partially because
of the variance caused by the cache arrival input sequence (§3.2). For database optimization in
Figure 4c, RL methods that make one-shot decisions, such as DQN, do not converge to a stable
policy; combining with explicit search [66] may improve the RL performance. In network congestion
control, random exploration is inefficient to search the large state space that provides little reward
gradient. This is because unstable control policies (which widely spans the policy space) cannot drain
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Figure 4: Benchmarks of the existing standard RL algorithms on Park environments. In y-axes, “testing” means
the agents are tested with unseen settings in the environment (e.g., newly sampled workload unseen during
training, unseen job patterns to schedule, etc.). The heuristic or optimal policies are provided as comparison.

the network queue fast enough and results in indistinguishable (e.g., delay matches max queuing
delay) poor rewards (as discussed in §3.1). Confining the search space with domain knowledge
significantly improves learning efficiency in Figure 4d (implementation details in Appendix B.2). For
Tensorflow device placement in Figure 4f, using graph convolutional neural networks (GCNs) [50]
for state encoding is natural to the problem setting and allows the RL agent to learn more than 5 times
faster than using LSTM encodings [68]. Using more efficient encoding may improve the performance
and generalizability further.

For some of the environments, we were forced to simplify the task to make it feasible to apply
standard RL algorithms. Specifically, in CDN memory caching (Figure 4h), we only use a small 1MB
cache (typical CDN caches are over a few GB); a large cache causes the reward (i.e., cache hit/miss)
for an action to be significantly delayed (until the object is evicted from the cache, which can take
hundreds of thousands of steps in large caches) [15]. For account region assignment in Figure 4j, we
only allocate an account at initialization (without further migration). Active migration at runtime
requires a novel action encoding (how to map any account to any region) that is scalable to arbitrary
size of the action space (since the number of accounts keep growing). In Figure 4l, we only test with
a small switch with 3× 3 ports, because standard policy network cannot encode or efficiently search
the exponentially large action space when the number of ports grow beyond 10× 10 (as described in
§3.1). These tasks are examples where applying RL in realistic settings may require inventing new
learning techniques (§3).

6 Conclusion

Park provides a common interface to a wide spectrum of real-world systems problems, and is designed
to be easily-extensible to new systems. Through Park, we identify several unique challenges that may
fundamentally require new algorithmic development in RL. The platform makes systems problems
easily-accessible to researchers from the machine learning community so that they can focus on the
algorithmic aspect of these challenges. We have open-sourced Park along with the benchmark RL
agents and the existing baselines in https://github.com/park-project.
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