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Abstract

We study the effects of approximate inference on the performance of Thompson
sampling in the k-armed bandit problems. Thompson sampling is a successful
algorithm for online decision-making but requires posterior inference, which often
must be approximated in practice. We show that even small constant inference
error (in α-divergence) can lead to poor performance (linear regret) due to under-
exploration (for α < 1) or over-exploration (for α > 0) by the approximation.
While for α > 0 this is unavoidable, for α ≤ 0 the regret can be improved by
adding a small amount of forced exploration even when the inference error is a
large constant.

1 Introduction

The stochastic k-armed bandit problem is a sequential decision making problem where at each
time-step t, a learning agent chooses an action (arm) among k possible actions and observes a random
reward. Thompson sampling (Russo et al., 2018) is a popular approach in bandit problems based on
sampling from a posterior in each round. It has been shown to have good performance both in term
of frequentist regret and Bayesian regret for the k-armed bandit problem under certain conditions.

This paper investigates Thompson sampling when only an approximate posterior is available. This is
motivated by the fact that in complex models, approximate inference methods such as Markov Chain
Monte Carlo or Variational Inference must be used. Along this line, Lu & Van Roy (2017) propose a
novel inference method – Ensemble sampling – and analyze its regret for linear contextual bandits. To
the best of our knowledge this is the most closely related theoretical analysis of Thompson sampling
with approximate inference.

This paper analyzes the regret of Thompson sampling with approximate inference. Rather than
considering a particular inference algorithm, we parameterize the error using the α-divergence, a
typical measure of inference accuracy. Our contributions are as follows:

• Even small inference errors can lead to linear regret with naive Thompson sampling.
Given any error threshold ε > 0 and any α we show that approximate posteriors with error at
most ε in α-divergence at all times can result in linear regret (both frequentist and Bayesian).
For α > 0 and for any reasonable prior, we show linear regret due to over-exploration by
the approximation (Theorem 1, Corrolary 1). For α < 1 and for priors satisfying certain
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conditions, we show linear regret due to under-exploration by the approximation, which
prevents the posterior from concentrating (Theorem 2, Corrolary 2).

• Forced exploration can restore sub-linear regret. For α ≤ 0 we show that adding forced
exploration to Thompson sampling can make the posterior concentrate and restore sub-linear
regret (Theorem 3) even when the error threshold is a very large constant. We illustrate
this effect by showing that the performances of Ensemble sampling (Lu & Van Roy, 2017)
and mean-field Variation Inference (Blei et al., 2017) can be improved in this way either
theoretically (Section 5.1) or in simulations (Section 6).

2 Background and Notations.

2.1 The k-armed Bandit Problem.

We consider the k-armed bandit problem parameterized by the mean reward vector m =
(m1, ...,mk) ∈ Rk, where m∗i denotes the mean reward of arm (action) i. At each round t, the
learner chooses an action At and observes the outcome Yt which, conditioned on At, is independent
of the history up to and not including time t, Ht−1 = (A1, Y1, ..., At−1, Yt−1). For a time horizon T ,
the goal of the algorithm π is to maximize the expected cumulative reward up to time T .

Let Ω ⊆ Rk be the domain of the mean and Ωi ⊆ Ω denote the region where the ith arm has
the largest mean. Let the function A∗ : Ω → {a1, ..., ak} denoting the best action be defined as:
A∗(m) = i if m ∈ Ωi.

In the frequentist setting we assume that there exists a true mean m∗ which is fixed and unknown
to the learner. Therefore, a policy π∗ that always chooses A∗(m∗) will get the highest reward. The
performance of policy π is measured by its expected regret compared to an optimal policy π∗, which
is defined as:

Regret(T, π,m∗) = Tm∗A∗(m∗) − E
T∑
t=1

m∗At . (1)

On the other hand, in the Bayesian setting, an agent expresses her beliefs about the mean vector
in terms of a prior Π0, and therefore, the mean is treated as a random variable M = (M1, ...,Mk)
distributed according to the prior Π0. The Bayesian regret is the expectation of the regret under the
prior of parameter M :

BayesRegret(T, π) = EΠ0
Regret(T, π,M) . (2)

2.2 Thompson Sampling with Approximate Inference

In the frequentist setting, in order to perform Thompson sampling we define a prior which is only
used in the algorithm. On the other hand, in the Bayesian setting the prior is given.

Let Πt be the posterior distribution of M |Ht−1 with density function πt(m). Thompson sampling
obtains a sample m̂ from Πt and then selects arm At as follow: At = i if m̂ ∈ Ωi. In each round, we
assume an approximate sampling method is available that generates sample from an approximate
distribution Qt. We use qt to denote the density function of Qt.

Popular approximate sampling methods include Markov Chain Monte Carlo (MCMC) (Andrieu et al.,
2003), Sequential Monte Carlo (Doucet & Johansen, 2009) and Variational Inference (VI) (Blei
et al., 2017). There are packages that conveniently implement VI and MCMC methods, such as Stan
(Carpenter et al., 2017), Edward (Tran et al., 2016), PyMC (Salvatier et al., 2016) and infer.NET
(Minka et al., 2018).

To provide a general analysis of approximate sampling methods, we will use the α-divergence
(Section 2.3) to quantify the distance between the posterior Πt and the approximation Qt.
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2.3 The Alpha Divergence

The α-divergence between two distributions P and Q with density functions p(x) and q(x) is defined
as:

Dα(P,Q) =
1−

∫
p(x)αq(x)1−αdx

α(1− α)
. (3)

α-divergence generalizes many divergences, including KL(Q,P ) (α → 0), KL(P,Q) (α → 1),
Hellinger distance (α = 0.5) and χ2 divergence (α = 2) and is a common way to measure errors in
inference methods. MCMC errors are measured by the Total Variation distance, which can be upper
bounded by the KL divergence using Pinsker’s inequality (α = 0 or α = 1). Variational Inference
tries to minimize the reverse KL divergence (information projection) between the target distribution
and the approximation (α = 0). Ensemble sampling (Lu & Van Roy, 2017) provides error guarantees
using reverse KL divergence (α = 0). Expectation Propagation tries to minimize the KL divergence
(α = 1) and χ2 Variational Inference tries to minimize the χ2 divergence (α = 2).

Figure 1: The Gaussian Q which minimizes Dα(P,Q) for different values of α where the target
distribution P is a mixture of two Gaussians. Based on Figure 1 from (Minka, 2005)

When α is small, the approximation fits the posterior’s dominant mode. When α is large, the
approximation covers the posterior’s entire support (Minka, 2005) as illustrated in Figure 1. Therefore
changing α will affect the exploration-exploitation trade-off in bandit problems.

2.4 Problem Statement.

Problem Statement. For the k-armed bandit problem, given α and ε > 0, if at all time-steps t we
sample from an approximate distribution Qt such that Dα(Πt, Qt) < ε, will the regret be sub-linear
in t?

3 Motivating Example

In this section we present a simple example to show the effects of inference errors on the frequentist
regret.

Example. Consider a 2-armed bandit problem where the reward distributions are Norm(0.6, 0.22)
and Norm(0.5, 0.22) for arm 1 and 2 respectively. The prior Π0 is Norm

(
µT0 , 0.5

2I
)

where µ0 =
[0.1, 0.9] is the vector of prior means of arm 1 and 2 respectively, and I denotes the identity matrix.

Let Πt = Norm(µt,Σt) be the posterior at time t. Approximations Qt and Zt are calculated
such that KL(Πt, Qt) = 2 and KL(Zt,Πt) = 1.5 by multiplying the covariance Σt by a constant:
Qt = Norm(µt, 4.5

2Σt) and Zt = Norm(µt, 0.3
2Σt). The KL divergence between two Gaussian

distributions is provided in Appendix F.

We perform the following simulations 1000 times and plot the mean cumulative regret up to time
T = 100 in Figure 2b using three different policies:

1. (Exact Thompson Sampling) At each time-step t, sample from the true posterior Πt.
2. (Approximation Qt) At each time-step t, compute Qt from Πt and sample from Qt.
3. (Approximation Zt) At each time-step t, compute Zt from Πt and sample from Zt.

The regrets of sampling from the approximations Qt and Zt are in both cases larger than that of exact
Thompson sampling. Intuitively, the regret of Qt is larger because Qt explores more than the true
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(a) Over-dispersed (approximation Qt) and under-
dispersed sampling (approximation Zt) yield dif-
ferent posteriors after T = 100 time-steps. m1

and m2 are the means of arms 1 and 2. Qt picks
arm 2 more often than exact Thompson sampling
and Zt mostly picks arm 2. The posteriors of exact
Thompson sampling and Qt concentrate mostly in
the region where m1 > m2 while Zt’s spans both
regions.

(b) The regret of sampling from the approxima-
tions Qt and Zt are both larger than that of exact
Thompson sampling from the true posterior Πt.
Shaded regions show 95% confidence intervals.

Figure 2: Approximation Qt (with high variance) and approximation Zt (with small variance) are
defined in Section 3 where D1(Πt, Qt) = 2 and D0(Πt, Zt) = 1.5. Arm 1 is the true best arm.

posterior (Figure 2a). In Section 4 we show that when α > 0 the approximation can incur this type
of error, leading to linear regret. On the other hand, the regret of Zt is larger because Zt explores
less than the exact Thompson sampling algorithm and therefore commits to the sub-optimal arm
(Figure 2a). In Section 5 we show that when α < 1 the approximation can change the posterior
concentration rate, leading to linear regret. We also show that adding a uniform sampling step can
help the posterior to concentrate when α ≤ 0, and make the regret sub-linear.

4 Regret Analysis When α > 0

In this section we analyze the regret when α > 0. Our result shows that the approximate method
might pick the sub-optimal arm with constant probability in every time-step, leading to linear regret.
Theorem 1 (Frequentist Regret). Let α > 0, the number of arms be k = 2 and m∗1 > m∗2. Let Π0 be
a prior where PΠ0

(M2 > M1) > 0. For any error threshold ε > 0, there is a deterministic mapping
f(Π) such that for all t ≥ 0:

1. Sampling from Qt = f(Πt) chooses arm 2 with a constant probability.
2. Dα(Πt, Qt) < ε.

Therefore sampling from Qt for T/10 time-steps and using any policy for the remaining time-steps
will cause linear frequentist regret.

Typically, approximate inference methods minimize divergences. Broadly speaking, this theorem
shows that making a divergence a small constant, alone, is not enough to guarantee sub-linear regret.
We do not mean to imply that low regret is impossible but simply that making an α-divergence a
small constant alone is not sufficient.

At every time-step, the mapping f constructs the approximation Qt from the posterior Πt by moving
probability mass from the region Ω1 where m1 > m2 to the region Ω2 where m2 > m1. Then Qt
will choose arm 2 with a constant probability at every time-step. The constant average regret per
time-step is discussed in Appendix A.4.

Therefore, if we sample from Qt = f(Πt) for 0.1T time steps and use any policy in the remaining
0.9T time steps, we will still incur linear regret from the 0.1T time-steps. On the other hand, when
α ≤ 0, we show in Section 5.1 that sampling an arm uniformly at random for log T time-steps and
sampling from an approximate distribution that satisfies the divergence constraint for T − log T
time-steps will result in sub-linear regret.
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Agrawal & Goyal (2013) show that the frequentist regret of exact Thompson sampling is O(
√
T )

with Gaussian or Beta priors and bounded rewards. Theorem 1 implies that when the assumptions in
(Agrawal & Goyal, 2013) are satisfied but there is a small constant inference error at every time-step,
the regret is no longer guaranteed to be sub-linear.

If the assumption m∗1 > m∗2 in Theorem 1 is satisfied with a non-zero probability
(PΠ0(M1 > M2) > 0), the Bayesian regret will also be linear:
Corollary 1 (Bayesian Regret). Let α > 0 and the number of arms be k = 2. Let Π0 be a prior
where PΠ0(M1 > M2) > 0 and PΠ0(M2 > M1) > 0. Then for any error threshold ε > 0, there is a
deterministic mapping f(Π) such that for all t ≥ 0 the two statements in Theorem 1 hold.

Therefore sampling from Qt for T/10 time-steps and using any policy for the remaining time-steps
will cause linear Bayesian regret.

Russo & Roy (2016) prove that the Bayesian regret of Thompson sampling for k-armed bandits with
sub-Gaussian rewards is O(

√
T ). Corollary 1 implies that even when the assumptions in Russo &

Roy (2016) are satisfied, under certain conditions and with approximation errors, the regret is no
longer guaranteed to be sub-linear.

5 Regret Analysis When α < 1

In this section we analyze the regret when α < 1. Our result shows that for any error threshold,
if the posterior Πt places too much probability mass on the wrong arm then the approximation Qt
is allowed to avoid the optimal arm. If the sub-optimal arms do not provide information about the
arms’ ranking, the posterior Πt+1 does not concentrate. Therefore Qt+1 is also allowed to be close
in α-divergence while avoiding the optimal arm, leading to linear regret in the long term.
Theorem 2 (Frequentist Regret). Let α < 1, the number of arms be k = 2 and m∗1 > m∗2. Let Π0 be
a prior where M2 and M1 −M2 are independent. There is a deterministic mapping f(Π) such that
for all t ≥ 0:

1. Sampling from Qt = f(Πt) chooses arm 2 with probability 1.
2. For any ε > 0, there exists 0 < z ≤ 1 such that if PΠ0

(M2 > M1) = z and arm 2 is chosen
at all times before t then Dα(Πt, Qt) < ε .
For any 0 < z ≤ 1, there exists ε > 0 such that if PΠ0

(M2 > M1) = z and arm 2 is chosen
at all times before t then Dα(Πt, Qt) < ε.

Therefore sampling from Qt at all time-steps results in linear frequentist regret.

We discuss why the above results are not immediately obvious. When α → 0, the α-divergence
becomes KL(Qt,Πt). We might believe that the regret should be sub-linear in this case because the
posterior Πt becomes more concentrated, and so the total variation between Qt and Πt must decrease.
For example, Ordentlich & Weinberger (2004) show the distribution-dependent Pinsker’s inequality
between KL(Q,P ) and the total variation TV(P,Q) for discrete distributions P and Q as follows:

KL(Q,P ) ≥ φ(P ) · TV(P,Q)2 . (4)

Here, φ(P ) is a quantity that will increase to infinity if P becomes more concentrated. However,
the algorithm in Theorem 2 constructs an approximation distribution that never picks the optimal
arm, so the posterior Πt can not concentrate and the regret is linear. The error threshold ε causing
linear frequentist regret is correlated with the probability mass the prior places on the true best arm
(Appendix B.4).

With some assumptions on the rewards, Gopalan et al. (2014) show that the problem-dependent
frequentist regret is O(log T ) for finitely-supported, correlated priors with π0(m∗) > 0. Liu & Li
(2016) study the prior-dependent frequentist regret of 2-armed-and-2-models bandits, and show that
with some smoothness assumptions on the reward likelihoods, the regret is O(

√
T/PΠ0

(M2 > M1)
if arm 1 is the better arm. Theorem 2 implies that when the assumptions in (Gopalan et al., 2014)
or (Liu & Li, 2016) are satisfied, if M2 and M1 −M2 are independent and there are approximation
errors, the regret is no longer guaranteed to be sub-linear.

If the assumption m∗1 > m∗2 in Theorem 2 is satisfied with a non-zero probability
(PΠ0

(M1 > M2) > 0), the Bayesian regret wil also be linear:
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Corollary 2 (Bayesian Regret). Let α < 1 and the number of arms be k = 2. Let Π0 be a prior
where PΠ0(M1 > M2) > 0 and M2 and M1 − M2 are independent. There is a deterministic
mapping f(Π) such that for all t ≥ 0 the 2 statements in Theorem 2 hold.

Therefore sampling from Qt at all time-steps results in linear Bayesian regret.

Russo & Roy (2016) prove that the Bayesian regret of Thompson sampling for k-armed bandits with
sub-Gaussian rewards is O(

√
T ). Corollary 2 implies that even when the assumptions in Russo &

Roy (2016) are satisfied, under certain conditions and with approximation errors, the regret is no
longer guaranteed to be sub-linear.

We note that, unlike the case when α > 0, if we use another policy in o(T ) time-steps to make the
posterior concentrate and sample from Qt for the remaining time-steps, the regret can be sub-linear.
We provide a concrete algorithm in Section 5.1 for the case when α ≤ 0.

5.1 Algorithms with Sub-linear Regret for α ≤ 0

In the previous section, we see that when α < 1, the approximation has linear regret because the
posterior does not concentrate. In this section we show that when α ≤ 0, it is possible to achieve
sub-linear regret even when ε is a very large constant by adding a simple exploration step to force
the posterior to concentrate (the case of α > 0 cannot be improved according to Theorem 1). We
first look at the necessary and sufficient condition that will make the posterior concentrate, and then
provide an algorithm that satisfies it. Russo (2016) and Qin et al. (2017) both show the following
result under different assumptions:
Lemma 1 (Lemma 14 from Russo (2016)). Letm∗ ∈ Rk be the true parameter and let a∗ = A∗(m∗)
be the true best arm. If for all arms i,

∑∞
t=1 P (At = i|Ht−1) =∞, then

lim
t→∞

P (A∗(M) = a∗|Ht−1) = 1 with probability 1 . (5)

If there exists arm i such that
∑∞
t=1 P (At = i|Ht−1) < ∞, then lim inft→∞ P (A∗(M) =

i|Ht−1) > 0 with probability 1.

Russo (2016) make the following assumptions, which allow correlated priors:
Assumption 1. Let the reward distributions be in the canonical one dimensional exponen-
tial family with the density: p(y|m) = b(y) exp(mT (y) − A(m)) where b, T and A are
known function and A(m) is assumed to be twice differentiable. The parameter space Ω =
(m,m) is a bounded open hyper-rectangle, the prior density is uniformly bounded with 0 <
infm∈Ω π0(m) < supm∈Ω π0(m) < ∞ and the log-partition function has bounded first deriva-
tive with supθ∈[m,m] |A′(m)| <∞.

Qin et al. (2017) make the following assumptions:
Assumption 2. Let the prior be an uncorrelated multivariate Gaussian. Let the reward distribution
of arm i be Norm(mi, σ

2) with a common known variance σ2 but unknown mean mi.

Even though we consider the error in sampling from the posterior distribution, the regret is a result of
choosing the wrong arm. We define Πt as the posterior distribution of the best arm and Qt as the
approximation of Πt with the density functions

πt(i) = P (A∗ = i|Ht−1) and qt(i) = P (At = i|Ht−1).

We now define an algorithm where each arm will be chosen infinitely often, satisfying the condition
of Lemma 1.
Theorem 3 (Bayesian and Frequentist Regret). Consider the case when Assumption 1 or 2 is satisfied.
Let α ≤ 0 and pt = o(1) be such that

∑∞
t=1 pt =∞. For any number of arms k, any prior Π0 and

any error threshold ε > 0, the following algorithm has o(T ) frequentist regret: at every time-step t,

• with probability 1−pt, sample from an approximate posteriorQt such thatDα(Πt, Qt) < ε,
• with probability pt, sample an arm uniformly at random.

Since the Bayesian regret is the expectation of the frequentist regret over the prior, for any prior if the
frequentist regret is sub-linear at all points the Bayesian regret will be sub-linear.

6



The following lemma shows that the error in choosing the arms is upper bounded by the error
in choosing the parameters. Therefore whenever the condition Dα(Πt, Qt) < ε is satisfied, the
condition Dα(Πt, Qt) < ε will be satisfied and Theorem 3 is applicable.
Lemma 2.

Dα(Πt, Qt) ≤ Dα(Πt, Qt) .

We also note that we can achieve sub-linear regret even when ε is a very large constant. We revisit
Eq. 4 to provide the intuition: KL(Q,P ) ≥ φ(P ) · TV(P,Q)2. Here, φ(P ) is a quatity that will
increase to infinity if P becomes more concentrated. Hence, if KL(Qt,Πt) < ε for any constant
ε and Πt becomes concentrated, the total variation TV(Qt,Πt) will decrease. Therefore, Qt will
become concentrated, resulting in sub-linear regret.

Application. Lu & Van Roy (2017) propose an approximate sampling method called Ensemble
sampling where they maintain a set ofM models to approximate the posterior and analyze its regret
for the linear contextual bandits whenM is Ω(log(T )). For the k-armed bandit problem and when
M is Θ(log(T )), Ensemble sampling satisfies the condition KL(Qt,Πt) < ε in Theorem 3 with
high probability. In this case, Lu & Van Roy (2017) show a regret bound that scales linearly with T .
We discuss in Appendix E how to apply Theorem 3 to get sub-linear regret with Ensemble sampling
whenM is Θ(log(T )).

6 Simulations

For each approximation method we repeat the following simulations for 1000 times and plot the
mean cumulative regret, using five different policies.

1. (Exact Thompson sampling) Use exact posterior sampling to choose an action and update
the posterior (for reference).

2. (Approximation method) Use the approximation method to choose an action and update
the posterior. We use the approximation naively without any modification.

3. (Forced Exploration) With a probability (the exploration rate), choose an action uniformly
at random and update the posterior. Otherwise, use the approximation method to choose an
action and update the posterior. This is the method suggested by Thm. 3.

4. (Approximate Sample) Use the approximation method to choose an action. Use exact
posterior sampling to update the posterior.

5. (Approximate Update) Use exact posterior sampling to choose an action. Use the approxi-
mate method to update the posterior.

The last two policies are performed to understand how the approximation affects the posterior
(discussed in Section 6.3). We update the posterior using the closed-form formula when both the
prior and reward distribution are Gaussian in Appendix G.

6.1 Adding Forced Exploration to the Motivating Example

In this section we revisit the example in Section 3. We apply Qt, Zt and Ensemble sampling with
M = 2 models to the bandit problem described in the example. We set the exploration rate at time t
to be 1/t, T = 100 and show the results in Figure 3a and discuss them in Section 6.3.

6.2 Simulations of Ensemble Sampling and Variational Inference for 50-armed bandits

Now we add forced exploration to mean-field Variational Inference (VI) and Ensemble Sampling with
M = 5 models for a 50-armed bandit instance. We generate the prior and the reward distribution
as follows: the prior is Norm(0,Σ0). To generate a positive semi-definite matrix Σ0, we generate a
random matrixA of size (k, k) where entries are uniformly sampled from [0, 1) and set Σ0 = ATA/k.
The true mean m∗ is sampled from the prior. The reward distribution of arm i is Norm(m∗i , 1).

Mean-field VI approximates the posterior by finding an uncorrelated multivariate Gaussian distribution
Qt that minimizes KL(Πt, Qt). If the posterior is Πt = Norm(µt,Σt) then Qt has the closed-form
solution Qt = Norm(µt,Diag(Σ−1

t )−1), which we used to perform the simulations. We set the
exploration rate at time t to be 50/t, T = 3000, show the results in Figure 3b and discuss them in
Section 6.3.
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(a) Applying approximations Qt, Zt and Ensemble Sampling to the motivating example (Section 6.1).

(b) Applying mean-field Variational Inference (VI) and Ensemble sampling on a 50-armed bandit (Section 6.2).

Figure 3: Updating the posterior by exact Thompson sampling or adding forced exploration does not
help the over-explored approximationQt, but lowers the regrets of the under-explored approximations
Zt, Ensemble sampling and mean-field VI. Shaded regions show 95% confidence intervals.

6.3 Discussion

We observe in Figure 3a that the regret ofQt calculated from the posterior updated by exact Thompson
sampling does not change significantly. Moreover, exact posterior sampling with the posterior updated
by Qt has the same regret as exact Thompson sampling. These two observations imply that Qt has
the same effect on the posterior as exact Thompson sampling. Therefore adding forced exploration is
not helpful.

On the other hand, in Figures 3a and 3b the regrets of Zt, Ensemble sampling and mean-field VI
calculated from the posterior updated by exact Thompson sampling decrease significantly. Moreover,
exact posterior sampling with the posterior updated by the approximations has similar regret to
using the approximations. This behaviour is likely because the approximation causes the posterior to
concentrate in the wrong region1. In combination, these two observations suggest that these methods
do not explore enough for the posterior to concentrate. Therefore adding forced exploration is helpful,
which is compatible with the result in Theorem 3.

1Note that in the case where there are 2 arms (Figure 3a), exact posterior sampling with the posterior updated
by the approximate method has slightly lower regret than naively using the approximate method. This is only
because there are only 2 regions, so exact posterior sampling explores more than the approximation in the other
region, which happens to be the correct one.
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7 Related Work

There have been many works on sub-linear Bayesian and frequentist regrets for exact Thompson
sampling. We discussed relevant works in detail in Section 4 and Section 5.

Ensemble sampling (Lu & Van Roy, 2017) gives a theoretical analysis of Thompson sampling
with one particular approximate inference method. Lu & Van Roy (2017) maintain a set of M
models to approximate the posterior, and analyzed its regret for linear contextual bandits whenM
is Ω(log(T )). For the k-armed bandit problem and when M is Θ(log(T )), Ensemble sampling
satisfies the condition KL(Qt,Πt) < ε in Theorem 3 with high probability. In this case, the regret of
Ensemble sampling scales linearly with T .

We show in Theorem 2 that when the constraint KL(Qt,Πt) < ε is satisfied, which implies by
Lemma 2 that KL(Qt,Πt) < ε is satisfied, there can exist approximation algorithms that have linear
regret in T . This result provides a linear lower bound, which is complementary with the linear regret
upper bound of Ensemble Sampling in (Lu & Van Roy, 2017). Moreover, we show in Appendix E that
we can apply Theorem 3 to get sub-linear regret with Ensemble sampling with Θ(log(T )) models.

In reinforcement learning, there is a notion that certain approximations are "stochastically optimistic"
and that this has implications for regret (Osband et al., 2016). This is similar in spirit to our analysis
in terms of α-divergence, in that the characteristics of inference errors are important.

There has been a number of empirical works using approximate methods to perform Thompson
sampling. Riquelme et al. (2018) implement variational inference, MCMC, Gaussian processes and
other methods on synthetic and real world data sets and measure the regret. Urteaga & Wiggins
(2018) derive a variational method for contextual bandits. Kawale et al. (2015) use particle filtering
to implement Thompson sampling for matrix factorization.

Finally, if exact inference is not possible, it remains an open question if it is better to use Thompson
sampling with approximate inference, or to use a different bandit method that does not require
inference with respect to the posterior. For example Kveton et al. (2019) propose an algorithm based
on the bootstrap.

8 Conclusion

In this paper we analyzed the performance of approximate Thompson sampling when at each time-
step t, the algorithm obtains a sample from an approximate distribution Qt such that the α-divergence
between the true posterior and Qt remains at most a constant ε at all time-steps.

Our results have the following implications. To achieve a sub-linear regret, we can only use α > 0
for o(T ) time-steps. Therefore we should use α ≤ 0 with forced exploration to make the posterior
concentrate. This method theoretically guarantees a sub-linear regret even when ε is a large constant.
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A Proof of Theorem 1 and Corollary 1

First we will prove Theorem 1. Let Ωi ⊆ Ω denote the region where arm i is the best arm. Let Πt,i

denote Πt(Ωi), the posterior probability that arm i is the best arm. For r > 1, We construct the pdf
of Qt’s as follows:

qt(m) =

{
1
rπt(m), if m1 > m2
1−Πt,1/r
1−Πt,1

πt(m), otherwise.
(6)

We will prove the theorem by the following steps:

• In Lemma 3 we show that Qt’s are valid distributions.

• In Lemma 4 we show that when α > 0 the α-divergence between Qt and Πt can be
arbitrarily small

• In Lemma 5 we show that sampling from Qt for Θ(T ) time-steps will generate linear
frequentist regret, and lower bound the regret.

Since the regret is linear, in Appendix A.4 we discuss the constant average regret per time-step as a
function of ε and α. In Appendix A.5 we provide the Bayesian regret proof for Corollary 1.

Lemma 3. qt(m) in Eq. 6 is well-defined and if
∫
πt(m)dm = 1 then:

∫
qt(m)dm = 1.

Lemma 4. When α > 0, for all ε > 0, for all Πt, there exists r > 1 such that when Qt’s are
constructed from r as shown in Eq. 6, Dα(Πt, Qt) < ε

Lemma 5. The expected frequentist regret of the policy that constructs Qt’s as in Eq. 6 and sample
from Qt for T ′ = Θ(T ) time-steps is linear and the lower bound of the average regret per time-step
is

L =


c∆(1− (1− εα(1− α))

1
1−α ), when α > 1 and 0 < ε

c∆(1− 1
eε ), when α = 1 and 0 < ε

c∆(1− (1− εα(1− α))
1

1−α ), when 0 < α < 1 and 0 < ε ≤ 1
α(1−α) .

,

where c = T ′

T is Θ(1).

A.1 Proof of Lemma 3

Proof. First we will show that Πt,2 = 1−Πt,1 > 0 for all t ≥ 0, so that qt(m) is well-defined. We
have Π0,2 = P(M2 > M1) > 0 by assumption. Let St = {m ∈ Ω2 : πt(m) > 0} be the support
of Πt in Ω2. If π0(m) > 0, then πt(m) > 0 because πt(m) is the product of π0(m) and non-zero
likelihoods. Therefore S0 ⊆ St.
Since P(M2 > M1) =

∫
S0
π0(m)dm > 0,

∫
S0
dm > 0. Since S0 ⊆ St,

∫
St
dm > 0. Therefore∫

St
πt(m)dm > 0 since St = {m ∈ Ω2 : πt(m) > 0} by definition. Then Πt,2 =

∫
Ω2
πt(m)dm =∫

St
πt(m)dm > 0.
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Assume that
∫
πt(m)dm = 1, we will show that

∫
qt(m)dm = 1:∫

qt(m)dm

=

∫
Ω1

qt(m)dm+

∫
Ω2

qt(m)dm

=

∫
Ω1

1

r
πt(m)dm+

∫
Ω2

1−Πt,1/r

1−Πt,1
πt(m)dm

=
1

r
Πt,1 +

1−Πt,1/r

1−Πt,1
Πt,2

=
1

r
Πt,1 +

1−Πt,1/r

1−Πt,1
(1−Πt,1)

= 1 .

A.2 Proof of Lemma 4

Proof. First we calculate the α-divergence between Πt and Qt constructed in Eq. 6. Let Ω1 ⊆ Ω
denote the region where m1 > m2 and Ω2 ⊆ Ω denote the region where m2 ≥ m1.

When α > 0, α 6= 1 we have:
Dα(Πt, Qt)

=
1−

∫ (πt(m)
qt(m)

)α
qt(m)dm

α(1− α)

=
1−

∫
Ω1

(
πt(m)
qt(m)

)α
qt(m)dm−

∫
Ω2

(
πt(m)
qt(m)

)α
qt(m)dm

α(1− α)

=
1−

∫
Ω1

(r)
α
qt(m)dm−

∫
Ω2

(
1−Πt,1

1−Πt,1/r

)α
qt(m)dm

α(1− α)

=
1−Qt(Ω1) (r)

α −Qt(Ω2)
(

1−Πt,1
1−Πt,1/r

)α
α(1− α)

=
1− Πt,1

r (r)
α − (1− Πt,1

r )
(

1−Πt,1
1−Πt,1/r

)α
α(1− α)

=
1

α(1− α)

(
1−Πt,1r

−1+α − (1−Πt,1)α(1− Πt,1

r
)1−α

)
. (7)

When α = 1:
Dα(Πt, Qt)

=

∫
πt(m) log

(
πt(m)

qt(m)

)
dm

=

∫
Ω1

πt(m) log
πt(m)

qt(m)
dm+

∫
Ω2

πt(m) log
πt(m)

qt(m)
dm

=

∫
Ω1

πt(m) log(r)dm

+

∫
Ω2

πt(m) log
1−Πt,1

1−Πt,1/r
dm

=Πt,1 log(r) + (1−Πt,1) log
1−Πt,1

1−Πt,1/r
.

We will now upper bound the above expression. Consider 2 cases
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• α = 1: We have
Dα(Πt, Qt)

= Πt,1 log(r) + (1−Πt,1) log
1−Πt,1

1−Πt,1/r

≤ Πt,1 log(r) + (1−Πt,1) log(r) because r > 1

≤ log(r) .

• α > 0, α 6= 1: The following inequality is true by simple calculations when 0 < α < 1 or
α > 1: (

1−Πt,1

1−Πt,1
r

)α−1

α(α− 1)
≤ rα−1

α(α− 1)
. (8)

Then we will have:
Dα(Πt, Qt)

=

Πt,1r
α−1 + (1−Πt,1)

(
1−Πt,1

1−Πt,1
r

)α−1

− 1

α(α− 1)

≤ 1

α(α− 1)

(
Πt,1r

α−1 + (1−Πt,1)rα−1 − 1
)

=
1

α(α− 1)

(
r−1+α − 1

)
.

Therefore Dα(Πt, Qt) is upper bounded by:{
1−rα−1

α(1−α) , if 0 < α < 1 or α > 1

log(r), if α = 1 .
(9)

Since limr→1 log(r) = 0 and limr→1
1−r−1+α

α(1−α) = 0, for any ε > 0, there exists r > 1 such that

Dα(Πt, Qt) ≤ ε .

A.3 Proof of Lemma 5

Proof. We will now lower bound the regret as a function of ε.

For any posterior Πt, since the approximate algorithm sampling from Qt picks the optimal arm with
probability at most 1/r it then picks arm 2 with probability at least 1− 1/r.

Since we sample from Qt for T ′ time steps, the lower bound of the average expected regret per time
step is :

L =
T ′

T
(m∗1 −m∗2)(1− 1/r) = c∆(1− 1/r) .

where ∆ = m∗1 −m∗2 and c = T ′

T is Θ(1).

We calculate ε as a function of r from Eq. 9:

ε =

{
1−r−1+α

α(1−α) , if α 6= 1

log(r), if α = 1 .

The functions are continous when r > 1. Then by direct calculations when r →∞ and r → 1, the
domain of ε is:

0 < ε when α ≥ 1 .

0 < ε <
1

α(1− α)
when 0 < α < 1 .
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Then

r =


(1− εα(1− α))

1
−1+α when α > 1 and 0 < ε

eε when α = 1 and 0 < ε

(1− εα(1− α))
1

−1+α when 0 < α < 1 and 0 < ε ≤ 1
α(1−α) .

Therefore we can calculate the lower bound of the regret per time-step as:

L =


c∆(1− (1− εα(1− α))

1
1−α ), when α > 1 and 0 < ε

c∆(1− 1
eε ), when α = 1 and 0 < ε

c∆(1− (1− εα(1− α))
1

1−α ), when 0 < α < 1 and 0 < ε ≤ 1
α(1−α) .

.

We plot the lower bound of the average regret per time step when ∆ = 0.1 as a function of ε in Fig 4.

A.4 The Average Regret per Time-step

To understand how the constant average regret per time-step depends on ε and α, we plot in Figure 4
the lower bound of the average regret per time-step in Lemma 5 as a function of ε in the following
setting of the example constructed in the proof of Theorem 1. The algorithm samples from Qt at
T/2 time-steps and ∆ = 0.1. In this case the average regret per time step is upper bounded by
∆/2 = 0.05. The formula and proof are detailed in Lemma 5 in Appendix A. When α is around 1,

Figure 4: Lower bound of regret per time-step as a function of ε whenm∗1−m∗2 = 0.1 and we sample
from the approximation for T/2 time-steps in the example construted in the proof of Theorem 1.
When α is around 1, the lower bound converges quickly as ε increases.

the lower bound, and therefore the average regret per time-step, converges the fastest to ∆/2 as ε
increases. When α is very large or close to 0, the lower bound grows slowly as ε increases.

A.5 Proof of Corollary 1

Since P(M1 > M2) > 0, there exist constants ∆ > 0, γ > 0 such that P(M1 −M2 ≥ ∆) = γ. The
probability that the assumption m∗1 > m∗2 in Theorem 1 is satisfied is at least γ > 0. Therefore the
expected regret over the prior is at least γ times the frequentist regret in Theorem 1, which is linear.

B Proof of Theorem 2 and Corollary 2

First we will prove Theorem 2. Let Πt,i denote Πt(Ωi). We construct the pdf of Qt’s as follows:

qt(m) =

{
1

Πt,2
πt(m), if m2 > m1

0, otherwise.
(10)

We will prove the theorem by the following steps:
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• In Lemma 6 we show that Qt’s are valid distributions.

• In Lemma 7 we show that Qt has linear frequentist regret, and calculate the constant average
regret per time-step.

• In Lemma 8 we show that there exists a bad prior such that the α-divergence between Qt
and Πt can be arbitrarily small.

In Appendix B.4 we discuss the prior-dependent error threshold ε that will cause linear regret. In
Appendix B.5 we provide the Bayesian regret proof for Corollary 2.

Lemma 6. qt(m) in Eq. 10 is well-defined and if
∫
πt(m)dm = 1 then:∫

qt(m)dm = 1.

Lemma 7. Qt constructed in Eq. 10 chooses arm 2 at all time-steps. The average frequentist regret
per time-step is ∆ = m∗1 −m∗2.

Lemma 8. Let α < 1, M1 −M2 and M2 be independent and arm 2 be chosen at all time-steps
before t.

For any ε > 0, there exists 0 < z ≤ 1 such that if Π0,2 = z then Dα(Πt, Qt) < ε where Qt is
constructed in Eq. 10.

For any 0 < z ≤ 1, there exists ε > 0 such that if Π0,2 = z then Dα(Πt, Qt) < ε where Qt is
constructed in Eq. 10.

B.1 Proof of Lemma 6

Proof. Similar to the proof of Lemma 3, we have that Πt,2 > 0 for all t ≥ 0.

Assume that
∫
πt(m)dm = 1, we will show that

∫
qt(m)dm = 1:∫

qt(m)dm

=

∫
Ω1

qt(m)dm+

∫
Ω2

qt(m)dm

= 0 +

∫
Ω2

1

Πt,2
πt(m)dm

=
1

Πt,2

∫
Ω2

πt(m)dm

= 1 .

B.2 Proof of Lemma 7

Proof. Under the approximate distribution, arm 2 is chosen with probability 1 at all times. Clearly
this approximate distribution has linear regret, with ∆ = m∗1 − m∗2 being the average regret per
time-step.

B.3 Proof of Lemma 8

Proof. Let D = M1 −M2 which is independent of M2 by the assumption. Let f denote the pdf.
Since the algorithm always picks arm 2, Ht−1 and M1 are independent given M2. Therefore for all
m1,m2 and h, fM1|M2,Ht−1

(m1|m2, h) = fM1|M2
(m1|m2).

SinceD = M1−M2, we have fD|M2,Ht−1
(m1−m2|m2, h) = fM1|M2,Ht−1

(m1|m2, h). Therefore
for all d,m2 and h:

fD|M2,Ht−1
(d|m2, h) = fM1|M2,Ht−1

(m2 + d|m2, h) = fM1|M2
(m2 + d|m2) = fD|M2

(d|m2) .
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Since fD|M2,Ht−1
(d|m2, h) = fD|M2

(d|m2) for all d,m2 and h, D and Ht−1 are independent given
M2. Then

fD|M2,Ht−1
(d|m2, h)

=fD|M2
(d|m2) because D and Ht−1 are independent given M2

=fD(d) because D and M2 are independent.

Now we will show that D and Ht−1 are independent. For all d and h:

fD|Ht−1
(d|h)

=

∫
fD,M2|Ht−1

(d,m2|h)dm2

=

∫
fD|M2,Ht−1

(d|m2, h)fM2|Ht−1
(m2|h)dm2

=

∫
fD(d)fM2|Ht−1

(m2|h)dm2

=fD(d)

∫
fM2|Ht−1

(m2|h)dm2

=fD(d) .

Since D and Ht−1 are independent, at all times t the posterior does not concentrate:

Πt,2 = P(M1 −M2 < 0|Ht−1) = P(M1 < M2) .

For simplicity let

z := P(M1 < M2) .

We will show that D(Πt, Qt) is small if z is large enough. First we calculate the α-divergence
between Πt and Qt constructed in Eq 10.

When α < 1, α 6= 0:

Dα(Πt, Qt)

=
1−

∫ ( qt(m)
πt(m)

)1−α
πt(m)dm

α(1− α)

=
1−

∫
Ω1

(
qt(m)
πt(m)

)1−α
πt(m)dm−

∫
Ω2

(
qt(m)
πt(m)

)1−α
πt(m)dm

α(1− α)

=
1− 0−

∫
Ω2

(
1

Πt,2

)1−α
πt(m)dm

α(1− α)
since α < 1

=
1−

(
1

Πt,2

)1−α ∫
Ω2
πt(m)dm

α(1− α)

=
1−

(
1

Πt,2

)1−α
Πt,2

α(1− α)

=
1− (Πt,2)α

α(1− α)

=
1− zα

α(1− α)
.
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When α = 0:

Dα(Πt, Qt)

=

∫
qt(m) log

qt(m)

πt(m)
dm

=

∫
Ω1

qt(m) log
qt(m)

πt(m)
dm

+

∫
Ω2

qt(m) log
qt(m)

πt(m)
dm

=

∫
Ω1

0 log(0)dm+

∫
Ω2

qt(m) log
1

Πt,2
dm

=0 + 1 log
1

Πt,2
= log

1

Πt,2
= log

1

z
.

Note that if we don’t have the condition on the prior such that picking arm 2 does not help to learn
which arm is the better one, Πt,2 may converge to 0, making Dα(Πt, Qt) goes to∞ when α ≤ 0.
But since Πt,2 = z, we will now show that for any α < 1, for any ε > 0, there exists z(0 < z < 1)
such that

Dα(Πt, Qt) < ε .

Consider the 2 cases

• When α < 1, α 6= 0: Since

lim
z→1

1− zα

α(1− α)
= 0 .

Then for any ε > 0 there exists 0 < z < 1 such that Dα(Πt, Qt) < ε. For any 0 < z < 1
there exists ε > 0 such that Dα(Πt, Qt) < ε.

• When α = 0:

Dα(Πt, Qt) = log
1

z
.

Since limz→1 log(1/z) = 0, for any ε > 0 there exists 0 < z < 1 such thatD0(Πt, Qt) < ε.
For any z < 1 there exists ε > 0 such that Dα(Πt, Qt) < ε.

B.4 Prior-dependent Error Threshold for Linear Frequentist Regret

In the example constructed in the previous sections, the α-divergence between Πt and Qt can be

calculated as: ε =

{
1−zα
α(1−α) , if 0 < α < 1 or α < 0

log 1
z , if α = 0

.

In Figure 5, we show the values of ε as a function of z that will make the regret linear for different
values of α. We can see that for both cases when α ≤ 0 and 0 ≤ α < 1, and z is not too small,
there is a threshold of ε for each value of z that makes the regret linear. For each value of z, if the
error is smaller than the threshold we hypothesize that the regret might become sub-linear. However
even if that is the case, it is not possible to calculate the exact threshold for more complicated priors.
Therefore in Section 5.1 we propose an algorithm that is guaranteed to have sub-linear regret for any
ε and any z when α ≤ 0.

B.5 Proof of Corollary 2

Since P(M1 > M2) > 0, there exist constants ∆ > 0, γ > 0 such that the P(M1 −M2 ≥ ∆) = γ.
The probability that the assumption m∗1 > m∗2 in Theorem 2 is satisfied is at least γ > 0. Therefore
the expected regret over the prior is at least γ times the frequentist regret in Theorem 2, which is
linear.
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(a) Dα(Πt, Qt) = ε as a function of z when α ≤
0. When z is very small and α is small, ε needs to
be very large. When z > 0.2, there is a threshold
of εwhich is less than 8 that can cause linear regret.

(b) ε as a function of z when 0 ≤ α < 1. There is
a threshold of ε which is less than 8 for each value
of z that can cause linear regret..

Figure 5: ε as a function z that makes the regret linear for different values of α for the example
constructed in the proof of Theorem 2.

C Proof of Lemma 2

To convert between Dα(Πt, Qt) and Dα(Πt, Qt) we first prove the following lemma:

Lemma 9 (Jensen’s Inequality). Let f : R2 → R be a convex function. Let P : Rk → R and
Q : Rk → R be 2 functions. Let S is a subset of Rk, the domain of x and |S| denote the volume of
S. Then

1

|S|

∫
S

f(P (x), Q(x))dx

≥ f
(

1

|S|

∫
S

P (x)dx,
1

|S|

∫
S

Q(x)dx

)
. (11)

Proof. The multivariate Jensen’s Inequality states that if X is a n-dimensional random vector and
f : Rn → R is a convex function then

E(f(X)) ≥ f(E(X)) .

To use the multivariate Jensen’s Inequality we define the 2-dimensional random vector X : S → R2

by X(x) := (P (x), Q(x)) and a probability distribution over S such that for all x ∈ S: P(x) = 1
|S| .

Then the left-hand side of Eq. 11 becomes E(f(X)), while the right-hand side becomes f(E(X)),
and Eq. 11 follows from the multivariate Jensen’s Inequality.

Now we will prove Lemma 2.

Proof of Lemma 2. Since Dα(p, q) is convex (Cichocki & Amari, 2010), the following functions:

f(p, q) = q log
q

p
,

f(p, q) = p log
p

q
,

f(p, q) =
pαq1−α

α(α− 1)

are convex, and we can apply Lemma 9:
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• When α = 0:
Dα(Πt, Qt)

=

∫
qt(m) log

qt(m)

πt(m)
dm

=
∑
i

∫
Ωi

qt(m) log
qt(m)

πt(m)
dm

≥
∑
i

|Ωi|
1

|Ωi|

∫
Ωi

qt(m)dm log

1
|Ωi|

∫
Ωi
qt(m)dm

1
|Ωi|

∫
Ωi
πt(m)dm

by applying Lemma 9

=
∑
i

Qt,i log
Qt,i
Πt,i

=Dα(Πt, Qt) .

• When α = 1:
Dα(Πt, Qt)

=

∫
πt(m) log

πt(m)

qt(m)
dm

=
∑
i

∫
Ωi

πt(m) log
πt(m)

qt(m)
dm

≥
∑
i

|Ωi|
1

|Ωi|

∫
Ωi

πt(m)dm log

1
|Ωi|

∫
Ωi
πt(m)dm

1
|Ωi|

∫
Ωi
qt(m)dm

by applying Lemma 9

=
∑
i

Πt,i log
Πt,i

Qt,i

=Dα(Πt, Qt) .

• When α 6= 0, α 6= 1:
Dα(Πt, Qt)

=

∫
π(x)αq(x)1−α − 1

−α(1− α)
dx

=
−1

α(α− 1)
+
∑
i

∫
Ωi

π(x)αq(x)1−α

α(α− 1)
dx

≥ −1

α(α− 1)
+
∑
i

|Ωi|
(

Πt,i
|Ωi| )

α(
Qt,i
|Ωi| )

1−α

α(α− 1)
by applying Lemma 9

=
−1

α(α− 1)
+
∑
i

Πα
t,iQ

1−α
t,i

α(α− 1)

=Dα(Πt, Qt) .

D Proof of Theorem 3

We will prove that the frequentist regret is sub-linear for any m∗. If the algorithm has sub-linear
frequentist regret for all values M = m∗, the Bayesian regret (which is the expected value over M )
will also be sub-linear.

Without loss of generalization, let arm 1 be the best arm. From Lemma 1, since
∑∞
t=1 pt =∞, we

have for all arms i,
∑∞
t=1 P (At = i|Ht−1) =∞ and therefore with probability 1:

lim
t→∞

Πt,1 = lim
t→∞

P(A∗ = 1|Ht−1) = 1 , (12)
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which means that the posterior probability that arm 1 is the best arm converges to 1.

We will prove the theorem by proving the following steps:

• In Lemma 10 we show that if the probability that the posterior chooses the best arm tends to
1, then the probability that the approximation chooses the best arm also tends to 1

• In Lemma 11 and Lemma 12 we show that if the probability that the approximation chooses
the best arm also tends to 1 almost surely, then it has sub-linear regret with probability 1.
Therefore it has sub-linear regret in expectation over the history.

Lemma 10. Let α ≤ 0 and arm 1 be the true best arm. Let Ωi = {m|mi = max(m1, ...,mk)}
be the region where arm i is the best arm. If the posterior probability that arm 1 is the best arm
converges to 1:

lim
t→∞

Πt,1 = 1

and for all t ≥ 0:

Dα(Πt, Qt) < ε,

then the sequence {Qt,1}t where Qt,1 =
∫

Ω1
qt(m)dm converges and

lim
t→∞

Qt,1 = 1 .

Next we show that if the approximate distribution concentrates, then the probability that it chooses
the wrong arm decreases as T goes to infinity.

Lemma 11. If

lim
t→∞

Qt,1 = 1

then

lim
T→∞

∑T
t=1(1−Qt,1)

T
= 0 .

From Lemma 10 and Lemma 11, since limt→∞Πt,1 = 1 with probability 1, we have

limT→∞

∑T
t=1(1−Qt,1)

T = 0 with probability 1. We will now show that the expected regret is
sub-linear:

Lemma 12. Let pt = o(1) be such that
∑∞
t=1 pt =∞. For any number of arms k, any prior Π0 and

any error threshold ε > 0, the following algorithm has o(T ) regret: at every time-step t,

• with probability 1 − pt, sample from an approximate posterior Qt such that
limT→∞

∑T
t=1(1−Qt,1)

T = 0 with probability 1, and

• with probability pt, sample an arm uniformly at random.

D.1 Proof of Lemma 10

Proof. Let Qt,i =
∫

Ωi
qt(m)dm and Πt,i =

∫
Ωi
πt(m)dm . Then

lim
t→∞

Πt,1 = 1

and we want to show that {Qt,1}t converges and

lim
t→∞

Qt,1 = 1 .

Since Dα(Πt, Qt) < ε and lim Πt,1 = 1 we want to show that lim supQt,1 = 1. By contradiction,
assume that:

lim supQt,1 = c < 1 .
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Then there exists a sub-sequence of {Qt,1}t, denoting Qt1,1, Qt2,1, ..., Qtn,1, .. such that

lim
n→∞

Qtn,1 = c . (13)

which implies

0 < 1− c = lim
n→∞

k∑
i=2

Qtn,i ≤
k∑
i=2

lim sup
n→∞

Qtn,i.

Therefore there exists j ∈ [2, k] such that:

lim sup
n→∞

Qtn,j = d > 0 .

Then there exists a sub-sequence of {Qtn,j}n, denoting Qtn1 ,j
, Qtn2 ,j

, ..., Qtnm ,j , .. such that

lim
m→∞

Qtnm ,j = d .

We consider the 2 cases:

• When α = 0:

Dα(Πt, Qt) =

k∑
i=1

Qt,i log
Qt,i
Πt,i

.

Then we have:

ε = lim
m→∞

Dα(Πtnm
, Qtnm )

≥ lim
m→∞

Qtnm ,1 log
Qtnm ,1

Πtnm ,1
+ lim
m→∞

Qtnm ,j log
Qtnm ,j

Πtnm ,j

=c log
c

1
+ d log

d

0
=∞ since d > 0,

which is a contradiction. Therefore c = 1.

• When α < 0:

Dα(Πt, Qt) =

∑k
i=1 Πα

t,iQ
1−α
t,i − 1

α(α− 1)
.

Then we have:

ε = lim
m→∞

Dα(Πtnm , Qtnm )

≥ lim
m→∞

Πα
tnm ,1

Q1−α
tnm ,1

+ Πα
tnm ,j

Q1−α
tnm ,j

− 1

α(α− 1)

=
1αc1−α + d1−α

(0)−α − 1

α(α− 1)

=∞, since d > 0 and α < 0,

which is a contradiction. Therefore c = 1.

Similarly we will show that:

lim inf Qt,1 = 1 .

By contradiction, assume that:

lim inf Qt,1 = c′ < 1 .
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Then there exists a sub-sequence of {Qt,1}t, denoting Qt1,1, Qt2,1, ..., Qtn′ ,1, .. such that

lim
n→∞

Qtn′ ,1 = c′ .

Using the same argument following Eq. 13 we will have c′ = 1. Since lim inf Qt,1 = lim supQt,1 =
1, we have that {Qt,1}t converges and

limQt,1 = 1 .

D.2 Proof for Lemma 11

For simplicity let xt denote 1−Qt,1. We want to show that if a sequence {xt} satisfies xt ≥ 0 ∀t
and:

lim
t→∞

xt = 0,

then

lim
T→∞

ST = 0,

where

ST =

∑T
t=1 xt
T

.

Since limt→∞ xt = 0 and xt ≥ 0 ∀t, for any ε > 0 there exists T0 such that for all t > T0:

xt <
ε

2
.

Then for all T > T0:

ST =
x1 + ...+ xT0

T
+
xT0+1 + ...+ xT

T

≤ x1 + ...+ xT0

T
+

ε
2T

T

≤ x1 + ...+ xT0

T
+
ε

2
.

Choose T1 large enough such that x1+...+xT0

T1
< ε

2 . Let T2 = max(T0, T1). Then for all T > T2:

ST =
x1 + ...+ xT0

T
+
ε

2
<
ε

2
+
ε

2
= ε .

Therefore for any ε > 0, there exists T2 such that for all T > T2, ST < ε. Since ST ≥ 0 ∀T , we
have:

lim
T→∞

ST = 0 .

D.3 Proof of Lemma 12

Without loss of generalization, let arm 1 be the true best arm. Let ∆ = m∗1 −max(m∗2, ...,m
∗
k) be

the gap between the highest mean m∗1 and the next highest mean of the arms.

Since pt = o(1),
∑T
t=1 pt is o(T ). Therefore the regret from the uniform sampling steps is o(T ).

Since 1−Qt,1 is the probability of choosing a sub-optimal arm by sampling from Qt, the regret of
sampling from Qt is upper bounded by:

E
T∑
t=1

∆(1−Qt,1) .
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Since limT→∞

∑T
t=1(1−Qt,1)

T = 0 with probability 1, we have

lim
T→∞

∑T
t=1 ∆(1−Qt,1)

T
= 0

with probability 1. Therefore

lim
T→∞

E
∑T
t=1 ∆(1−Qt,1)

T
= 0,

which means that the regret of sampling from Qt is sub-linear. Since both the expected regrets
of the uniform sampling steps and of sampling from Qt are sub-linear, the total expected regret is
sub-linear.

E Ensemble Sampling and Uniform Exploration

To the best of our knowledge, (Lu & Van Roy, 2017) is the only work that provides a theoretical
analysis of Thompson sampling when the sampling step is approximate. Lu & Van Roy (2017)
propose an approximate sampling method called Ensemble sampling where they maintain a set ofM
models to approximate the posterior, and analyze its regret for linear contextual bandits. When the
model is a k-armed bandit, the regret bound is as follow:
Lemma 13 (implied by (Lu & Van Roy, 2017)). Let πTS and πES denote the exact Thompson
sampling and Ensemble sampling policies. Let ∆ = max(m∗1, ...,m

∗
k)−min(m∗1, ...,m

∗
k). For all

ε > 0, if

M≥ 2k

ε2
log

2kT

ε2δ
,

then
Regret(T, πES) ≤ Regret(T, πTS) + ε∆T + δ∆T (14)

Lu & Van Roy (2017) prove the regret bound by only using the following property of the Ensemble
sampling method: at time t, with probability 1 − δ, Ensemble sampling satisfies the following
constraint:

KL(Qt,Πt) < ε2, (15)
where ε is a constant ifM is Θ(log(T )). If ε is a constant the regret will be linear because of the
term ε∆T .

At time t, with probability 1− δ, KL(Qt,Πt) < ε2. The first 2 terms in the right hand side of Eq. 14
comes from the time-steps when KL(Qt,Πt) < ε2, and the last term comes from the other case with
probability δ.

Theorem 3 shows that applying an uniform sampling step will make the posterior concentrate.
Moreover, Lemma 10 implies that if Eq. 15 is satisfied at a subset of times T0 ⊆ [0, 1, ..., T ], the
approximation Qt will also concentrate when t ∈ T0. Therefore the regret from the time-steps in T0

will be sub-linear in T0, which is sub-linear in T .

So if we want to maintain a small number of models M = Θ(log(T )) and achieve sub-linear regret,
we can apply Theorem 3 as follow. First we choose δ to be small such that the last term in Eq. 14
δ∆T is o(T ). Then we apply the uniform sampling step as shown in Theorem 3, so that the first 2
terms in the right hand side of Eq. 14 become sub-linear. We can then achieve sub-linear regret with
Ensemble sampling with a Θ(log T ) number of models.

F KL Divergence between two Gaussian Distributions

The KL divergence between two Gaussian distributions is:
KL(Norm(µ1,Σ1),Norm(µ2,Σ2))

=
1

2
(trace(Σ−1

2 Σ1)− k

+ (µ2 − µ1)TΣ−1
2 (µ2 − µ1) + ln

detΣ2

detΣ1
)
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G Posterior Calculation

In our simulations, when both the prior and the reward distributions are Gaussian, we calculate the
true posterior using the following closed-form solution.

Let the posterior at time t be multivariate Gaussian distribution Norm(µt,Σt) where µt is a k × 1
vector and Σt is a k × k covariance matrix. Let the reward distribution of arm i be Norm(m∗i , σ

2)
where σ is known and m∗i ’s are unknown.

Let At ∈ {0, 1}k be a 0/1 vector where At(i) = 1 if arm i is chosen at time t, and 0 otherwise. Let
rt ∈ R be the reward of the arm chosen at time t.

Then the posterior at time t+ 1 is Norm(µt+1,Σt+1) where:

Σt+1 = (Σ−1
t +AtA

T
t /σ

2)−1

µt+1 = Σt+1(Σ−1
t µt +Atrt/σ

2) .
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