
Supplementary material434

The theorems stated in the paper are consequences of Proposition 2, Proposition 4 and Proposition 3.435

These results are proved in subsequent sections, which are organized as follows. Section 8 contains436

tight risk bounds for general matrices satisfying the transfer principle and the incoherence property.437

We then show in Section 9 that the Gaussian design satisfies, with high probability, both the trans-438

fer principle and the incoherence property. We complete the paper by showing how Theorem 1,439

Theorem 2 and Theorem 3 can be deduced from Proposition 2, Proposition 4 and Proposition 3.440

To help the reader to navigate through the proof without losing the thread, the diagram below outlines441

the relations between different auxiliary results.442

Proposition 1
(sub-optimal rate)

Proposition 2
(nearly optimal rate)

Lemma 1

ATP

TP

IP

(1p peeling)

(2p peeling)
Lemma 6

Lemma 5

Lemma 3

Lemma 4
(Chevet ineq.)

Gaussian design General design

(KKT for β)

Prop 3

Prop 4

Lemma 7

Section 9.1 Section 9.2 Section 9.3 Section 8

Thus, Proposition 1 establishes a risk bound valid under ATPΣ. This risk bound is sub-optimal443

for Gaussian designs, but it is an intermediate step for getting the final risk bound, established in444

Proposition 2. The latter follows from the TPΣ, IPΣ and an auxiliary result proved in Lemma 3.445

The fact that the TPΣ holds true for Gaussian matrices is proved in Proposition 3 as a consequence446

of Lemma 3 and one-parameter peeling (Lemma 5). Similarly, the fact that the IPΣ holds true447

for Gaussian matrices is proved in Proposition 4 as a consequence of Lemma 4 and two-parameter448

peeling (Lemma 6).449

8 Main technical results for general design matrices450

In the sequel, we denote by Sk−1 the unit sphere in Rk with respect to the Euclidean norm centered451

at the origin. With a slight abuse of notation, Rk will be identified with Rk×1. The unit ball with452

respect to the `p-norm centered at the origin will be denoted by Bkp . Given a matrix Σ ∈ Rp×p,453

we will use the definition ρ(Σ) := maxj∈[p]

√
Σjj without further notice. We will use notation454

∆β = β̂ − β∗, ∆θ = θ̂ − θ∗ and ∆ = [∆β; ∆θ] ∈ Rp+n. We denote by S the support of β∗ and455

by O that of θ∗. We know that Card(S) ≤ s and Card(O) ≤ o. Throughout, we set γ = λs/λo and456

define the dimension reduction cone CS,O(c0, γ) = {(u,v) ∈ Rn × Rp : ‖uOc‖1 + γ‖vSc‖1 ≤457

c0(‖uO‖1 + γ‖vS‖1)}, where c0 ≥ 1 is a constant.458

8.1 Augmented transfer principle implies the sub-optimal rate459

This section is devoted to the proof of the fact that the estimators β̂ and θ̂ achieve, up to logarithmic
factors, the rates

s

nκ2
+
o

n
and

s√
nκ2

+
o√
n

for squared `2 error and `1 errors, respectively. This is true under suitable conditions on the design460

matrix X. These rates are not optimal, but they will help us to obtain the optimal rates.461
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Proposition 1. Let Σ satisfy the RE(s, 5) with constant κ > 0. Let c1, c2, c3 and γ be some positive462

real numbers satisfying463

8
(
c2 ∨ γc3

)( s

κ2
+

6.25o

γ2

)1/2

≤ c1.

Assume that on some event Ω, the following conditions are met:464

(i) X satisfies the ATPΣ (c1; c2; c3) .465

(ii) λs = γλo ≥ (2/n)‖X>ξ‖∞, and λo ≥ (2/
√
n)‖ξ‖∞.466

Then, on the same event Ω, we have ∆ ∈ CS,O(3, λs/λo) and467 ∥∥Σ1/2∆β‖22 + ‖∆θ
∥∥2

2
≤ 36

c4
1

(
λ2
ss

κ2
+ 6.25λ2

oo

)
,

λs
∥∥∆β‖1 + λo‖∆θ

∥∥
1
≤ 24

c2
1

(
λ2
ss

κ2
+ 6.25λ2

oo

)
. (14)

Proof. First, we use the KKT conditions to infer that for some vectors u ∈ Bn∞ and v ∈ Bp∞ such468

that u>θ̂ = ‖θ̂‖1 and v>β̂ = ‖β̂‖1, we have469

[X(n) In]>
(
y(n) −X(n)β̂ − θ̂

)
= [λsv;λou].

Using the facts that y(n) = X(n)β∗ + θ∗ + ξ(n) and rearranging the terms, the last display takes the470

form471

[X(n) In]>[X(n) In]∆ = [(X(n))>ξ(n) ; ξ(n)] + [λsv;λou].

Multiplying the last display from the left by ∆>, we arrive at472

‖[X(n) In]∆‖22 = (∆β)>(X(n))>ξ(n) + (∆θ)>ξ(n) + λs(∆
β)>v + λo(∆

θ)>u.

The relations ‖v‖∞ ≤ 1 and v>β̂ = ‖β̂‖1 imply that (∆β)>v = (β∗−β̂)>v = (β∗)>v−‖β̂‖1 ≤473

‖β∗‖1 − ‖β̂‖1. Similarly, (∆θ)>u ≤ ‖θ∗‖1 − ‖θ̂‖1. Combining these bounds with the duality474

inequality and the last display, we infer that475

‖[X(n) In]∆‖22 ≤ ‖∆
β‖1‖(X(n))>ξ(n)‖∞ + ‖∆θ‖1‖ξ(n)‖∞

+ λs
(
‖β∗‖1 − ‖β̂‖1

)
+ λo

(
‖θ∗‖1 − ‖θ̂‖1

)
(ii)

≤ (λs/2)‖∆β‖1 + (λo/2)‖∆θ‖1 + λs
(
‖β∗‖1 − ‖β̂‖1

)
+ λo

(
‖θ∗‖1 − ‖θ̂‖1

)
.

(15)

Recall that J = {j : βj 6= 0} and O = {i : θ∗i 6= 0}. We have476

‖∆β‖1 + 2‖β∗‖1 − 2‖β̂‖1 = ‖∆β‖1 + 2‖β∗S‖1 − 2‖β̂S‖1 − 2‖∆β
Sc‖1

≤ ‖∆β‖1 + 2‖∆β
S‖1 − 2‖∆β

Sc‖1
= 3‖∆β

S‖1 − ‖∆
β
Sc‖1.

The same type of reasoning leads to ‖∆θ‖1 + 2‖θ∗‖1 − 2‖θ̂‖1 ≤ 3‖∆θ
O‖1 − ‖∆

θ
Oc‖1. Combining477

these inequalities with (15), we get478

‖[X(n) In]∆‖22 ≤ (λs/2)
(
3‖∆β

S‖1 − ‖∆
β
Sc‖1

)
+ (λo/2)

(
3‖∆θ

O‖1 − ‖∆
θ
Oc‖1

)
.

On the one hand, since the left hand side is non negative, this obviously implies that the vector ∆479

belongs to the dimension reduction cone CS,O(3, γ). On the other hand, using the ATPΣ,480

c1

∥∥[Σ1/2∆β ; ∆θ]
∥∥

2
− c2‖∆β‖1 − c3‖∆θ‖1

≤
√

(λs/2)
(
3‖∆β

S‖1 − ‖∆
β
Sc‖1

)
+ (λo/2)

(
3‖∆θ

O‖1 − ‖∆
θ
Oc‖1

)
. (16)

We split the rest of the proof into two parts: the first corresponds to the case 5‖∆β
S‖1 ≥ ‖∆

β
Sc‖1481

while the second treats the case 5‖∆β
S‖1 ≤ ‖∆

β
Sc‖1. The main goal of this splitting is to avoid482

imposing strong assumption on Σ such as σmin(Σ) > 0 and to use the RE condition only.483
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Case 1: 5‖∆β
S‖1 ≥ ‖∆

β
Sc‖1. This is the simple case, since we know that ∆β lies in the suitable484

dimension reduction cone for which we can use the RE condition. We first use the already485

proved fact ∆ ∈ CS,O(3, γ) to infer that486

c2‖∆β‖1 + c3‖∆θ‖1 ≤
(
c2

λs

∨ c3

λo

)(
λs‖∆β‖1 + λo‖∆θ‖1)

≤ 4

(
c2

λs

∨ c3

λo

)(
λs‖∆β

S‖1 + λo‖∆θ
O‖1)

≤ 4

(
c2

λs

∨ c3

λo

)(
λ2
ss

κ2
+ λ2

oo

)1/2

(κ2‖∆β
S‖

2
2 + ‖∆θ

O‖22)1/2

≤ 4

(
c2

λs

∨ c3

λo

)(
λ2
ss

κ2
+ λ2

oo

)1/2∥∥[Σ1/2∆β ; ∆θ]
∥∥

2
. (17)

Similarly, the right hand side of (16) can be bounded by the square-root of the expression487

3(λs/2)‖∆β
S‖1 + 3(λo/2)‖∆θ

O‖1 ≤ 1.5

(
λ2
ss

κ2
+ λ2

oo

)1/2

(κ2‖∆β
S‖

2
2 + ‖∆θ

O‖22)1/2

≤ 1.5

(
λ2
ss

κ2
+ λ2

oo

)1/2∥∥[Σ1/2∆β ; ∆θ]
∥∥

2
. (18)

To ease notation, we define A = 4
(
c2
λs

∨ c3
λo

)(λ2
ss
κ2 + λ2

oo
)1/2

, B = 1.5
(λ2

ss
κ2 + λ2

oo
)1/2

and488

x =
∥∥[Σ1/2∆β ; ∆θ]

∥∥
2
. These notations are valid in this proof only. From (16), (17), (18),489

we get490

c1x ≤ Ax+
√
Bx =⇒ x ≤ B

(c1 −A)2

provided that A ≤ c1. Assuming 2A ≤ c1, we get491 ∥∥Σ1/2∆β‖22 + ‖∆θ
∥∥2

2
≤ 16B2

c4
1

.

For deriving the bound on the `1 norms of the errors, we first use the fact that ∆ lies in the492

dimension reduction cone, followed by the Cauchy-Schwarz inequality, to get493

λs
∥∥∆β‖1 + λo‖∆θ

∥∥
1
≤ 4(λs

∥∥∆β
S‖1 + λo‖∆θ

O

∥∥
1
)

≤ 4

(
λ2
ss

κ2
+ λ2

oo

)1/2∥∥[Σ1/2∆β ; ∆θ]
∥∥

2

≤ 16B

c2
1

(
λ2
ss

κ2
+ λ2

oo

)1/2

=
24

c2
1

(
λ2
ss

κ2
+ λ2

oo

)
.

Case 2: 5‖∆β
S‖1 < ‖∆

β
Sc‖1. In this case, we can infer from the already proved fact ∆ ∈ CS,O(3, γ)494

that495

2γ‖∆β
S‖1 + ‖∆θ

Oc‖1 ≤ 3‖∆θ
O‖1.

Hence, we have496

c2‖∆β‖1 + c3‖∆θ‖1 ≤
( c2

λs

∨ c3

λo

)(
λs‖∆β‖1 + λo‖∆θ‖1)

≤ 4
( c2

λs

∨ c3

λo

)(
λs‖∆β

S‖1 + λo‖∆θ
O‖1)

≤ 10
( c2

λs

∨ c3

λo

)
λo‖∆θ

O‖1

≤ 10
( c2

λs

∨ c3

λo

)
λo
√
o ‖∆θ‖2. (19)
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Similarly, the right hand side of (16) can be bounded by the square-root of the expression497

3(λs/2)‖∆β
S‖1 + 3(λo/2)‖∆θ

O‖1 ≤ (15/4)λo‖∆θ
O‖1 ≤ (15/4)λo

√
o ‖∆θ‖2. (20)

To ease notation, we define A′ = 10
(
c2
λs

∨ c3
λo

)
λo
√
o, B′ = (15/4)λo

√
o and x′ =498 ∥∥[Σ1/2∆β ; ∆θ]

∥∥
2
. These notations are valid in this proof only. From (16), (19), (20), we499

get500

c1x
′ ≤ A′x′ +

√
B′x′ =⇒ x′ ≤ B′

(c1 −A′)2
≤ 4B′

c2
1

provided that 2A′ ≤ c1. Thus, we have proved the inequality501 ∥∥Σ1/2∆β
∥∥

2
∨
∥∥∆θ

∥∥
2
≤ 15λo

√
o

c2
1

,

which implies that502

γ
∥∥∆β

∥∥
1

+
∥∥∆θ

∥∥
1
≤ 4(γ

∥∥∆β
J

∥∥
1

+
∥∥∆θ

O

∥∥
1
) ≤ 10

∥∥∆θ
O

∥∥
1
≤ 10

√
o
∥∥∆θ

O

∥∥
2
≤ 150λoo

c2
1

.

To complete the proof, it suffices to remark that the upper bounds provided in the statement of the503

proposition are larger than the bounds we have just established both in case 1 and in case 2.504

8.2 Augmented transfer principle and incoherence imply the nearly optimal rate505

Lemma 1. The following bound holds:506

‖X(n)∆β‖22 ≤ (∆β)>(X(n))>∆θ + ‖∆β‖1‖(X(n))>ξ(n)‖∞ + λs

(
2‖∆β

S‖1 − ‖∆
β‖1
)
.

Proof. We note that507

β̂ ∈ argmin
β

{
1

2

∥∥∥y(n) −X(n)β − θ̂
∥∥∥2

2
+ λs‖β‖1

}
.

The KKT conditions of the above minimization problem imply that, for some v ∈ Rp such that508

‖v‖∞ ≤ 1 and v>β̂ = ‖β̂‖1,509

0 = (X(n))>
(
X(n)β̂ + θ̂ − y(n)

)
+ λsv

= (X(n))>
(
X(n)∆β + ∆θ − ξ(n)

)
+ λsv.

Multiplying the above equality from the left by (∆β)> we obtain510

0 = ‖X(n)∆β‖22 + (∆β)>(X(n))>∆θ − (∆β)>(X(n))>ξ(n) + λs(β̂ − β∗)>v.

From the above inequality, v>β̂ = ‖β‖1 and the fact that v>β∗ ≤ ‖β∗‖1 (since ‖v‖∞ ≤ 1), we511

obtain that512

‖X(n)∆β‖22 ≤ −(∆β)>(X(n))>∆θ + ‖∆β‖1‖(X(n))>ξ(n)‖∞ + λs
(
‖β∗‖1 − ‖β̂‖1

)
.

One checks that513

‖β∗‖1 − ‖β̂‖1 ≤ ‖∆β
S‖1 − ‖∆

β
Sc‖1 = 2‖∆β

S‖1 − ‖∆
β‖1.

Combining this and the previous inequality we get the claim of the lemma.514

Proposition 2. Let Σ satisfy the RE(s, 5) with constant κ > 0. Let a1, a2, a3, b1, b2, c1, c2, c3 and515

γ be some positive real numbers satisfying516

8
(
c2 ∨ γc3

)( s

κ2
+

6.25o

γ2

)1/2

≤ c1 (21)

36b2

(
s

κ2
+

6.25o

γ2

)1/2

≤ c2
1. (22)

Assume that on some event Ω, the following conditions are met:517
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(i) X satisfies the TPΣ (a1; a2).518

(ii) X satisfies the IPΣ (b1; b2; b3) .519

(iii) X satisfies the ATPΣ (c1; c2; c3) .520

(iv) λs = γλo ≥ (2/n)‖X>ξ‖∞, and λo ≥ (2/
√
n)‖ξ‖∞.521

Then, on the same event Ω, we have522 ∥∥Σ1/2(β̂ − β∗)
∥∥

2
≤ 24λs

c2
1

(
2a2

a1

∨ (b1 + b3)γ

a2
1

)(
s

κ2
+

6.25o

γ2

)
+

5λs
√
s

6a2
1κ

.

Proof. Assume that we the event Ω is realized. Condition (21) implies that the claims of Proposition 1523

hold true. In particular, the Euclidean norm of the error of estimating θ∗ can be bounded as follows:524

‖∆θ‖2 ≤
6

c2
1

(
λ2
ss

κ2
+ 6.25λ2

oo

)1/2

≤ λs
6b2

, (23)

where the last inequality follows from (22). Lemma 1 and item (ii) imply that525

‖X(n)∆β‖22 ≤ (∆β)>(X(n))>∆θ + ‖∆β‖1‖(X(n))>ξ(n)‖∞ + λs

(
2‖∆β

S‖1 − ‖∆
β‖1
)

(iv)

≤ (∆β)>(X(n))>∆θ +
λs
2
‖∆β‖1 + λs

(
2‖∆β

S‖1 − ‖∆
β‖1
)

IPΣ

≤ b1

∥∥Σ1/2∆β
∥∥

2
‖∆θ‖2 + b3

∥∥Σ1/2∆β
∥∥

2
‖∆θ‖1 + 2λs‖∆β

S‖1 −
λs
3
‖∆β‖1

+ b2‖∆β‖1‖∆θ‖2 −
λs
6
‖∆β‖1

≤ b1

∥∥Σ1/2∆β
∥∥

2
‖∆θ‖2 + b3

∥∥Σ1/2∆β
∥∥

2
‖∆θ‖1 + (λs/3)

(
5‖∆β

S‖1 − ‖∆
β
Sc‖1

)
where the last line follows from the fact that 2‖∆β

S‖1 − 1/3‖∆β‖1 = 1/3(5‖∆β
S‖1 − ‖∆

β
Sc‖1)526

and (23). To ease notation, let us use notations A = b1‖∆θ‖2 + b3‖∆θ‖1, B = λs/3
(
5‖∆β

S‖1 −527

‖∆β
Sc‖1

)
+

and x =
∥∥Σ1/2∆β

∥∥
2
, which are valid for this proof only. On the one hand, combining528

the last inequality and the TPΣ, we arrive at529

(a1x− a2‖∆β‖1)2
+ ≤ Ax+B.

This implies that either x ≤ (a2/a1)‖∆β‖1 or530 (
a1x− a2‖∆β‖1 −

A

2a1

)2

≤ B +
A2

4a2
1

+
Aa2

a1
‖∆β‖1.

Therefore, in both cases,531

x ≤ a2

a1
‖∆β‖1 +

A

2a2
1

+
1

a1

{
B +

A2

4a2
1

+
Aa2

a1
‖∆β‖1

}1/2

≤ 2a2

a1
‖∆β‖1 +

A

a2
1

+
B1/2

a1
. (24)

On the other hand, the RE(s, 5) property yields532

B ≤
5λs‖∆β

S‖1
3

≤
5λs
√
s‖∆β

S‖2
3

≤ 5λs
√
s x

3κ
≤
(
a1x

2
+

5λs
√
s

6a1κ

)2

. (25)

Combining (24) and (25), we get533

x

2
≤ 2a2

a1
‖∆β‖1 +

A

a2
1

+
5λs
√
s

6a2
1κ

.

Replacing A and x by their expressions, we arrive at534 ∥∥Σ1/2∆β
∥∥

2
≤ 2a2

a1
‖∆β‖1 +

b1‖∆θ‖2 + b3‖∆θ‖1
a2

1

+
5λs
√
s

6a2
1κ

≤ 2a2

a1
‖∆β‖1 +

b1 + b3

a2
1

‖∆θ‖1 +
5λs
√
s

6a2
1κ

≤
(

2a2

γa1

∨ b1 + b3

a2
1

)(
γ‖∆β‖1 + ‖∆θ‖1

)
+

5λs
√
s

6a2
1κ

.
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Finally, combining inequality (14) from Proposition 1 with the last display we obtain535 ∥∥Σ1/2∆β
∥∥

2
≤ 24λo

c2
1

(
2a2

γa1

∨ b1 + b3

a2
1

)(
γ2s

κ2
+ 6.25o

)
+

5λs
√
s

6a2
1κ

.

This completes the proof of the proposition.536

9 Properties of Gaussian matrices537

The next lemma ensures that the parameters λ and γ satisfy, with high-probability, condition ii) of538

Proposition 1 (which is the same as (iv) of Proposition 2).539

Lemma 2. Let the rows of Z be iid Gaussian with zero mean and covariance matrix Σ and ξ ∼540

Nn(0, σ2In). Then the following two claims hold true.541

(i) For any δ ∈ (0, 1], with probability at least 1− δ,542

max
j∈[p]
‖Z(n)
•,j ‖2 ≤

{
1 +

√
2 log(p/δ)

n

}
ρ(Σ).

(ii) For any δ ∈ (0, 1] and n ≥ 2 log(3p/δ), penalization factors such that543

λo ≥ 2σ

√
2 log(3n/δ)

n
, λs ≥ 2σρ(Σ)

√
2 log(3p/δ)

n

(
1 +

√
2 log(3p/δ)

n

)
,

satisfy conditions of item (iv) of Proposition 2 with probability at least 1− δ.544

Proof. Let Z̃ := ZΣ−1/2. We also note that545

‖Z•,j‖22 =
∑
i∈[n]

[
Z̃i,•(Σ

1/2)•,j

]2
,

where Z̃1,•(Σ
1/2)•,j , . . . , Z̃n,•(Σ

1/2)•,j are iid N (0,Σjj). By standard χ2 concentration inequali-546

ties, for all j ∈ [p], with probability at least 1− δ/p,547

‖Z(n)
•,j ‖2 ≤ Σ

1/2
jj

{
1 +

√
2 log(p/δ)

n

}
.

Item (i) follows from this inequality using the union bound.548

We now prove item (ii). Recall that Z and ξ ∼ Nn(0, σ2In) are independent and, therefore, con-549

ditionally on Z, (Z•,j)
>ξ ∼ Nn(0, σ2‖Z•,j‖22). The well known maximal Gaussian concentration550

inequality implies that for all j ∈ [p], with probability at least 1− δ/3p,551

|(Z(n)
•,j )>ξ(n)| ≤ σ‖Z(n)

•,j ‖
√

2 log(3p/δ)

n
. (26)

Similarly, with probability at least 1− δ/3,552

‖ξ(n)‖∞ ≤ σ
√

2 log(3n/δ)

n
. (27)

Taking the union bound over the p sets satisfying (26), the set satisfying (27) and the set satisfying553

item (i), we prove item (ii).554

9.1 Bounding extrema on compact sets555

In what follows, we will use the notion of Gaussian width for measuring the richness of a set of556

vectors. For a compact set B ⊂ Rp, we define the Gaussian width of B by557

G (B) := E
[

sup
b∈B

b>ξ
]
, ξi

iid∼ N (0, 1).
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In view of (Boucheron et al., 2013, Theorem 2.5), for every symmetric p×pmatrix A, E [‖Aξ‖∞] ≤558

{maxj∈[p](A
2)

1/2
jj }
√

2 log p. This implies that559

G (ABp1) = E[‖Aξ‖∞] ≤ ρ(A2)
√

2 log p . (28)

The above inequality is tight for orthogonal matrices A, but it might be sub-optimal, up to a log560

factor, especially for poorly conditioned matrices A.561

Lemma 3. Let Z be a n× p matrix with iid N (0, 1) entries. For all n ≥ 1, t > 0 and any compact
set B ⊂ Sp−1, with probability at least 1− exp(−t2/2),

inf
b∈B

∥∥Zb∥∥
2
≥ n√

n+ 1
− G (B)− t.

As a consequence, for all n ≥ 1 and δ ∈ (0, 1], with with probability at least 1 − δ, the following
inequality holds:

inf
b∈B

∥∥Z(n)b
∥∥

2
≥ 1− 1

2n
−
√

2 log(1/δ)

n
− G (B)√

n
.

Proof. The norm of Zb can be written as562

‖Zb‖2 = sup
v∈Bn

2

v>Zb.

We define the centered Gaussian process Zb,v = −v>Zb = −
∑n
i=1 Zibvi. It satisfies563

E[(Zb,v − Zb′,v′)2] = ‖bv> − b′(v′)>‖2F .

We are interested in upper bounding the quantity infv supb Zb,v . To this end, we define the process

Wb,v = trace[v>ξ] + trace[b>ξ̄],

where ξ ∈ Rn and ξ̄ ∈ Rp are two independent vectors with iid N (0, 1) entries. One checks that564

E[(Zb,v − Zb′,v′)2]− E[(Wb,v −Wb′,v′)2] = ‖bv> − b′(v′)>‖2F − ‖v − v′‖2F − ‖b− b
′‖2F

= −2(1− v>v′)(1− b>b′) ≤ 0.

Using Gordon’s inequality, we get565

E[inf
v

sup
b
Zb,v] ≤ E[inf

v
sup
b
Wb,v] = G (B)− E[‖ξ‖2] ≤ G (B)− n√

n+ 1
.

To complete the proof of the first statement, it suffices to note that the mapping Z 7→ infb∈B ‖Zb‖2566

is Lipschitz with constant 1, and to apply the Gaussian concentration inequality (Boucheron et al.,567

2013, Theorem 5.6). Scaling the obtained bound by 1/
√
n, the proof of the inequality in the second568

statement is immediate after we use the simple bound (n/n+1)1/2 ≥ 1− 1/2n.569

Lemma 4. Let Z be a n × p matrix with iid N (0, 1) entries. Let V be any compact subset of
Sp−1 × Sn−1 and define V1 = {v : ∃u s.t. (v,u) ∈ V } and V2 = {u : ∃v s.t. (v,u) ∈ V }. Then
for any n ≥ 1 and t > 0, with probability at least 1− exp(−t2/2), we have

sup
[v;u]∈V

u>Zv ≤ G
(
V1) + G

(
V2

)
+ t.

Proof. For each (v,u) ∈ V , we define570

Zv,u := u>Zv, Wv,u := v>ξ + u>ξ̄,

where ξ and ξ̄ are two independent standard Gaussian vectors. Therefore, (v,u) 7→ Zv,u and571

(v,u) 7→Wv,u define centered continuous Gaussian processes W and Z indexed by V .572

To compute the variance of the increments of W . We remark that573

Zv,u − Zv′,u′ = trace[Z(vu> − v′(u′)>)] ∼ N (0, ‖vu> − v′(u′>)‖2F ).
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Hence,574

E
[(
Zv,u − Zv′,u′

)2]
= ‖vu> − v′(u′)>‖2F = ‖(v − v′)u> + v′(u− u′)>‖2F
≤ ‖v − v′‖22 + ‖u− u′‖22, (29)

using Cauchy-Schwarz’s inequality and the facts that v,v′ ∈ Sp−1 and u,u′ ∈ Sn−1. On the other575

hand, the definition of the process Z yields576

E[(Wv,u −Wv′,u′)2] = ‖v − v′‖22 + ‖u− u′‖22. (30)

From (29),(30), we conclude that the centered Gaussian processes W and Z satisfy the conditions577

of Gordon’s inequality. Hence, using the notation V1 = {v : ∃u s.t. (v,u) ∈ V } and V2 = {u :578

∃v s.t. (v,u) ∈ V }, we get579

E
[

sup
[v;u]∈V

Zv,u

]
≤ E

[
sup

[v;u]∈V
Wv,u

]
≤ E

[
sup
v∈V1

v>ξ

]
+ E

[
sup
u∈V2

u>ξ̄

]
= G (V1) + G (V2).

Moreover, Z 7→ sup[v;u]∈V1×V2
u>Zv is Lipschitz continuous with constant 1, so the Gaussian580

concentration inequality holds (Boucheron et al., 2013, Theorem 5.6). This and the previous inequality581

bounding the mean complete the proof.582

9.2 Removing compactness constraints: peeling techniques583

Lemma 5 (Single-parameter peeling). Let g : R+ → R+ be a right-continuous non-decreasing584

function and h : V → R+. Assume that for some constants b ∈ R+ and c ≥ 1, for every r > 0 and585

for any δ ∈ (0, 1/(7 ∨ c)), we have586

A(r, δ) =
{

inf
v∈V :h(v)≤r

M(v) ≥ −g(r)− b
√

log(1/δ)
}
,

with probability at least 1− cδ. Then, with probability at least 1− cδ, we have587

∀v ∈ V M(v) ≥ −1.2(g ◦ h)(v)−
(
3 +

√
log(9/δ)

)
b.

Proof. Throughout the proof, without loss of generality, we assume b = 1. Let η, ε > 1 be two
parameters to be chosen later on. We set5 µ0 = 0, µk = µηk−1, νk = g−1(µk) and Vk = {v ∈ V :
µk ≤ (g ◦ h)(v) < µk+1}, for k ≥ 1. The union bound and the fact that

∑
k≥1 k

−1−ε ≤ 1 + ε−1

imply that the event

A :=

∞⋂
k=1

A(νk, εδ/((1 + ε)k1+ε))

has a probability at least 1− cδ. We assume in the sequel that this event is realized, that is588

∀k ∈ N∗
{
∀v ∈ V such that h(v) ≤ νk we have
M(v) ≥ −g(νk)−

√
log{(1 + ε)/(εδ)}+ (1 + ε) log k, .

(31)

For every v ∈ V , there is ` ∈ N such that v ∈ V`. If ` ≥ 1, then h(v) ≤ ν`+1 and (31) implies that589

M(v) ≥ −g(ν`+1)−
√

log{(1 + ε)/(εδ)}+ (1 + ε) log(`+ 1)

= −µ`+1 −
√

log{(1 + ε)/(εδ)}+ (1 + ε) log(`+ 1)

= −ηµ` −
√

log{(1 + ε)/(εδ)}+ (1 + ε) log(`+ 1)

≥ −η2(g ◦ h)(v) + (η − 1)µη` −
√

log{(1 + ε)/(εδ)}+ (1 + ε) log(`+ 1). (32)

If ` = 0, then (31) with k = 1 leads to590

M(v) ≥ −g(ν1)−
√

log{(1 + ε)/(εδ)}

= −g(g−1(µ))−
√

log{(1 + ε)/(εδ)}

= −µ−
√

log{(1 + ε)/(εδ)}. (33)

5Here g−1 is the generalized inverse defined by g−1(x) = inf{a ∈ R+ : g(a) ≥ x}.
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From (32) one can infer that, for ` ≥ 1,591

M(v) ≥ −η2(g ◦ h)(v)−
√

log{(1 + ε)/(εδ)}

+ η`
(

(η − 1)µ− sup
z≥1

√
log{(1 + ε)/(εδ)}+ (1 + ε) log(z + 1)−

√
log{(1 + ε)/(εδ)}

ηz

)
.

We choose µ so that the last term vanishes, that is592

(η − 1)µ = sup
z≥1

√
log{(1 + ε)/(εδ)}+ (1 + ε) log(z + 1)−

√
log{(1 + ε)/(εδ)}

ηz

= sup
z≥1

(1 + ε)η−z log(z + 1)√
log{(1 + ε)/(εδ)}+ (1 + ε) log(z + 1) +

√
log{(1 + ε)/(εδ)}

.

To compute the last expression, we choose η2 = 1.2 and ε = 1/8. This yields593

µ = (η − 1)−1 sup
z≥1

(9/8)(1.2)−z/2 log(z + 1)√
log(9/δ) + (9/8) log(z + 1) +

√
log(9/δ)

≤ (η − 1)−1 sup
z≥1

(9/8)(1.2)−z/2 log(z + 1)√
log 36 + (9/8) log(z + 1) +

√
log 36

≤ 3.

Combining with (33), this yields594

M(v) ≥ −µ− 1.2(g ◦ h)(v)−
√

log(9/δ)

≥ −1.2(g ◦ h)(v)−
(
3 +

√
log(9/δ)

)
.

This completes the proof.595

Lemma 6 (Bi-parameter peeling). Let g, ḡ be right-continuous, non-decreasing functions from R+596

to R+ and h, h̄ be functions from V to R+. Assume that for some constants b ∈ R+ and c ≥ 1, for597

every r, r̄ > 0 and for any δ ∈ (0, 1/(c ∨ 7)), we have598

A(r, r̄, δ) =
{

inf
v∈V :(h,h̄)(v)≤(r,r̄)

M(v) ≥ −g(r)− ḡ(r̄)− b
√

log(1/δ)
}
,

with probability at least 1− cδ. Then, with probability at least 1− cδ, we have599

∀v ∈ V M(v) ≥ −1.2(g ◦ h)(v)− 1.2(ḡ ◦ h̄)(v)− b
(
4.8 +

√
log(81/δ)

)
.

Proof. We will repeat the same steps as for the one-parameter peeling. W.l.o.g. we assume b = 1. We
choose µ > 0, η > 1 and ε > 0. Define 6 µ0 = 0, µk = µηk−1, νk = g−1(µk), ν̄k = ḡ−1(µk) and
Vk,k̄ = {v ∈ V : µk ≤ (g ◦ h)(v) < µk+1, µk̄ ≤ (ḡ ◦ h̄)(v) < µk̄+1}. The union bound implies
that the event

A =

∞⋂
k=1

A
(
νk, ν̄k̄,

ε2δ

(1 + ε)2(kk̄)1+ε

)
has a probability at least 1− cδ. To ease notation, set δε = ε2δ/(1 + ε)2. We assume in the sequel600

that the event A is realized, that is601

∀k, k̄ ∈ N∗, ∀v ∈ V such that (h, h̄)(v) ≤ (νk, ν̄k̄) we have

M(v) ≥ −g(νk)− ḡ(ν̄k̄)−
√

log(1/δε) + (1 + ε) log(kk̄). (34)

For every v ∈ V , there is a pair (`, ¯̀) ∈ N2 such that v ∈ V`. If ` ∧ ¯̀ ≥ 1, then (h, h̄)(v) ≤602

(ν`+1, ν̄¯̀+1), and (34) implies that603

M(v) ≥ −g(ν`+1)− ḡ(ν̄¯̀+1)−
√

log(1/δε) + (1 + ε) log(`+ 1)(¯̀+ 1)

= −µ`+1 − µ¯̀+1 −
√

log(1/δε) + (1 + ε) log(`+ 1)(¯̀+ 1)

= −ηµ` − ηµ¯̀−
√

log(1/δε) + (1 + ε) log(`+ 1)(¯̀+ 1).

6Here g−1 is the generalized inverse given by g−1(x) = inf{a ∈ R+ : g(a) ≥ x}.
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From this inequality, we infer that604

M(v) ≥ −η2[(g ◦ h)(v) + (ḡ ◦ h̄)(v)]

+ η(η − 1)(µ` + µ¯̀)−
√

log(1/δε) + (1 + ε) log(`+ 1)(¯̀+ 1)

= −η2(g ◦ h)(v)− η2(ḡ ◦ h̄)(v)−
√

log(1/δε)

+
{

(η − 1)µ(η` + η
¯̀
) +

√
log(1/δε)−

√
log(1/δε) + (1 + ε) log(`+ 1)(¯̀+ 1)

}
.

We choose µ so that the expression inside the braces is nonnegative, that is605

(η − 1)µ = sup
z,z̄≥1

√
log(1/δε) + (1 + ε) log(1 + z) + (1 + ε) log(1 + z̄)−

√
log(1/δε)

ηz + ηz̄
.

Setting ε = 1/8, η2 = 1.2 and using that δ ≤ 1/7, we get that δε ≤ 1/567 and hence606

µ ≤ (η − 1)−1 sup
z,z̄≥1

√
log 567 + (9/8) log(1 + z) + (9/8) log(1 + z̄)−

√
log 567

1.2z/2 + 1.2z̄/2
≤ 2.4

Combining with the case ` ∧ ¯̀= 1, this yields607

M(v) ≥ −2µ− 1.2(g ◦ h)(v)− 1.2(ḡ ◦ h̄)(v)−
√

log(81/δ)

≥ −1.2(g ◦ h)(v)− 1.2(ḡ ◦ h̄)(v)− 4.8−
√

log(81/δ).

This completes the proof.608

9.3 Structural properties of Gaussian designs609

Proposition 3. Let Z be a n×p matrix with iidNp(0,Σ) columns. For all n ≥ 100 and δ ∈ (0, 1/7],610

with probability at least 1− δ, the following inequality holds: for all v ∈ Rp,611 ∥∥Z(n)v
∥∥

2
≥
(

1−
4.3 +

√
2 log(9/δ)√
n

)
‖Σ1/2v‖2 −

1.2G (Σ1/2Bp1)√
n

‖v‖1. (35)

Remark 1. The above result is similar to (Raskutti et al., 2010, Theorem 1), but it has three612

advantages. First, the influence of the failure probability δ on the constants is made explicit. Second,613

the factor ρ(Σ) appearing in the last term is replaced by the smaller quantity G (Σ1/2Bp1). Third, we614

improved the constants.615

Proposition 3 is a useful technical tool that allows one to transfer the restricted eigenvalue property616

from the population covariance matrix to the empirical one. Following Oliveira (2013) we refer to617

(35) as the transfer principle.618

Proof of Proposition 3. Let r > 0. We define define the sets

VΣ(r) := {v ∈ Rp : ‖Σ1/2v‖2 = 1, ‖v‖1 ≤ r},

and B := {Σ1/2v : v ∈ VΣ(r)}. Note that, if ξ ∼ Np(0, Ip),619

G (B) ≤ E
[

sup
v∈rBp

1

ξ>Σ1/2v

]
≤ rG (Σ1/2Bp1). (36)

Let Z̃ be a n× p matrix with iid N (0, 1) entries such that Z = Z̃Σ1/2. Clearly,

inf
v∈VΣ(r)

∥∥Z(n)v
∥∥

2
= inf
b∈B

∥∥Z̃(n)b
∥∥

2
.

The above equality, (36) and Lemma 4 (noting that B ⊂ Sp−1) entails that, for all r > 0 and
δ ∈ (0, 1], with probability at least 1− δ, the following inequality holds:

inf
v∈VΣ(r)

∥∥Z(n)v
∥∥

2
≥ 1− 1

2n
−
√

2 log(1/δ)

n
− G (Σ1/2Bp1)√

n
r.
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We will now use the above property and Lemma 5 with constraint set V := {v ∈ Rp : ‖Σ1/2v‖2 =
1},

M(v) :=
∥∥Z(n)v

∥∥
2
− 1 +

1

2n
,

functions h(v) := ‖v‖1, g(r) :=
G (Σ1/2Bp

1)√
n

r, and constants c := 1 and b :=
√

2/n. Lemma 5620

implies that with probability at least 1− δ, for all v such that ‖Σ1/2v‖2 = 1, we have621

M(v) =
∥∥Z(n)v

∥∥
2
− 1 +

1

2n
≥ −1.2

G (Σ1/2Bp1)√
n

‖v‖1 −
3
√

2 +
√

2 log(9/δ)√
n

.

Replacing v by u/‖Σ1/2u‖2, for an arbitrary u ∈ Rp, we get622

∥∥Z(n)u
∥∥

2
≥
(

1− 1

2n
−

3
√

2 +
√

2 log(9/δ)√
n

)
‖Σ1/2u‖ − 1.2

G (Σ1/2Bp1)√
n

‖u‖1.

To complete the proof, it suffices to note that (1/2
√
n) + 3

√
2 ≤ 4.3 for n ≥ 100.623

Proposition 4. Let Z ∈ Rn×p be a random matrix with i.i.d. Np(0,Σ) rows. For all δ ∈ (0, 1] and624

n ∈ N, with probability at least 1− δ, the following property holds: for all [v;u] ∈ Rp+n,625 ∣∣∣u>Z(n)v
∣∣∣ ≤ ∥∥Σ1/2v

∥∥
2
‖u‖2

√
2

n

(
4.8 +

√
log(81/δ)

)
+ 1.2‖v‖1‖u‖2

G (Σ1/2Bp1)√
n

+ 1.2
∥∥Σ1/2v

∥∥
2

G (‖u‖1Bn1 ∩ ‖u‖2Bn2 )√
n

.

Remark 2. If, instead of Proposition 4, well-known upper bounds on the maximal singular value of
a Gaussian matrix, we get a sub-optimal result. Indeed, upper tail bounds on largest singular value
imply that, with high-probability, for all v and u,∣∣∣u>Z(n)v

∣∣∣ ≤ ‖Σ1/2v‖2‖u‖2‖Z(n)Σ−1/2‖op . ‖Σ1/2v‖2‖u‖2
√
p

n
.

In case v and u are sparse, the previous lemma establishes a much sharp upper bound with respect to626

dimension. One may see Proposition 4 also as generalized control on the “incoherence” between the627

column-space of Z(n) and the identity In. This is particularly useful when the vectors are sparse as628

in our setting. Alongside Proposition 3, Proposition 4 is at the core of our methodology to obtain629

improved near-optimal rates for corrupted sparse linear regression.630

Proof. Let r1, r2 > 0 and define the sets631

VΣ,1(r1) := {v ∈ Rp : ‖Σ1/2v‖2 = 1, ‖v‖1 ≤ r1},
V2(r2) := {u ∈ Rn : ‖u‖2 = 1, ‖u‖1 ≤ r2}.

We also define the set B1 := {Σ1/2v : v ∈ VΣ,1(r1)}. By similar arguments used to establish (36),632

we have the following Gaussian width bounds:633

G (B1) ≤ r1G (Σ1/2Bp1), G (V2(r2)) ≤ r2G (Bn1 ∩ Bn2/r2). (37)

Let Z̃ be a n× p matrix with iid N (0, 1) entries such that Z = Z̃Σ1/2. Clearly,

sup
[v;u]∈VΣ,1(r1)×V2(r2)

|u>Z(n)v| = sup
[v′;u]∈B1×V2(r2)

|u>Z̃(n)v′|.

The above equality, (37) and Lemma 4 (noting that B1 ⊂ Sp−1 and V2(r2) ⊂ Sn−1) entail that, for634

any r1, r2 > 0 and δ ∈ (0, 1], with probability at least 1− δ, the following inequality holds:635

sup
[v;u]∈VΣ,1(r1)×V2(r2)

|u>Z(n)v| ≤ G (Σ1/2Bp1)√
n

r1 +
G (Bn1 ∩ Bn2/r2)√

n
r2 +

√
2 log(1/δ)

n
.
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We use the above property and Lemma 6 with constraint sets V1 := {v ∈ Rp : ‖Σ1/2v‖2 = 1} and636

V2 := {u ∈ Rn : ‖v‖2 = 1}, functions M(u) := |u>Z(n)v| and637

h(v) := ‖v‖1, h̄(u) := ‖u‖1, g(r1) :=
G (Σ1/2Bp1)√

n
r1, ḡ(r2) :=

G (Bn1 ∩ Bn2/r2)√
n

r2,

and constants c := 1 and b :=
√

2/n. The desired inequality follows from Lemma 6 combined with638

the fact that639 [
v

‖Σ1/2v‖2
;
u

‖u‖2

]
∈ VΣ,1(r1)× V2(r2),

for all [v;u] ∈ Rp × Rn and the homogeneity of norms.640

Lemma 7 (TPΣ + IPΣ ⇒ ATPΣ). Let Z ∈ Rn×p be a matrix satisfying TPΣ(a1; a2) and641

IPΣ(b1; b2; b3) for some positive numbers a1, a2, b1, b2 and b3. Then, for any α > 0, Z sat-642

isfies the ATPΣ(c1; c2; c3) with constants c1 =
√
a2

1 − b1 − α2, c2 = a2 + b2/α and c3 = b3/α.643

Taking α = a1/2, we obtain that ATPΣ(c1; c2; c3) holds with constants c1 =
√

(3/4)a2
1 − b1 − α2,644

c2 = a2 + 2b2/a1 and c3 = 2b3/a1.645

Proof. Simple algebra and the TP property entail646

c1

{
‖Σ1/2v‖22 + ‖u‖22

}1/2

=
{
a2

1‖Σ
1/2v‖22 + a2

1‖u‖22 − (b1 + α2)(‖Σ1/2v‖22 + ‖u‖22)
}1/2

TPΣ

≤
{(
‖Z(n)v‖2 + a2‖v‖1

)2
+ a2

1‖u‖22 − (b1 + α2)(‖Σ1/2v‖22 + ‖u‖22)
}1/2

≤
{
‖Z(n)v‖22 + ‖u‖22 − (b1 + α2)(‖Σ1/2v‖22 + ‖u‖22)

}1/2

+ a2‖v‖1.

By Young’s inequality and IP, we get647

‖Z(n)v‖22 + ‖u‖22 = ‖Z(n)v + u‖22 − 2u>Z(n)v

IPΣ

≤ ‖Z(n)v + u‖22 + 2b1

∥∥Σ1/2v
∥∥

2
‖u‖2 + 2b2‖v‖1‖u‖2 + 2b3

∥∥Σ1/2v
∥∥

2
‖u‖1

Young

≤ ‖Z(n)v + u‖22 + (b1 + α2)
(
‖Σ1/2v‖22 + ‖u‖22

)
+

b2
2

α2
‖v‖21 +

b2
3

α2
‖u‖21.

To get the claimed result, it suffices to put the previous two inequalities together and to rearrange the648

terms.649

Proposition 3, Proposition 4 and Lemma 7 entail immediately that the ATPΣ holds with high-650

probability.651

Corollary 1 (ATPΣ property for correlated Gaussian designs). Let Z ∈ Rn×p be a random matrix652

with iid Np(0,Σ) rows. Suppose δ ∈ (0, 1/7], n ≥ 100 and α > 0 are such that653

Cn,δ :=

(
1−

4.3 +
√

2 log(9/δ)√
n

)2

−
√

2

n

(
4.8 +

√
log(81/δ)

)
− α2 > 0.

Then, with probability at least 1− 2δ, the following property holds: for all [v;u] ∈ Rp+n,654

‖Z(n)v + u‖2 ≥ C1/2
n,δ

∥∥∥[Σ1/2v;u]
∥∥∥

2
− 1.2

(
1 +

1

α

)
G (Σ1/2Bp1)√

n
‖v‖1 −

1.2

α

G (‖u‖1Bn1 ∩ ‖u‖2Bn2 )√
n

.

Remark 3. The particular choice α = 1/2, in conjunction with the bound (28) on the Gaussian655

width, leads to the simpler bound656

‖Z(n)v + u‖2 ≥ C1/2
n,δ

∥∥∥[Σ1/2v;u]
∥∥∥

2
− 3.6G (Σ1/2Bp1)√

n
‖v‖1 − 2.4

√
2 log n

n
‖u‖1

with

Cn,δ =
3

4
−

17.5 + 9.6
√

2 log(2/δ)√
n
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Remark 4. If the goal was to fight against logarithmic factors, we could use a tighter bound on657

the Gaussian width of a convex polytope (Bellec, 2017, Prop. 1). It allows us to replace the term658 √
2 log n ‖u‖1 by 4

√
1 ∨ log(8en‖u‖22/‖u‖21) ‖u‖1. On the one hand, if ‖u‖21 ≥ (o/e)‖u‖22, then659

4
√

1 ∨ log(8en‖u‖22/‖u‖21) ‖u‖1 ≤ 4
√

1 ∨ log(8e2n/o) ‖u‖1. (38)

On the other hand, if ‖u‖21 ≤ o‖u‖22, then we can use the fact that the function x 7→660

x
√

1 ∨ log(e/x2) =: ϕ(x) is increasing, we get661

4
√

1 ∨ log(8en‖u‖22/‖u‖21) ‖u‖1 = 4
√

8en ‖u‖2ϕ
( ‖u‖1√

8n ‖u‖2

)
≤ 4
√

8en ‖u‖2ϕ
(√

o/8en
)

= 4
√
eo ‖u‖2

√
1 + log(8n/o). (39)

Combining (38) and (39), we get662

G (‖u‖1Bn1 ∩ ‖u‖2Bn2 ) ≤ 4(‖u‖1 +
√
o ‖u‖2)

√
2 + log(8n/o).

If the proportion o/n is fixed, or tends to zero at a rate slower than polynomial in n, this latter bound663

can be used to remove logarithmic terms.664

10 Propositions imply theorems665

The three theorems stated in the main body of the paper are simple consequences of the propositions666

established in this supplementary material. The aim of this section is to quickly show how the667

theorems can be derived from the corresponding propositions.668

Proof of Theorem 1 Theorem 1 is essentially a simplified version of Proposition 2. First, note that669

condition on λ in Theorem 1, combined with the well-known upper bounds on the tails of maxima670

of Gaussian random variables (Boucheron et al., 2013), implies that λ satisfies condition (iv) of671

Proposition 2. Furthermore, under the conditions of the theorem, conditions (i)-(iii) of Proposition 2,672

as well as (21) and (22), are satisfied with γ = 1, a1 = c1 ≤ 1, a2 = c2 and b1 = 0. Replacing all673

these values in the inequality of Proposition 2, we get the claim of Theorem 1.674

Proof of Theorem 2 From Proposition 3 and the fact that G (Σ1/2Bp1) ≤
√

2 log p, we infer that675

the TPΣ is satisfied with appropriate constants a1, a2 with probability at least 1 − δ. Similarly,676

Proposition 4 and the aforementioned bound on the Gaussian width imply that the IPΣ is satisfied677

with appropriate constants with probability at least 1 − δ. In the intersection of these two events,678

according to Remark 3, ATPΣ is satisfied with c1, c2 and c3 as in the claim of Theorem 2.679

Proof of Theorem 3 Under the condition δ ≥ 2e−d2n, we check that a1 and c1 are constants.680

Therefore, combining the claims of Theorem 1, Theorem 2 and Lemma 2, we get the claim of681

Theorem 3.682
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